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Abstract
A Generative Adversarial Network (GAN) with generator
G trained to model the prior of images has been shown
to perform better than sparsity-based regularizers in ill-
posed inverse problems. Here, we propose a new method
of deploying a GAN-based prior to solve linear inverse
problems using projected gradient descent (PGD). Our
method learns a network-based projector for use in the
PGD algorithm, eliminating expensive computation of the
Jacobian of G. Experiments show that our approach pro-
vides a speed-up of 60-80× over earlier GAN-based re-
covery methods along with better accuracy. Our main
theoretical result is that if the measurement matrix is mod-
erately conditioned on the manifold range(G) and the pro-
jector is δ-approximate, then the algorithm is guaranteed
to reach O(δ) reconstruction error in O(log(1/δ)) steps
in the low noise regime. Additionally, we propose a fast
method to design such measurement matrices for a given
G. Extensive experiments demonstrate the efficacy of this
method by requiring 5-10× fewer measurements than ran-
dom Gaussian measurement matrices for comparable re-
covery performance. Because the learning of the GAN
and projector is decoupled from the measurement opera-
tor, our GAN-based projector and recovery algorithm are
applicable without retraining to all linear inverse prob-
lems, as confirmed by experiments on compressed sens-
ing, super-resolution, and inpainting.
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1 Introduction
Many application such as computational imaging, and
remote sensing fall in the compressive sensing (CS)
paradigm. CS [9, 5] refers to projecting a high dimen-
sional, sparse or sparsifiable signal x ∈ Rn to a lower di-
mensional measurement y ∈ Rm,m � n, using a small
set of linear, non-adaptive frames. The noisy measure-
ment model is:

y = Ax+ v,A ∈ Rm×n, v ∼ N (0, σ2I) (1)

where the measurement matrix A is often a random
matrix. In this work, we are interested in the problem
of recovering the unknown natural signal x, from the
compressed measurement y, given the measurement
matrix A. Traditionally, for signal priors, natural images
are considered sparse in some fixed or learnable basis
[11, 8, 36, 22, 7, 38, 10, 21].
Instead of the sparse prior commonly adopted by CS lit-
erature, we turn to a learned prior. Neural network-based
inverse problem solvers have been explored recently
[14, 35, 31, 1, 12, 15, 25, 32, 22, 37, 26]. However,
[1, 12, 15, 25] use information about the measurement
matrix A while training the network. Thus, their algo-
rithms are limited to a particular set-up to solve specific
inverse-problem and usually cannot solve other problems
without retraining. Another line of work, [28, 29] jointly
optimizes the measurement matrix and recovery algo-
rithm, again resulting in algorithm limited to a particular
inverse problem and measurement matrix. Instead, in
this paper the network is trained independently of A and
can be generalized across different inverse problems.
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This aspect is shared by two other neural-network-based
solvers [35, 31], however, they model the image prior
only implicitly by training a denoiser or a proximal map,
and perhaps for this reason appear to require massive
quantity of training samples. Importantly, very little is
known about why and when they perform well, as even if
the learned proximal map is assumed to be exact, there
is no theoretical convergence guarantee or bound on the
recovery error.

In this work, we leverage the success of generative
adversarial network (GAN) [13, 6, 42, 39, 3, 20] in mod-
eling the distribution of data. Indeed, GAN-based priors
for natural images have been successfully employed to
solve linear inverse problems [24, 4, 33]. However, in
[24], the operator A is integrated into training the GAN,
limiting it to a particular inverse problem. We therefore
focus on the recent papers [4, 33] closest to our work, for
extensive comparisons.

Bora et al.[4] do not have a guarantee on the conver-
gence of their algorithm for solving the non-convex op-
timization problem, requiring several random initializa-
tions. Similarly, in [33], the inner loop uses a gradient de-
scent algorithm to solve a non-convex optimization prob-
lem with no guarantee of convergence to a global opti-
mum. Furthermore, the conditions imposed in [33] on the
random Gaussian measurement matrix for convergence of
their outer iterative loop are unnecessarily stringent and
cannot be achieved with a moderate number of measure-
ments. Importantly, both these methods require expen-
sive computation of the Jacobian ∇zG of the differen-
tiable generatorG with respect to the latent input z. Since
computing ∇zG involves back-propagation through G at
every iteration, these reconstruction algorithms are com-
putationally expensive and even when implemented on a
GPU they are slow.

We propose a GAN-based projection network to solve
compressed sensing recovery problems using projected
gradient descent (PGD). We are able to reconstruct the im-
age even with 61× compression ratio (i.e., with less than
1.6% of a full measurement set) using a random Gaussian
measurement matrix. The proposed approach provides
superior recovery accuracy over existing methods, simul-
taneously with a 60-80× speed-up, making the algorithm
useful for practical applications. We also provide theoret-

Figure 1: Our network-based PGD solves the following
inverse problems: compressive sensing with 61× com-
pression, 4× super-resolution, scatterd inpaining with
high noise (σ = 40) and 50% blocked inpainting with
high noise.

ical results on the convergence of the reconstruction er-
ror, given that the measurement matrix A satisfies certain
conditions when restricted to the range R(G) of the gen-
erator. We complement the theory by proposing a method
to design a measurement matrix that satisfies these suffi-
cient conditions for guaranteed convergence. We assess
these sufficient conditions for both the random Gaussian
measurement matrix and the designed matrix for a given
dataset. Both our analysis and experiments show that with
the designed matrix, 5-10× fewer measurements suffice
for robust recovery. Because the training of the GAN and
projector is decoupled from the measurement operator, we
demonstrate that other linear inverse problems like super-
resolution and inpainting can also be solved using our al-
gorithm without retraining.

2 Problem Formulation

Let x∗ ∈ Rn denote a ground truth image, A a fixed mea-
surement matrix, and y = Ax∗ + v ∈ Rm the noisy mea-
surement, with noise v ∼ N (0, σ2I). We assume that the
ground truth images lie in a non-convex set S = R(G),
the range of generator G. The maximum likelihood esti-
mator (MLE) of x∗, x̂MLE , can be formulated as follows:

x̂MLE = arg min
x∈R(G)

− log p(y|x) = arg min
x∈R(G)

‖y −Ax‖22
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Bora et al.[4] (whose algorithm we denote by CSGM)
solve the optimization problem ẑ = arg minz∈Rk ‖y −
AG(z)‖2 + λ‖z‖2 in the latent space (z), and set x̂ =
G(ẑ). Their gradient descent algorithm often gets stuck
at local optima. Since the problem is non-convex, the re-
construction is strongly dependent on the initialization of
z and requires several random initializations to converge
to a good point. To resolve this problem, Shah and Hegde
[33] proposed a projected gradient descent (PGD)-based
method (which we call PGD-GAN) to solve (2), shown
in fig.2(a). They perform gradient descent in the ambi-
ent (x)-space and project the updated term onto R(G).
This projection involves solving another non-convex min-
imization problem (shown in the second box in fig.2(a))
using the Adam optimizer [17] for 100 iterations from a
random initialization. No convergence result is given for
this iterative algorithm to perform the non-linear projec-
tion, and the convergence analysis for the PGD-GAN al-
gorithm [33] only holds if one assumes that the inner loop
succeeds in finding the optimum projection.

Our main idea in this paper is to replace this iterative
scheme in the inner-loop with a learning-based approach,
as it often performs better and does not fall into local op-
tima [42]. Another important benefit is that both earlier
approaches require expensive computation of the Jaco-
bian of G, which is eliminated in the proposed approach.

3 Proposed Method
In this section, we introduce our methodology and archi-
tecture to train a projector using a pre-trained generatorG
and how we use this projector to obtain the optimizer in
(2).

3.1 Inner-Loop-Free Scheme
We show that by carefully designing a network architec-
ture with a suitable training strategy, we can train a pro-
jector onto R(G), the range of the generator G, thereby
removing the inner-loop required in the earlier approach.
The resulting iterative updates of our network-based PGD
(NPGD) algorithm are shown in fig.2(b). This approach
eliminates the need to solve the non-convex optimiza-
tion problem in the inner-loop, which depends on initial-
ization and requires several restarts. Furthermore, our
method provides a significant speed-up by a factor of

(a) PGD with inner-loop

(b) Network-based PGD (NPGD)

Figure 2: (a) Block diagram of PGD using inner-loop
[33]. k represents the outer loop iterators and ẑk+1 is
the optimizer of ‖G(z) − wk‖2 obtained by solving the
inner-loop using Adam optimizer. (b) Block diagram of
our network-based PGD (NPGD) with PG = GG† as a
network based projector onto R(G). f(x) = ‖Ax − y‖2
is the cost function defined in (2)

(⋅)G
†

θ
G( ⋅ )G( ⋅ )

(. )PG

z ∼ N(0, I)

Noise

Figure 3: Architecture to train a projector onto range(G)

30-40× on the CelebA dataset for two major reasons:
(i) since there is no inner-loop, the total number of iter-
ations required for convergence is significantly reduced,
(ii) doesn’t require computation of ∇Gz i.e.the Jacobian
of the generator with respect to the input, z. This ex-
pensive operation repeats back-propagation through the
network for Tout × #restarts(for [4]) or Tout × Tin (for
[33]) times, where #restarts, Tout and Tin are number of
restarts, outer and inner iterations respectively.

3.2 Generator-based Projector

A GAN consists of two networks, generator and dis-
criminator, which follow an adversarial training strategy
to learn the data distribution. A well-trained generator
G : Rk → R(G) ⊂ Rn, k � n takes in a random la-
tent variable z ∼ N (0, Ik) and produces sharp looking
images imitating the training data distribution in Rn. The
goal is to train a network that projects an image x ∈ Rn
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onto R(G). The projector, PS onto a set S should satisfy
two main properties: (i) Idempotence, for any point x,
PS(PS(x)) = PS(x), (ii) Least distance, for a point x̃,
PS(x̃) = arg minx∈S‖x − x̃‖2. Figure 3 shows the net-
work structure we used to train a projector using a GAN.
We define the multi-task loss to be:

L(θ) = Ez,ν
[∥∥∥G(

G†θ (G(z) + ν)
)
−G(z)

∥∥∥2]
+ Ez,ν

[
λ
∥∥∥G†θ (G(z) + ν)− z

∥∥∥2] (2)

where G is a generator obtained from the GAN trained on
a particular dataset. Operator G†θ : Rn → Rk, parameter-
ized by θ, approximates a non-linear least squares pseudo-
inverse of G and ν ∼ N (0, In) indicates noise added to
the generator’s output for different z ∼ N (0, Ik) so that
the projector network denoted by PG = GG†θ is trained
on points outside the range(G) and learns to project them
onto R(G). The objective function consists of two parts.
The first is similar to standard Encoder-Decoder frame-
work, however, the loss function is minimized over θ –
the parameters of G†, while keeping the parameters of G
(obtained by standard GAN training) fixed. This ensures
that R(G) doesn’t change and PG = GG† is a mapping
onto R(G). The second part is used to keep G†(G(z))
close to true z used to generate training image G(z). This
second term can be considered a regularizer for training
the projector with λ being the regularization constant.

4 Theoretical Study

4.1 Convergence Analysis
Let f(x) = ‖Ax − y‖22 denote the loss function of pro-
jected gradient descent. Algorithm (1) describes the pro-
posed network-based projected gradient descent (NPGD)
to solve equation (2).

Definition 1 (Restricted Eigenvalue Constraint (REC))
Let S ⊂ Rn. For some parameters 0 < α < β, matrix
A ∈ Rm×n is said to satisfy the REC(S, α, β) if the
following holds for all x1, x2 ∈ S.

α‖x1 − x2‖2 ≤ ‖A(x1 − x2)‖2 ≤ β‖x1 − x2‖2. (3)

Definition 2 (Approximate Projection using GAN)
A concatenated network G(G†(·)) : Rn → R(G) is a

Algorithm 1 Network-based Projected Gradient Descent
Input: loss function f , A, y,G,G†

Parameter: step size η(= 1
β )

Output: an estimate x̂ ∈ R(G)

1: Let t = 0, x0 = AT y.
2: while t < T do
3: wt := xt − ηAT (Axt − y)
4: xt+1 := G(G†(wt))
5: end while
6: return x̂ = xT

δ-approximate projector, if the following holds for all
x ∈ Rn:

‖x−G(G†(x))‖2 ≤ min
z∈Rk

‖x−G(z)‖2 + δ (4)

Theorem 1 provides upper bounds on the cost function
and reconstruction error of our NPGD algorithm after n
iterations.

Theorem 1 Let matrix A ∈ Rm×n satisfy the
REC(S, α, β) with β/α < 2, and let the concatenated
network G(G†(·)) be a δ-approximate projector. Then
for every x∗ ∈ R(G) and measurement y = Ax∗, ex-
ecuting algorithm 1 with step size η = 1/β, will yield
f(xn) ≤ (βα − 1)nf(x0) + βδ

2−β/α . Furthermore, the al-
gorithm achieves ‖xn − x∗‖2 ≤

(
C + 1

2α/β−1

)
δ after

1
2−β/α log

( f(x0)
Cαδ

)
steps. When n → ∞, ‖x∗ − x∞‖2 ≤

δ
2α/β−1 .

Proof 1 Please refer to the appendix.

From theorem 1, one important factor is the ratio β/α.
This ratio largely determines the speed of linear (”geo-
metric”) convergence, as well as the reconstruction error
‖x∗ − x∞‖2 at convergence. We would like β/α ratio as
close to 1 as possible and must have β/α < 2 for con-
vergence. It has been shown in [2] that a random matrix
A with orthonormal rows will satisfy this condition with
high probability for m roughly linear in dimension k with
log factors dependent on the properties of the manifold,
in this case, R(G). However, as we demonstrate later (see
figure 4), a random matrix often will not satisfy the de-
sired condition β/α < 2 for small or moderate m. To
extend into such regimes, we propose next a fast heuristic
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method to find a relatively good measurement matrix for
an image set S, given a fixed m.

4.2 Generator-based Measurement Matrix
Design

There have been a few attempts to optimize the measure-
ment matrix based on the specific data distribution. Hegde
et al.[16] find a deterministic measurement matrix that
satisfies REC(S, 1 − δS , 1 + δS) for a given finite set S
of size |S| , but their time complexity is O(n3 + |S|2n2).
Because the secant set S (defined later) would be of car-
dinality |S| = O(M2) for a training set of size M , with
M � n, the time complexity would be infeasible even for
fairly small n-pixel images. Furthermore, the final num-
ber of required measurements m, which is determined by
the algorithm, depends on the isometry constant δS , and
cannot be specified in advance. Kvinge et al.[18] intro-
duced a heuristic iterative algorithm to find a measure-
ment matrix with orthonormal rows that satisfies the REC
with small β/α ratio, but their time complexity is O

(
n5
)

and the space complexity isO(n3), which is infeasible for
a high-dimensional image dataset. Instead, our method,
based on sampling from the secant set, has time complex-
ity O(Mn2 + n3), and space complexity O(n2), where
M is a tiny fraction of |S|.

Definition 3 (Secant Set) The normalized secant set of
G is defined as follows:

S(G) =
{ x1 − x2

‖x1 − x2‖
: x1, x2 ∈ R(G)

}
(5)

and the associated distribution is denoted as ΠS , where

z1, z2 ∼ N (0, Ik), s =
G(z1)−G(z2)

‖G(z1)−G(z2)‖
∼ ΠS (6)

Given S(G), the optimization over A is as follows:

min
A∈Rm×n

β

α
= min
A∈Rm×n

maxs∈S(G) ‖As‖
2

mins∈S(G) ‖As‖
2 (7)

≤ min
AAT =Im

1

mins∈S(G) ‖As‖
2 =

(
max

AAT =Im
min
s∈S(G)

‖As‖2
)−1

The inequality is due to an additional constraint on
A : AAT = Im. This results in the largest singu-

lar value of A being 1 and hence the numerator term,
maxs∈S(G) ‖As‖

2, is at most 1. As the minimization in
(7) requires iterating through the set S, we use the ex-
pected value over s ∼ ΠS as a surrogate objective

A = arg max
AAT =Im

Es∼ΠS

[
‖As‖2

]
≈ arg max

AAT =Im

1

M

M∑
j=1

‖Asj‖2

(8)
The last approximation replaces the surrogate objective
by its empirical estimate obtained by sampling M � n
secants (sj)

M
j=1 according to ΠS . For m and M large

enough, this designed measurement matrix would satisfy
the condition β/α < 2 for most of the secants in R(G).
Constructing an n ×M matrix D = [s1|s2| . . . |sM ], (8)
reduces to:

A∗ = arg max
A

‖AD‖2F s.t. AAT = Im (9)

The optimal A∗ in (9) has rows equal to the m leading
eigenvectors DDT . We compute DDT =

∑M
j=1 sjs

T
j

and its eigenvalue decomposition at time complexity
O(Mn2 + n3) and space complexity O(n2).

Our approach to the design of A is related to one of the
steps described by [18], however by using the sampling-
based estimates per (6) and (8) rather than the secant set
for the entire training set, we reduce the computational
cost by orders of magnitude to a modest level.

4.2.1 REC Histogram for A

We analyze the REC conditions by plotting the his-
togram of ‖As‖ values for different measurement matri-
ces A ∈ Rm×n in figure 4 where s ∈ S, the secant set
of the samples from G trained on MNIST dataset. The
left column shows the histograms for the random and G-
based designed matrix. For randomA, the spread of ‖As‖
is clearly wider for few measurements m, resulting in
β/α 6< 2. For the designed A, the histogram is more
concentrated. Even with as few as m = 20 measurements
(for MNIST), the designed A satisfies the sufficient con-
dition β/α < 2 for convergence of the PGD algorithm,
thus ensuring stable recovery. The middle columns shows
the histograms corresponding to the downsamplingA that
takes the spatial averages of f × f , f = 2, 3, 4, 5, pixel
values to generate low-resolution images. The right col-
umn shows the histograms for the inpaintingA that masks
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Figure 4: Distribution of ‖As‖ with different A. Left:
Random (cyan) and Designed matrix (orange) with dif-
ferent m. Middle: Downsampling matrix (green) with
different f . Right: Inpainting matrix (red) with different
mask size.

out a centered square of various sizes. As expected, with
more difficult recovery problems the spread increases.
However, for each inverse problem (defined by a matrix
A), the ratio β/α can be estimated for e.g., 99.9% of the
samples, providing, in combination with Theorem 1, an
explicit quantitative guarantee.

5 Experiments
Network Architecture: We implement two GAN ar-
chitectures: (i) Deep convolutional GAN (DCGAN)
[30] for MNIST and CelebA, (ii) Self-attention GAN
(SAGAN) [41] for LSUN church-outdoor dataset. DC-
GAN builds on multiple convolution, transpose convo-
lution, and ReLU layers, and uses batch normalization
and dropout for better generalization, whereas SAGAN
combines convolutions with self-attention mechanisms
in both, generator and discriminator, allowing for long-
range dependency modeling to generate images with
high-resolution details. For DCGAN, we have used stan-
dard objective function of the adversarial loss, whereas for
SAGAN, we minimized the hinge version of the adversar-
ial loss [27]. The architecture of the model G† is similar
to that of the discriminatorD in the GAN and only differs

Figure 5: Recovery of LSUN church-outdoor images in
inpainting (mask size = 20), super-resolution (4×) and
Compressed Sensing (CS, m = 1000) tasks.

in the final layer, where we add a fully-connected layer
with output size same as the latent variables dimension k.
For training G†, we used the architecture shown in Fig. 3
and objective defined in (2), while keeping the pre-trained
G fixed. We found that using λ = 0.1, in (2), gave the best
performance. The noise ν used for perturbing the training
images G(z) follows N (0, σ2I). We observed that train-
ing with low σ results in a projector similar to an identity
operator and hence only projecting close-by points onto
R(G), whereas for large σ the projector violates idempo-
tence. We empirically set σ = 1. We then obtain a pro-
jection network PG = GG† that approximately projects
images lying outside R(G) onto R(G). We empirically
pick latent variable dimension k = 100.
MNIST dataset [19] consists of 28×28 greyscale images

of digits with 50, 000 training and 10, 000 test samples.
We pre-train the GAN consisting of 4 transposed convolu-
tion layers for G and 4 convolution layers in the discrimi-
nator D using rescaled images lying between [−1, 1]. We
use z ∼ N (0, Ik) as the G’s input. The GAN is trained
using the Adam optimizer with learning rate 0.0001, mini-
batch size of 128 for 40 epochs. For training the pseudo-
inverse of G i.e.G†, we minimize the objective (2), using
samples generated from G(z), and with the same hyper-
parameters used for the GAN.
CelebA dataset [23] consists of more than 200, 000
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celebrity images. We use the aligned and cropped version,
which preprocesses each image to a size of 64×64×3 and
scaled between [−1, 1]. We randomly pick 160, 000 im-
ages for training the GAN. Images from the 40, 000 held-
out set are used for evaluation. The GAN consists of 5
transposed convolution layers in the G and 5 convolution
layers in D. GAN is trained for 35 epochs using Adam
optimizer with learning rate 0.00015 and mini-batch size
128. G† is trained in the same way as for the MNIST
dataset.
LSUN church-outdoor dataset [40] consists of more than
126, 000 cropped and aligned images of size 64 × 64 ×
3 scaled between [−1, 1]. DCGAN generates high-
resolution details using spatially local points in lower-
resolution feature maps, whereas in SAGAN, details can
be generated using information from many feature loca-
tions making it a natural choice for diverse dataset such as
LSUN. The SAGAN consists of 4 transposed convolution
layers and 2 self-attention modules at different scales in
G and 4 convolution layers and 2 self-attention modules
in D. Each self-attention module consists of 3 convolu-
tion layers and are added at the 3rd and 4th layers of the
two networks. SAGAN uses conditional batch normaliza-
tion in G and projection in D. Spectral normalization is
used for the layers in both G and D. We use ADAM opti-
mizer with β1 = 0 and β2 = 0.9, learning rate 0.0001 and
mini-batch size 64 for the GAN training. G†, consisting
of self-attention mechanism similar to D, is trained using
the objective 2 using the ADAM optimizer with β1 = 0.9
and β2 = 0.999, learning rate 0.001 and mini-batch size
of 64 for 100 epochs.

We compare the performance of our algorithm on
MNIST and CelebA with other GAN-prior solvers ([4,
33]) and sparsity-based methods, Lasso with discrete co-
sine transform (DCT) basis [34] and total variation min-
imization method (TVAL3) [21] for linear inverse prob-
lems, namely compressed sensing (CS), super-resolution
and inpainting. For CS, we extensively evaluate the recon-
struction performance with the random Gaussian and de-
signed measurement matrices. Furthermore, we demon-
strate the recovery of LSUN church-outdoor dataset im-
ages using the proposed method for the different problems
in Fig. 5.

Figure 6: Reconstruction using Gaussian matrix with
m = 100. 1

5.1 Compressed Sensing

5.1.1 Recovery with random Gaussian matrix

In this set-up, we use the same measurement matrix A as
([4, 33]) i.e.Ai,j ∼ N(0, 1/m) where m is the number
of measurements. For MNIST, the measurement matrix
A ∈ Rm×784, with m = 20, 50, 100, 200, whereas for
CelebA, A ∈ Rm×12288, with m = 200, 500, 1000, 2000.
Figure 6 shows the recovery results for MNIST images
from the test set. Our NPGD algorithm performs bet-
ter than others and avoids local optima. Figure 7 shows
the reconstruction of eight test images from CelebA. Our
algorithm outperforms the other three methods visually
as it is able to preserve detailed facial features such as
sunglasses, hair and has accurate color tones. Figures 8a
and 8c provide a quantitative comparison for MNIST and
CelebA, respectively.

5.1.2 Recovery with the designed matrix

In this set-up, we use the G-based designed A described
in the section 4.2. We observe that recovery with the de-
signed A is possible for much fewer measurements m.
This corroborates our assessment based on Figure 4 that
the designed matrix satisfies the desired REC condition
with high probability for most of the secants, for smaller
m. Figures 8a, 8c show that our algorithm consistently
outperforms other approaches in terms of reconstruction
error and structural similarity index (SSIM) for a random

1Code of Shah et al.(PGD-GAN) for MNIST not available
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Figure 7: Reconstruction using Gaussian matrix with
m = 1000.

A. Furthermore, with the designed A, we are able to get
performance on-par with the random matrix using 5-10×
smallerm. Figures 8b,8d show the recovered images with
the designed and a random A using our algorithm for dif-
ferent m. Clearly, recovery with the random A requires
much bigger m than the designed one to achieve similar
performance.

5.2 Super-resolution

Super-resolution refers to recovering the high-resolution
image from a single low-resolution image, often mod-
eled as a blurred and downsampled image of the origi-
nal. This super-resolution problem is just a special case in
our framework of linear measurements. We simulate the
blurring+downsampling by taking the spatial averages of
f×f pixel values (in RGB color space), where f is the ra-
tio of downsampling. This corresponds to blurring by an
f × f box impulse response, followed by downsampling.
We test our algorithm with f = 2, 3, 4, corresponding to
4×, 9× and 16×-smaller image sizes, respectively. We
note that for higher f , the measurement matrixAmay not
satisfy the desired REC(S, α, β) with β

α < 2 (see figure
4) required for convergence of our algorithm and, conse-
quently, our theorem might not be applicable. Results for
MNIST in figure 9a-9c shows that recovery performance
indeed degrades with increasing f , however, our NPGD
algorithm, gives better reconstructions than Bora et al.[4].

m CSGM 2 PGD-GAN NPGD
200 5.8 66 0.09 (64x)
500 6.6 60 0.10 (66x)
1000 8.0 63 0.11 (72x)
2000 11.2 61 0.14 (80x)

Table 1: Comparison of execution time ([sec.]) of re-
covery algorithms on the CelebA dataset. The relative
speedup of our NPGD over the CSGM algorithm of Bora
et al.is shown in parenthesis.

5.3 Inpainting
Inpainting refers to recovering the entire image from a
partly occluded version. In this case, y is an image with
masked regions and A is the linear operation applying a
pixel-wise mask to the original image x. Again, this is a
special case of linear measurements where each measure-
ment corresponds to an observed pixel. For experiments
on the MNIST dataset, we apply a centered square mask
of size 6, 10, 14. Recovery results in figure 10a-10c show
that our method consistently outperforms [4] and recovers
almost perfectly for mask-size less than 10. The results
align with the REC histogram for inpainting (figure 4),
which shows that for higher mask-size, the desired REC
condition for guaranteed convergence may not be satis-
fied.

5.4 Comparison of Run-time for Recovery
Table 1 compares the run times of our network-based al-
gorithm NPGD and other recovery algorithms. We record
the average run time to recover a single image from its
compressed sensing measurements over 10 different im-
ages. All three algorithms were run on the same worksta-
tion with i7-4770K CPU, 32GB RAM and GeForce Titan
X GPU.

5.5 Analysis: Error in Projector
Figure 11 illustrates the idempotence error of the pro-
jector for different k. Three different categories of im-

2Run time includes 2 initializations, as implemented by the authors,
for CelebA. The same number of initializations for CelebA (and 10 for
MNIST) has been used to produce results in figures 6, 7, 8, and 9. Our
NPGD algorithm uses only one, deterministic initialization, x0 = AT y.
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a b

c d

Figure 8: (a) Relative error ‖x∗ − x̂‖2/‖x∗‖2 and SSIM of reconstruction algorithms for MNIST dataset with m =
20, 50, 100, 200 measurements. (b) MNIST reconstructions with a random Gaussian (middle row) and the designed
matrix with orthonormal rows based on G (bottom row) using different m. (c) Relative error and SSIM for CelebA
dataset with m = 200, 500, 1000, 2000 measurements. (d) CelebA reconstructions, as in (b).

a: 4× low-res b: 9× low-res c: 16× low-res

Figure 9: Super-resolution on MNIST dataset. Row 1:
original image x. Row 2: low-resolution images y, up-
sampled using constant padding, Row 3: high resolution
image recovered by [4]. Row 4: high-resolution image
recovered by our method.

ages are tested, namely, MNIST training samples, MNIST
test samples, and samples G(z) generated using the
pre-trained G. We use clean images from the three
sources and plot the relative idempotence error ‖x −
PG(x)‖2/‖x‖2. The error decreases with increasing k
and saturates around k = 100. The idemopotence errors
for MNIST training and test samples are very close, indi-

a: Mask size = 6 b: Mask size = 10 c: Mask size = 14

Figure 10: Inpainting in MNIST dataset. Row 1: original
image x. Row 2: image y with center block missing. Row
3: image recovered by [4]. Row 4: image recovered by
our method.

cating negligible generalization error. On the other hand,
samples generated byG(z) give much lower errors, which
indicates representation error in the GAN. Thus we expect
that a more flexible generator (deeper network) will lead
to a better projector on the actual dataset and hence im-
prove performance.

9



Figure 11: Idempotence Error

6 Conclusion

In this work, we propose a GAN based projection net-
work for faster recovery in linear inverse problems. Our
method demonstrates superior performance and also pro-
vides a speed-up of 60-80× over existing GAN-based
methods, eliminating the expensive computation of the
Jacobian matrix every iteration. We provide a theoreti-
cal bound on the reconstruction error for a moderately-
conditioned measurement matrix. To help design such
a matrix for compressed sensing, we propose a method
which enables recovery using 5-10× fewer measurements
than using a random Gaussian matrix. Our experiments
on compressed sensing, super-resolution, and inpainting
demonstrate that generic linear inverse problems can be
solved with the proposed method without requiring re-
training. In the future, deriving a bound for the projec-
tion error δ and an associated performance guarantee is a
interesting direction.

A Appendix: Proof of Theorem 1

By the assumption of δ-approximate projection,
‖wt − xt+1‖2 = ‖wt −G(G†(wt))‖2 ≤ ‖x∗ − wt‖2 + δ

(10)
where from the gradient update step, we have
wt = xt − ηAT (Axt − y) = xt − ηATA(xt − x∗)

Substituting wt into (10) yields
‖xt+1 − xt‖2 − 2η

〈
xt+1 − xt, ATA (x∗ − xt)

〉
≤ ‖x∗ − xt‖2 − 2η‖A(x∗ − xt)‖2 + δ

Rearranging the terms we have
2
〈
xt − xt+1, A

TA (x∗ − xt)
〉

≤ 1

η
‖x∗ − xt‖2 − 2f (xt)−

1

η
‖xt+1 − xt‖2 +

δ

η

≤
( 1

ηα
− 2
)
f(xt)−

1

η
‖xt+1 − xt‖2 +

δ

η

≤
( 1

ηα
− 2
)
f (xt)−

1

ηβ
‖Axt+1 −Axt‖2 +

δ

η
(11)

where the last two inequalities follow from
REC(S, α, β). Now the LHS can be rewritten as:
2
〈
xt − xt+1, A

TA (x∗ − xt)
〉

= ‖Ax∗ −Axt+1‖2 − ‖Ax∗ −Axt‖2 − ‖Axt+1 −Axt‖2

= f(xt+1)− f(xt)− ‖Axt+1 −Axt‖2 (12)
Combining (11) and (12), and rearranging the terms, we
have:

f(xt+1) ≤
( 1

ηα
−1
)
f(xt)+

(
1− 1

ηβ

)
‖Axt+1 −Axt‖22+

δ

η

and since η = 1/β,

f(xt+1) ≤
(β
α
− 1
)
f(xt) + βδ

For simplicity, we substitute κ = β/α in the following:

f(xn) ≤ (κ− 1)
n
f (x0) + βδ

n−1∑
k=0

(κ− 1)
k

= (κ− 1)
n
f (x0) +

β (1− (κ− 1)n)

2− κ
δ

For convergence, we require 1 ≤ κ = β/α < 2. When n
reaches 1

2−κ log
(
f(x0)
Cαδ

)
, we have

‖xn − x∗‖2 ≤
‖Axn −Ax∗‖2

α
=
f(xn)

α

≤ (κ− 1)
n f(x0)

α
+
β (1− (κ− 1)n)

α(2− κ)
δ

≤ (κ− 1)
n f(x0)

α
+

δ

2/κ− 1
≤
(
C +

1

2/κ− 1

)
δ

Finally, when n→∞, we have (κ− 1)
n f(x0)

α → 0

‖x∗ − x∞‖2 ≤
δ

2/κ− 1
=

δ

2α/β − 1
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