1908.08932v2 [cs.CV] 23 Dec 2019

arxXiv

Learning Filter Basis for Convolutional Neural Network Compression

Yawei Li'* Shuhang Gu'* Luc Van Gool'*?, Radu Timofte'
!Computer Vision Lab, ETH Zurich, Switzerland, 2KU Leuven, Belgium

{yawei.li, shuhang.gu, vangool, radu.timofte}@vision.ee.ethz.ch

Abstract

Convolutional neural networks (CNNs) based solutions
have achieved state-of-the-art performances for many com-
puter vision tasks, including classification and super-
resolution of images. Usually the success of these methods
comes with a cost of millions of parameters due to stacking
deep convolutional layers. Moreover, quite a large num-
ber of filters are also used for a single convolutional layer,
which exaggerates the parameter burden of current meth-
ods. Thus, in this paper, we try to reduce the number of
parameters of CNNs by learning a basis of the filters in
convolutional layers. For the forward pass, the learned
basis is used to approximate the original filters and then
used as parameters for the convolutional layers. We vali-
date our proposed solution for multiple CNN architectures
on image classification and image super-resolution bench-
marks and compare favorably to the existing state-of-the-
art in terms of reduction of parameters and preservation of
accuracy. Code is available at https://github.com/
ofsoundof/learning filter _basis.

1. Introduction

Recently, deep convolutional neural network (CNN)
based approaches have been setting new state-of-the-art re-
sults not only for high-level computer vision tasks such as
image classification [26, 45, 16, 19], segmentation [2, 36],
and object detection [12, 11, 44, 43], but also for low-level
tasks such as image super-resolution (SR) [10, 23, 34, 31,

, 33], denoising [50, 51, 13], and deburring [39, 29].
However, most of the advances are achieved at the expense
of relying on deeper architectures, millions of optimization
parameters and resource-intensive computations. This ham-
pers the application of deep neural networks under resource
constrained environments, e.g., mobile phones.

To overcome the above mentioned problem, one research
direction is to design efficient architectures. For exam-
ple, in comparison with VGG [45], both ResNet [16] and

*Equal contribution

DenseNet [19] reduce the number of parameters in their
CNN by one magnitude of order while achieving compara-
ble or even more accurate image classification results. De-
spite being more compact, there are still redundancies in
those networks, making it possible for further compression.

In the meanwhile, network compression promises to al-
leviate the model complexity without losing much accuracy
of the original network. Many network compression meth-
ods have been proposed. They mainly fall into three cate-
gories including network quantization [42, 30, 7, 54], net-
work pruning [14, 15, 18], and filter decomposition [2 1, 53,

, 46, 41]. In this paper, we focus on filter decomposition.

Filter decomposition approximates the original filter
with a lightweight convolution and a linear projection. Cur-
rent methods either operate directly on the channel-wise
2D w x h filters [21, 47, 46] or decompose the intact 3D
c x w x hfilters [53, 41]. For those working on 2D filters,
considering that the kernel size is usually small (e.g., 3 X 3)
and a couple of new parameters are introduced to represent
the 2D kernel, the compression ratio in terms of reduction
of parameters is not impressive [47, 46]. The other filter
decomposition methods [53] consider a 3D kernel as an in-
tact element making impossible the reduction of the number
of input channels [18]. This prevents the application of the
method to narrow networks with much fewer output chan-
nels but more input channels. For example, in DenseNet-
12-40, there are only 12 output channels which makes it not
economic to decompose the 3D filters.

The aforementioned methods either collapse or maintain
the 3D filters during decomposition, which can be regarded
as ’hard’ decomposition. They are only coarse-grained con-
figurations on the two boundary operating points. The mo-
tivation of this paper is to provide the missing in-between
fine-grained operating points and to balance the parame-
ter distribution between the two decomposed convolutions.
Thus, we propose a novel filter basis learning method that
circumvents the limitation of the hard’ filter decomposition
methods. We split the 3D filters along the input channel di-
mension and each split is considered as a basic element. We
assume that the ensemble of those basic elements within one
convolutional layer can be represented by the linear combi-

https://github.com/ofsoundof/learning_filter_basis
https://github.com/ofsoundof/learning_filter_basis

nations of a basis. Our aim is to learn the basis and the lin-
ear combination together. During inference, the basis can
be combined to reconstruct the original element, i.e., the
3D split. Then the splits are stacked along the input channel
dimension to form the original 3D filters. Also, as it will
be explained in the paper, the convolutions with respect to
the original 3D filters can be converted to convolutions with
respect to the learned basis. Thus, our method can be easily
and efficiently implemented and embedded into the state-of-
the-art networks. Compared with previous works, our basis
learning method also generalized easily to 1 x 1 convolu-
tion, which is vital for compressing networks with intensive
1 x 1 convolutions.

The contribution of this paper is four-fold. (I) We pro-
pose a novel basis learning method that can reduce the in-
put channel, making it eligible for narrow networks. Our
method can be applied to convolutional layers with differ-
ent kernel sizes and even 1 x 1 convolutions. (II) Our
method achieves state-of-the-art compression performance.
On VGG, SRResNet, and EDSR, our method outperforms
state-of-the-art compression method gracefully with lower
classification error and fewer parameters of the previous
compression method [46, 47]. On ResNet, DenseNet, our
compressed model is comparable with the recent state-of-
the-art with fewer parameters. (IIT) Our method generalizes
easily to prior work just by changing the number of splits,
thus leading to a unified formulation of different filter de-
composition methods [21, 53, 47]. (IV) We validate our
method on both high-level vision tasks, i.e., image classifi-
cation, and low-level vision tasks, i.e., image SR. Compared
with the high-level vision tasks such as image classifica-
tion where a single class is regressed, the low-level image
SR task is more challenging since the algorithm need to re-
cover every pixel and the content detail in the image. How-
ever, none of the previous works apply compression method
to networks designed for low-level task. Our experimental
results show that network compression method also works
well for image SR.

The reminder of the paper is organized as follows. In
Sec. 2, we discuss the relevant work. In Sec. 3, we intro-
duce the proposed filter basis learning method for network
compression in detail. In Sec. 4, we explain how to learn
the basis filter and the coding coefficients. In Sec. 5, we
provide the implementation details of our method and dis-
cuss the experimental results. Sec. 6 concludes the paper.

2. Related Work

Network compression as a research topic attracted an
increased interest recently. The works in this field can
be roughly grouped into three categories, namely, network
pruning, network quantization, and filter decomposition.

Network Pruning: Network pruning attempts to prune
the less important network parameters in the network.

Han et al. [14, 15] tried to learn sparse connections and
prune the less important ones. They introduced deep com-
pression that combines several techniques such as weight
pruning, quantization and weight sharing, and Huffman
coding to reduce the size of neural networks. However,
their method results in irregular kernel shapes making it dif-
ficult for implementation although the theoretical speed-up
ratio is impressive [15]. Thus, channel pruning is proposed
to remove redundant channels in feature maps which result
in regular kernel shapes and implementation-friendly algo-
rithms [3, 55, 48]. Wen et al. [48] explored structured spar-
sity including channel-wise, shape-wise, and depth-wise
sparsity in deep neural networks. He ef al. [18] proposed
channel pruning to accelerate deep neural networks. Their
method can choose representative channels and prune re-
dundant ones, based on LASSO regression.

Network Quantization: Network quantization aims at
reducing the model size of neural networks by quantizing
the weight parameters. Han et al. [14] demonstrated how
to quantize weight parameters to a relatively small number
of shared weights without loss of accuracy. Chen et al. [5]
introduced a hash function to group network connections
into hash buckets and forced connections falling into the
same buckets to share the same weight. Other works at-
tempt to reduce the precision of parameter by introducing
binary [42, 7, 6] and ternary [56] weights.

Filter Decomposition: Apart from the two aforemen-
tioned methods, filter decomposition is proposed to approx-
imate the original filter with parameter efficient represen-
tations [9, 21, 27, 53, 8, 47, 41]. Early low-rank approxi-
mation applies matrix decomposition by using SVD [9] or
CP-decomposition [27]. Jaderberg et al. [21] proposed to
approximate the 2D filter set by a linear combination of a
smaller basis set of 2D separable filters. Wang et al. [47]
built on the work of Jaderberg et al. and further rearranged
the decomposed filter sequentially. In their work, each nor-
mal convolution is decomposed into several layers of depth-
wise convolution followed by 1 X 1 convolution. Son et
al. [46] proposed to use k-means algorithm to cluster the
3 x 3 convolutional kernels. The kernels that fall in the same
cluster share the same weight parameter. However, for each
3 x 3 kernel, a scale and an index parameter is introduced
to represent the kernel. So the compression ratio in terms of
number of parameters is fixed and slightly larger than 2/9.
The same problem exists for [47]. Although the compres-
sion ratio 1/9 could be achieved by [47], the classification
accuracy is severely diminished. Another drawback of [46]
is that it could not be applied to 1 x 1 convolutions favored
by modern networks such as ResNet and DenseNet.

Instead of working on 2D filters as in the previous low-
rank approximation, Zhang et al. [53] directly dealt with
3D filters by considering the input channel as the third di-
mension. However, their method cannot reduce the input

channel. This prohibits the application of the decomposi-
tion method narrow networks with small output channel but
large input channel such as DenseNet. In a recent work,
Peng et al. [41] proposed to approximate a normal convolu-
tion by group convolution followed by a linear combination
(1 x 1 convolution). However, they did not apply their ap-
proximation methods to DenseNet, which is of particular
interest in the newly proposed architectures.

By contrast, our proposed basis learning method can be
applied to convolutions with any kernel size and any in-
put/output channel size. This makes our method flexible
to compress different modern networks.

3. Filter Decomposition for Network Compres-
sion

Given an input image x € X, the aim of supervised
learning is to recover the corresponding label y €). For
low-level vision tasks such as image SR, the label is the
ground-truth high-resolution image corresponding to the
low-resolution input image z. For high-level image clas-
sification, y is a class label of the image. The regression
process can be represented by a simple function

§=fe(x), 6]

where § denotes the regressed label and feo(-) is the regres-
sion function of the neural network parameterized by O.

3.1. Decomposing convolution layer with filter basis

We assume that a convolution layer has ¢ input channels
and n output channels, and the kernel size is w X h. In order
to reduce the number of parameters in neural network, dif-
ferent decomposition methods have been suggested. Zhang
et al. assumed the parameters of a convolution layer could
be approximated by a low-rank matrix [53], i.e.,

Wx~B-A,)
W~B- A 3)

W € RehX" — (W, .. W, 4)
W ¢ §Rwh><cn (5)

where W € Rewh>xn — [Wy ... "W,] is the matrix that
contains the vectorized 3D filters, the multiplication of ma-
trix B € RewhX™m and matrix A € R™*" is a low-rank ma-
trix with rank m < n. Besides formulating the parameters
of convolution layer as a cwh X n matrix, there are also other
low-rank approximation works [21, 47] which consider the
parameter matrix as a wh x cn matrix. These works treat
each channel in the 3D filter independently.

In Eqn. (5), the approximation of filter can also be ana-
lyzed in a filter basis decompostion perspective. Each 3D

¢ Channel

e
10

3D Filter-wise

Qg U

|
Split-wise Channel-wise

Figure 1. Comparison of different filter decomposition methods.
Right: each channel of the 3D filter is considered as a basic el-
ement. A unique set of basis is learned for the n 2D filters in
each channel. Middle (the proposed): the 3D filters are split into s
groups along the channel dimension and each group is considered
as a basic filter element. A basis set is learned for all of the n X s
splits of all the 3D filters. Left: the 3D filter is considered as a
whole. A basis set is learned for the 3D filters.

filter W; € Rewh>1 (or W, € Rh*1 for the channel-wise
decomposition case) is represented by the linear combina-
tion of a set of m filter basis {B,|j = 1,--- ,m} with the
coding coefficient vector A; € R™*1:

m

Wi%Zaj7iBj,i:1,---,n. (6)
j=1

where A; is the i-th column of A, B; is the j-th filter basis
with dimension cwh x 1 or wh x 1 for the 3D filter-wise de-
composition and 2D channel-wise decomposition cases, re-
spectively. An illustration of direct 3D filter-wise decompo-
sition and channel-wise filter decomposition can be found in
the left and right part of Fig. 1.

From the viewpoint of filter basis decomposition, more
flexible decomposition strategy can be adopted. In the next
subsection, we analyze the relationship between the dimen-
sion of filter basis and compression rate, and suggest a split-
wise decomposition approach for network compression.

3.2. Compression rate with different filter basis

If we utilize m 3D filter basis as a basic element (Fig 1:
Left) to decompose the parameters of a convolution layer,
the compression rate of the parameters is

m-c-w-h+m-n m m
Tritger = =—+——7- ()
n-c-w-h n c-w-h

where (n-c-w-h), (m-c-w-h), and (m-n) is the number of
parameters of the original convolution layer, the filter basis,
and the coding coefficients, respectively. In most of existing
neural networks, ¢ - w - h is much larger than n. Thus, the
first term in Eqn. (9) dominates the compression rate. For
the 2D channel-wise decomposition case, we can similarly

get the compression rate, namely,

denne[:m.w.h—l—c-m.n:ﬁ_’_ﬂ.)
n-c-w-h n-c¢c w-h

The major storage budget is used for the coding coefficients.

m m
Fierzi 9
filt wh)
m m
Fchannel = — 4+ — (10)
n-c w-h
m m
Toptiv=— + — 11
plt nxs+p-w-h (i

In order to achieve a better trade-off between compress-
ing the basis and coefficients, we split the 3D filters along
the channel dimension as illustrated in the middle part of
Fig. 1, namely, thinking of the ¢ x w x h filter as being
composed of s smaller p x w X h filters and ¢ = s - p. As
aresult, the n 3D ¢ x w X h filters can be regarded as n - s
filters with size p X w x h. Then, the problem becomes
learning the basis and the representation coefficients of the
n - s smaller filters. And the compression rate becomes

m-p-w-h+m-n-s m m

Fsplit: p’UJh

(12)
The compression rate equation in Eqn. (12) enable us
to utilize generalized split-wise decomposition formula to
achieve better compression rate. Concretely, the optimal
compression rate with respect to the size of filter basis could

be achieved by solving the following optimization problem:

m S.t
_ t c=s-
p-w-h b

n-c-w-h nxs

{s",p"} = argmin{
{s.p}

c-w-h n-c
e

We can further quantize p to the nearest integer that can
divide c. For most of the convolutional layers, the input
channel ¢ and output channel n are the same or of the same
magnitude order, i.e., ¢ = n. Thus, the optimal group s* ~
vw x h. That is to say, the optimal configuration of splits
is neither Fig. 1: Left nor Fig. 1: Right but the middle state
between them.

nxs

3.3. Implementing with convolution

In this subsection, we show that filter decomposition can
be implemented by convolution in the forward pass. By re-
arranging the operation, the proposed filter decomposition
approach can alleviate the computation burden and com-
press network parameters.

We start with the case where there is only one split, i.e.,
s = 1. As in Eqn. 6, we utilize linear combination of fil-
ter basis to reconstruct the 3D filter W; = Z;’;l a;:B;.

(a)

Figure 2. Illustration of the proposed basis learning method. Oper-
ations are converted to convolutions. Unlike the normal convolu-
tion, our method splits both the input feature map and the 3D filter
along the channel dimension. A set of basis is learned for the en-
semble of splits. Every split of the input feature map is convolved
with the basis. A final 1 x 1 convolution generates the output.

For the simplicity of notation, we use the same notation to
represent the original non-vectorized 3D filters and basis,
ie, W;,B; € Rexwxh - Thus, the convolution between
the input feature map x and the 3D kernel becomes

m m
"E*Wi =T * ZaMBj = Zam (ZL'*BJ) (14)
j=1 j=1
The second equality follows the linearity of convolution.
Eqn. (14) decompose the convolution operation with 3D fil-
ter W, as linear combination of convolution operations with
filter basis {B;,j = 1,..., m}. The linear combination can
be implemented by a 1 x 1 convolution.
For more general split-wise decomposition cases, we use
smaller filter basis {B; € RP*“*h j = 1,...,m} to re-
construct each sub-part of the 3D filter, namely,

W; = [Wm;n-;wi,s}, (15)
Wi,g = Z ajﬁ‘,gﬁj, (16)
j=1

where W, , € RP*w*h jg a split of the 3D filter, g =
1,..., s is the split index, and [-] is the operator that stacks
the basis along the channel dimension. Accordingly, the
convolution between z and W, becomes

I*WZ: [fl,"' ,fs]* W7;71,"'
s s m
= ng * W’i,g = ng * Zaj,mﬁj
g=1 g=1 j=1
= Z ZO&LM’ (fg *EJ) (17)

g=1j=1

7Wi,s]

where {Z,,9 = 1,...,s} in Eqn. (17) are the splits of the
input z. As revealed by Eqn. (17), in the split-wise decom-
position case, each split of feature map is firstly convolved

with the filter basis, and then the final output is achieved
by a weighted summation of the convolution results. This
operation on feature map splits could be implemented as a
3D convolution as in Pytorch [40] or Tensorflow [1] with
stride p = ¢/s and no padding along the channel dimen-
sion. But we find the 3D convolution implementation is not
efficient. In this way it takes 121 ms to run the compressed
EDSR model for one iteration with batch size 16 and patch
size 48 x 48. Instead, we implement the operation with s
2D convolutions that share the same weight parameter and
the running time drops to 62 ms. The linear combination is
again converted to a 1 x 1 convolution. Thus, no matter how
many splits there are, a standard convolution can be decom-
posed into a convolution with respect to the basisanda 1 x 1
convolution. The implementation is illustrated in Fig. 2.

3.4. Filter basis decomposition for special filter sizes

As shown in the above analysis, our basis learning
method follows a general setting of filter size, i.e., n X ¢ X
w X h. This means that the proposed basis learning method
can be applied to any convolutional filters. Here we empha-
size two special filter sizes.

1 x 1 convolution: The first one is 1 x 1 convolu-
tion which is favored by modern neural networks [16, 19].
When the input/output channels are quite large, consider-
able parameters and computation are consumed by 1 x 1
convolution. For example, in DenseNet-12-40 architec-
ture [19], 12.1% of the parameters is in the two large
1 x 1 convolutions. Unfortunately, prior filter decompo-
sition works [21, 9, 47] could not be applied to this kind of
convolution. Following our formulation Eqn. (14) through
Eqn. (17), a 1 x 1 convolution with large n and c can be
decomposed into two cheaper ones.

¢ > n > m convolution: In some networks such as
DenseNet, the output channel n is much smaller than the
input channel c. In this case, according to Eqn. (9), we are
in the dilemma of either choosing a even smaller basis size
m at the risk of losing too much accuracy or selecting an m
comparable with n thus resulting in uneconomic compres-
sion. As revealed by Eqn. (10), by splitting the 3D kernels
along the channel dimension, we can have s times more fil-
ters. So we can gracefully choose a comfortable basis size
that leads to both economic compression and high accuracy.

4. Learning Filter Basis

In the previous section, we have shown that decompos-
ing filter splits into linear combinations of filter basis could
reduce the computational burden and parameter number of
networks. In this section, we present our learning method
for learning filter basis.

DenseBlock 36 T

L
I

I

| DenseBlock 35
‘. .o

|

| | DenseBlock 2

—
DenseBlock 1

Figure 3. Basis sharing for the compression of DenseNet-12-40.
The basis set is shared by all of the DenseBlocks in DenseNet-12-
40. The shared basis is split into 36 splits. The basis of a certain
DenseBlock is sliced from the shared basis set. Starting from the
lower DenseBlock, every DenseBlock adds a new split from the
shared basis set to the basis of the previous block forming the basis
of current block. Thus, the basis channel of the DenseBlock grows
gradually.

4.1. General filter basis learning approach

For the purpose of notation simplicity, we only introduce
the simple case of using B - A to approximate filter W. The
training method for the split-wise case of approximating W
with B - A is exactly the same. We jointly minimize the ap-
proximation error |[W — B - A||% and the network target
loss L(y, f(x)). For example, to compress image restora-
tion network with mean square error (MSE) loss, our train-
ing objective function is

L
il = o e+ >0 W B A
=t (18)

where fg ajo(-) denotes the CNN with parameter {B, A}
conditioned that the other parameters © are known and the
superscript [indexes the [-th layer of an L-layer network.
After having learned the basis and the coding matrices
{B, A}, there is no need to store the original filters. Dur-
ing inference, {B, A} is used as the weight parameter as
the lightweight and 1 x 1 convolution, respectively. The
total number of parameters of the basis and the coding co-
efficient is much fewer than those of the original filters, thus
achieving a reduction of the number of parameters.

4.2. Basis sharing

To compress the networks further, we can force several
or all convolutional layers to share the same basis set de-
pending on the compression degree we want to achieve. The
weight sharing strategy can be customized to the networks.
For example, in ResNet [16] and the following works SR-
ResNet [28], EDSR [34], there are two convolutions in the
residual block. We can let the two convolutions share the
basis. In ResNet-56 architecture for CIFAR10, the residual

Basis Share Base-
Metrics No/ Yes No /Yes No/ Yes line
m = 16 m = 32 m = 64
Set5 32.14/32.16 | 32.22/32.20 | 32.33/32.30 | 32.48
Setl4 28.58/28.57 | 28.66/28.64 | 28.72/28.73 28.81
B100 27.58/27.57 | 27.62/27.61 | 27.66/27.64 | 27.72
Urban100 26.05/26.00 | 26.20/26.20 | 26.38/26.38 | 26.65
DIV2K 28.96/28.93 | 29.06/29.04 | 29.14/29.14 | 29.25
#Params 27k / 17k 53k / 35k 106k / 70k 1180k
Comp. (%) 23/1.5 4.5/3.0 9.0/5.9 100

Table 1. Different operating points of applying the proposed basis
learning to EDSR for image SR for upscaling factor x4. PSNR
(dB) is reported for the five commonly used datasets. ‘Basis Share’
indicates whether the two convolutions within the same residual
block share the basis. m is the number of basis. The number of
splits p for one convolution is 4.

blocks are grouped into three groups, each with 9 residual
blocks and increasing feature map channels. The channels
in the lower residual block groups are relatively small (16
and 32 for the first and second group). To achieve a sat-
isfying compression rate, we have the convolutions within
the same group share a common basis set. Moreover, in
DenseNet, the input channel grows gradually with a step
12. There is no clear sign like in ResNet to indicate which
convolution should share the basis. In this case, all of the
convolutional layers share the same basis. For the lower
layers, only a slice of the basis is used while only for the
last convolutional layer the whole basis is used. The basis
sharing strategy for DenseNet-12-40 is shown in Fig. 3.

In conclusion, we can apply block-wise, group-wise, or
network-wise basis sharing flexibly according to the archi-
tecture of the target network.

5. Experimental Results

We show the experimental results in this section and
compare with the state-of-the-art methods on both image
classification and image SR. For classification, we applied
our basis learning method to various networks including
VGG [45], ResNet [16], and DenseNet [19]. We evaluate
the performance of compressed models on CIFAR10 [25]
dataset. The training and testing subset contains 50,000
and 10,000 images, respectively. As is done by prior
works [16, 19], we normalize all images using channel-wise
mean and standard deviation of the the training set. Stan-
dard data augmentation is also applied. We train the com-
pressed networks for 300 epochs with SGD optimizer and
an initial learning rate of 0.1. The learning rate is decayed
by 10 after 50% and 75% of the epochs.

For image SR, we applied our method to two typical SR
networks, namely, SRResNet [28] and EDSR [34]. SR-
ResNet is a middle-level network with 1.5M parameters
while EDSR is quite a huge network with 43M parame-
ters but much higher PSNR accuracy. For fast training, we

also compressed a lighter version of EDSR with 8 resid-
ual blocks and 128 channels per convolution in the residual
block. We denote this network as EDSR-8-128. The net-
works are trained on DIV2K [2] dataset that contains 1,000
2K images. We test the networks on five datasets: Set5 [4],
Set14 [49], B100 [37], Urban100 [20], and DIV2K valida-
tion set. Adam optimizer [24] is used for training SR net-
works. We use the default hyper-parameter. The networks
are trained for 300 epochs. The learning rate starts from
1 x 10~* and decays by 10 after 200 epochs.

5.1. Validation on super-resolution

The compression results of SR networks are shown in
Table 1, Table 2, and Table 3. In Table 1, we explore differ-
ent operating points applied to EDSR. We use 4 splits for the
convolution in the residual block. For a clearer comparison,
we report the number of parameters and compression ratio
for one residual block since all of the other blocks has the
same parameter. And we keep to this setting in Table 2 and
Table 3. By default, each convolution layer uses an unique
basis set, i.e., without basis sharing. In Table 1 and Table 3,
the corresponding basis sharing result is also shown.

In Table 1, there are several noticeable points. Firstly,
the compressed models with and without basis sharing tech-
nique achieve almost the same PSNR for different m. But
with basis sharing, the model size is further compressed.
Secondly, when m = 64 and basis sharing is used, the com-
pressed model only accounts for 9% of the parameters of
the original network. When basis sharing is further used,
an impressive compression rate of 5.9% is achieved while
the PSNR result is not far away from the baseline. Thirdly,
the most aggressive compression ratio is 1.5%. Considering
that there are 32 and 16 residual blocks in EDSR and SR-
ResNet respectively, this operating point brings the model
size from EDSR level to SRResNet level while the PSNR
of the resulting model is higher than that of SRResNet.

In Table 2, the results of Factor [47] and our basis learn-
ing method are shown for the SRResNet and EDSR-8-128.
A lighter and a heavier operating point are reported for
each compression method. The proposed method outper-
forms Factor under the two settings. To further compare
Factor and the proposed method, we apply the compression
method to the fully-fledged EDSR model. As shown in Ta-
ble 3, the compressed model Basis-S is much better than
Factor and in the meanwhile with fewer parameters. The
PSNR result of our Basis-S is slightly worse than that of Ba-
sis. The super-resolved bird images of compressed EDSR
by different methods are shown in Fig .4. The image from
our compressed model has the highest PSNR and it is very
close to the baseline in visual quality as well.

SRResNet [28] ‘Factor-SICZ Factor-SIC3

Basis-64-14 (ours) ‘ Basis-32-32 (ours) ‘Baseline

Set5 31.68 31.86 31.84 31.90 32.03

Setl4 28.32 28.38 28.38 28.43 28.50

PSNR (dB) B100 27.37 27.40 27.39 27.44 27.52
Urban100 25.47 25.58 25.54 25.65 25.88

DIV2K 28.59 28.65 28.63 28.69 28.85

#Parameters 19k 28k 18k 27k 74k
Compression Rate (%) 25.3 38.0 24.3 36.1 100

EDSR-8-128 [34] ‘ Factor-SIC2 | Factor-SIC3 | Basis-128-27 (ours) ‘ Basis-128-40 (ours) ‘ Baseline

Set5 31.82 31.96 31.95 32.03 32.10

Set14 28.40 28.47 28.42 28.45 28.55

PSNR (dB) B100 27.43 27.49 27.46 27.50 27.55

Urban100 25.63 25.81 25.76 25.81 26.02

DIV2K 28.70 28.81 28.76 28.82 28.93

#Parameters 70k 105k 69k 102k 295k
Compression Rate (%) 23.8 35.7 234 34.7 100

Table 2. Comparison of Factor [

] and our basis learning method for the lighter SR networks SRResNet and EDSR-8-128. The upscaling

factor is x4. For each method, two operating points including a lighter one and a heavier one are reported. ‘SIC*’ denotes the number of
SIC layers in Factor. ‘Basis-N-S° means that the number of basis is S and each basis has N input channels.

Comparison Metrics Factor [47] Basis-S (ours) Basis (ours) Baseline
X2 x3 x4 X2 X3 x4 X2 X3 x4 X2 X3 x4
Set5 3795 3433 32.05 | 38.09 3447 3229 | 38.12 3455 3239 | 38.19 34.68 3248
PSNR Set14 33.53 3031 2854 | 3375 3041 28.63 | 33.72 3046 28.69 | 33.95 30.53 28.81
(dB) B100 32.15 29.08 27.55 | 32.23 29.15 27.62 | 3227 29.18 27.64 | 3235 29.26 27.72
Urban100 3199 28.10 2598 | 32.38 28.39 2625 | 3246 2851 26.36 | 3297 28.81 26.65
DIV2K 34.60 3091 2892 | 3477 31.06 29.06 | 34.84 31.11 29.13 | 35.03 3126 29.25
#Parameters 136k 90k 164k 1180k
Compression Ratio (%) 11.5 7.6 13.9 100

Table 3. Compression results for EDSR [

Configuration ‘ Top-1 Error (%) ‘ #Params ‘ Comp.(%)

M24 5.69 320k 30.8
M26 5.70 336k 323
M32 5.57 383k 36.8

M36T6 532 331k 31.8

M38T12 5.56 326k 31.3

Baseline | 5.26 | 1041k 100

Table 4. Different operating points of our method for compressing
DenseNet-12-40 architecture [19] for image classification. ‘M*’
and ‘T*’ means the number of basis in DenseBlock and the splits
in the transition block in DenseNet, respectively. The classifica-
tion error is Top-1 error for CIFAR10.

5.2. Validation on image classification

In Table 4, we show different operating points for the
proposed method applied on DenseNet-12-40 architecture.
When the basis size increases from 24 to 32, the correspond-
ing error rate decreases from 5.69% to 5.57%. In addition,
by applying compression to the 1 x 1 convolution in the
transition layer, we can save some parameter budget for the
DenseBlock, which is relatively more important in the net-

]. Basis-S uses basis sharing for the two convolutions within the same residual block.

work. Thus, for ‘M36T6’ and ‘M38T12’, we can utilize
more basis and at the same time with smaller number of
parameters. Compared with ‘M32°, ‘M36T6’ further re-
duces the error rate by 0.25%. Interestingly, although our
‘M38T12’ model uses two more basis than ‘M36T6’°, the
error rate rises a little bit. This is because ‘M38T12’ uses an
aggressive compression, i.e., s = 12 in the transition block.
Therefore, the compression degree of the DenseBlock and
the transition block should be balanced to obtain the best
trade-off between compression ratio and accuracy.

The compression results of different methods for VGG-
16, DenseNet-12-40, and ResNet-56 are shown in Table 5.
For a fair comparison, we follow the setting in [46] for
VGG-16. That is, only one instead of three fully-connected
layer is appended after the last pooling layer. On VGG-16,
our method shows the most aggressive compression and the
lowest error rate. For our compressed model, we only suffer
0.2% increase of error rate, which is quite small compared
with 0.71% 1.14% increase of Group [41] and Factor. And
our model has the smallest size. Our compression method
and KSE [32] shoots the lowest error rate on DenseNet-12-
40. As for the compression ratio, although Factor is slightly

Factor [47]: 34.67

Ground Truth: PSNR (dB)

Basis-S (ours): 34.99

Basis (ours): 35.10 Baseline: 35.27

Figure 4. SR results of bird image for upscaling factor x4. Network compression methods are applied on EDSR [34].

Model ‘ Method ‘ Top-1 Error (%) / Baseline | #Parameters ‘ Compression Rate(%)
K-means [46] 6.24/5.98 3.27TM 22.2
Factor [47] 7.12/5.98 3.34M 22.7
VGG-16 Group [41] 6.69/5.98 3.80M 25.9
Basis (ours) 6.18/5.98 3.21M 21.8
K-means 5.44/5.26 335k 322
Factor 6.71/5.26 317k 30.4
Group 6.65/5.26 337k 324
DenseNet-12-40 KSE [32] 5.30/5.19 390k 37.5
[351(70%) 5.65/5.19 350k 33.6
Simple-SVD 7.14/5.26 360k 34.6
Basis (ours) 5.32/5.26 331k 31.8
K-means [46] 6.76/ 6.28 190k 22.4
Factor 8.70/6.28 212k 24.9
ResNet-36 Group 6.45/6.28 206k 243
KSE 7.12/6.97 360k 424
Basis (ours) 6.60/6.28 186k 21.9

Table 5. Compression results for VGG [45], DenseNet [19] and ResNet [16] trained on CIFAR-10 [25]. For a fair comparison, the model

size from different methods is kept to the same level.

8
? i -KSE
Basis (Ours)

75t

g

& % e

5 7

i *

I %

&65

F
; | | | |
30 40 50 60 70

FLOPs (M)

Figure 5. Comparison between our method and KSE [32] for
ResNet-56 on CIFAR10.

lower than ours, its accuracy is the worst among all the com-
pared methods. For ResNet-56, our method performs com-
parable with Group in terms of accuracy while with 20k
fewer parameters. Table 6 and Fig. 5 compare the computa-
tional cost of the proposed method and the state-of-the-art.
Results are reported at operating points different from those
in Table 5. For VGG-16, our method achieves the lowest
error rate under the severest FLOPs reduction. For ResNet-

Model | Method | Top-1Err.(%)/Baseline | FLOPs (%)
K-means [46] 6.24/5.98 100
Factor [47] 7.12/5.98 36.6
VGG Group [41] 6.69/5.98 46.1
Basis (ours) 6.23/5.98 23.5
CaP [38] 6.78 /1 6.49 50.2
ENC [22] 7.00/6.90 50.0
ResNet56 AMC [17] 8.10/7.20 50.0
KSE [32] 6.77/6.97 48.0
Basis (ours) 6.08 /7.05 50.0

Table 6. Top-1 error vs. FLOPs reduction rate for VGG-16 and
ResNet-56 on CIFAR10. For K-means, the practical FLOPs in the
authors’ code rather than the theoretical is reported.

56, the proposed method outperforms the others by a sig-
nificant margin under the same FLOPs reduction. In Fig. 5,
our method always shoots a lower error rate than KSE.

6. Conclusion

In this paper, we explored how to learn a filter basis set
for convolution operations in modern CNNs. Our method
is not limited by the filter size. Thus, it can be applied to

1 x 1 convolution and convolution with large input channel
and smaller output channel. We applied our basis learn-
ing method to image classification and SR networks. The
experiments validate the advantage of our basis learning
method. Our compressed SRResNet and EDSR outper-
forms the models from the previous filter decomposition
method. For the image SR network EDSR, the most aggres-
sive compression our method brings the model size from
EDSR level to SRResNet level while being more accurate
than SRResNet. For VGG-16, the error rate of the model
compressed by our method is within 0.2% the baseline er-
ror, which is much better than the results of other com-
pression methods. Our filter basis learning method leads
to state-of-the-art performance on ResNet and DenseNet.
Acknowledgments: This work was supported by Huawei,
the ETH Zurich General Fund, and an Nvidia GPU hard-
ware grant.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In OSDI, vol-
ume 16, pages 265-283, 2016. 5

[2] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-
lenge on single image super-resolution: Dataset and study.
In Proc. CVPRW, July 2017. 6

[3] Jose M Alvarez and Mathieu Salzmann. Learning the num-
ber of neurons in deep networks. In Proce. NIPS, pages
2270-2278, 2016. 2

[4] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie Line Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In Proc. BMVC, 2012. 6

[5S] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In Proc. ICML, pages 2285-2294, 2015. 2

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Proc. NIPS, pages
3123-3131, 2015. 2

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training deep neural networks with weights and activations
constrained to +1 or-1. arXiv preprint arXiv:1602.02830,
2016. 1,2

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan,
Michael Felsberg, et al. Eco: Efficient convolution opera-
tors for tracking. In Proc. ICCV, volume 1, page 7, 2017.
2

[9] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for efficient evaluation. In Proc. NIPS,
pages 1269-1277,2014. 2,5

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

super-resolution. In Proc. ECCV, pages 184—199. Springer,
2014. 1

Ross Girshick. Fast R-CNN. In Proc. ICCV, pages 1440—
1448, 2015. 1

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proc. CVPR, pages 580-587,
2014. 1

Shuhang Gu, Radu Timofte, and Luc Van Gool. Multi-
bin trainable linear unit for fast image restoration networks.
arXiv preprint arXiv:1807.11389, 2018. 1

Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1, 2

Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Proc. NIPS, pages 1135-1143, 2015. 1,2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, pages 770-778, 2016. 1, 5,6, 8, 11

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: AutoML for model compression and ac-
celeration on mobile devices. In Proc. ECCV, pages 784—
800, 2018. 8

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proc. ICCV,
pages 1389-1397,2017. 1,2

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proc. CVPR, pages 2261-2269, 2017. 1, 5, 6,
7,8, 11

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
Proc. CVPR, pages 5197-5206, 2015. 6

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. In Proc. BMVC, 2014. 1,2, 3,5

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min
Kyung. Efficient neural network compression. In Proc.
CVPR, June 2019. 8

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In Proc. CVPR, 2016. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6, 8

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Proc. NIPS, pages 1097-1105, 2012. 1

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv
preprint arXiv:1412.6553, 2014. 2

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proc. CVPR, pages 105-114, 2017. 5,
6,7, 11

Dongwoo Lee, Haesol Park, In Kyu Park, and Kyoung
Mu Lee. Joint blind motion deblurring and depth estimation
of light field. In Proc. ECCV, pages 288-303, 2018. 1
Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016. 1

Yawei Li, Eirikur Agustsson, Shuhang Gu, Radu Timofte,
and Luc Van Gool. CARN: convolutional anchored re-
gression network for fast and accurate single image super-
resolution. In Proc. ECCVW, pages 166—181. Springer,
2018. 1

Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu,
David Doermann, Yongjian Wu, Feiyue Huang, and Ron-
grong Ji. Exploiting kernel sparsity and entropy for inter-
pretable CNN compression. In Proc. CVPR, 2019. 7, 8
Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys,
and Luc Van Gool. 3D appearance super-resolution with
deep learning. In Proc. ICCV, 2019. 1

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proc. CVPRW, pages 1132-1140,
2017. 1,5,6,7,8, 11

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Proc.
ICCV, pages 2736-2744, 2017. 8

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Proc.
CVPR, pages 3431-3440, 2015. 1

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. ICCV, volume 2, pages 416-423, July
2001. 6

Breton Minnehan and Andreas Savakis. Cascaded projec-
tion: End-to-end network compression and acceleration. In
Proc. CVPR, June 2019. 8

Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-
Hsuan Yang. Blind image deblurring using dark channel
prior. In Proc. CVPR, pages 1628-1636, 2016. 1

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in Pytorch. 2017. 5

Bo Peng, Wenming Tan, Zheyang Li, Shun Zhang, Di Xie,
and Shiliang Pu. Extreme network compression via filter
group approximation. In Proc. ECCV, pages 300-316, 2018.
1,2,3,7,8, 11,13

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In Proc. ECCV, pages
525-542. Springer, 2016. 1, 2

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proc. CVPR, pages 779-788, 2016. 1

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Proc. NIPS, pages 91-99, 2015.
1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1,6, 8, 11

Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Cluster-
ing convolutional kernels to compress deep neural networks.
In Proc. ECCV, pages 216-232,2018. 1,2,7,8

Min Wang, Baoyuan Liu, and Hassan Foroosh. Factorized
convolutional neural networks. In Proc. ICCV, pages 545—
553,2017. 1,2,3,5,6,7,8,11, 13

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Proc. NIPS, pages 2074-2082, 2016. 2

Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Interna-
tional Conference on Curves and Surfaces, pages 711-730.
Springer, 2010. 6

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: residual learning
of deep CNN for image denoising. IEEE TIP, 26(7):3142—
3155,2017. 1

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.
Learning deep cnn denoiser prior for image restoration. In
Proc. CVPR, pages 3929-3938, 2017. 1

Kai Zhang, Wangmeng Zuo, and Lei Zhang. Deep plug-
and-play super-resolution for arbitrary blur kernels. In Proc.
CVPR, pages 1671-1681, 2019. 1

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.
Accelerating very deep convolutional networks for classi-
fication and detection. [EEE TPAMI, 38(10):1943-1955,
2015.1,2,3

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044,2017. 1

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more:
Towards compact cnns. In Proc. ECCV, pages 662-677.
Springer, 2016. 2

Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016. 2

A. Compressed Network Configuration

The basis configurations of our filter basis learning method for different networks including DenseNet [19], ResNet [16],
VGG [45], EDSR [34], EDSR-8-128, SRResNet [28] are shown in Table 7, Table 8, and Table 9. For DenseNet, we used the
network-wise basis sharing. For ResNet, we used group-wise basis sharing. We also tried basis sharing within the residual
block for EDSR.

We reimplemented the network compression method Factor [47] and Group [41]. For the Factor method, to compare the
methods fairly, we use two and three single intra-channel convolutional layers (SIC layer) [47] in Table 2, two SIC layers
in Table 5 and Table 6, and one SIC layer in Table 3 to substitute one standard convolutional layer. To keep the number of
parameter of the Group method [4 1] at the same level with other methods, the group size is set to 8, and 64 to approximate
ResNet, and VGG respectively. To compress DenseNet, 3 groups are used for the first 20 DenseBlocks while 6 groups are
used for the rest DenseBlocks.

B. Training and Testing Error Curves for Image Classification

The error curves during training and testing for DenseNet-12-40, ResNet-56, and VGG-16 on CIFAR10 are shown in
Fig. 6, Fig 8, and Fig 7, respectively. Our method shoots the lowest stable error rate for all the three networks during training
and testing.

Number of basis m | Channel ¢ | Transition Layer Split

24 444 1
26 444 1
32 444 1
36 444 6
38 444 12

Table 7. DenseNet-12-40 compression configuration for Table 4 in the main paper. The basis set is shared by all of the DenseBlocks.
For lower layer DenseBlocks, a slice of the shared basis is used as the basis of that layer. For the former three configurations, we do not
compress the transition layers in DenseNet. But for the latter two, the transition layers are also compressed with the specified number of
splits.

30
| ——Group test
‘ ——Group train
il Factor test
25H ——Factor trainf{
Basis test
Basis train
20 .
2
<
=15 B
o
]
10+ A“:”;\Eﬂaﬂ,ﬁ,,w,, ‘ b B
R PG W
PP YATAP AT) . R
5F 1 -
® e S NP S '/Wk,
0 | | L [B o O T -
0 50 100 150 200 250 300

Epochs

Figure 6. Training and testing error of different compression method applied on DenseNet-12-40.

30

—+—Group test
\ ——Group train
[| Factor test
25+ ‘ ‘ | ——Factor train{
| ‘\\ ‘ ““ Basis test
L | I |—Basis train |
Wi (A
20 i H“Jﬁ il 1
I |H JUN 1
q, JO
® \ ‘MWL) HRRRA
15t [T 1
o W 1
= |
w ST |
’W‘,M@Ci““ﬁ VNN 4’“‘&4‘1‘
10+ | . |
S
N 2% s
1 PR I ey
5 I\ i
-
N L R S T S
0 | | | | p = = NN
0 50 100 150 200 250 300
Epochs

Figure 7. Training and testing error of different compression method applied on VGG-16.

30

—+Group test
——Group train
Factor test
——Factor train
——Basis test
Basis train

25

N
o

)
&
15+ B
g |
i el
10 - e i
R YL M;\“/‘L
| S 2o s v e
51 .]
3 * \Eww‘m—dm B _g—s B,
e S {.J
N R S
0 L L L L ‘*+¢»‘+«¢-*t*.,
0 50 100 150 200 250 300
Epochs

Figure 8. Training and testing error of different compression method applied on ResNet-56.

Residual Block Group ‘ Number of basis m ‘ Channel ¢

Group One 24 16
Group Two 48 32
Group Three 84 64

Table 8. ResNet-56 compression configuration. There are 27 residual blocks in ResNet-56, distributed into three groups with increasing
number of channels but reducing resolution. The basis is shared by the convolutions within the same group. This configuration corresponds
to the ResNet-56 entry in Table 5 of the main paper.

Network | Number of basis m | Channel ¢

SRResNet (Basis-64-14) 14 64
SRResNet (Basis-32-32) 32 32
EDSR-8-128 (Basis-128-27) 27 128
EDSR-8-128 (Basis-128-40) 40 128
EDSR (Basis) 32 256

EDSR (Basis-S) 32 256
VGG-16 128 128

Table 9. Compression configuration of SRResNet, EDSR-8-128, EDSR, and VGG-16. ‘Basis’ means that there is a unique basis for each
convolutional layer. ‘Basis-S’ means that the basis is shared by the two convolutional layers within the residual block. For VGG-16, the
first three convolutional layers are not compressed.

Howto Do .. PowerPoint = ... PowerPoint = ... PowerPoint .. PowerPoint

Everything znuz Ev?“%hing zn“z Eve(ming zunz Everything Everything

Ground-Truth: PSNR (dB) Factor: 25.86 dB Basis-S (ours): 25.94 dB Basis (ours): 25.96 dB Baseline: 26.45 dB

‘ ya
Ground-Truth: PSNR (dB) Factor: 32.47 dB Basis-S (ours): 32.48 dB Basis (ours): 32.68 dB Baseline: 32.69 dB
Figure 9. SR results for upscaling factor x4. Network compression methods are applied on EDSR. PSNR values are reported.

C. More Visual Results for Super-Resolution

More visual results for image super-resolution are shown in Fig. 10 and Fig. 9 for compressing SRResNet and EDSR-8-
128 respectively. Compared with Factor [47] and Group [4 1], the SR images from our compressed model are very close to
the baseline in terms of both visual quality and PSNR values.

Factor-SIC2: 21.88 dB Factor-SIC3: 21.91 dB Basis-14-64 (ours): 21.91 dB Basis-32-32 (ours): 22.01 dB Baseline: 22.09 dB

Factor-SIC2: 39.68 dB Factor-SIC3: 39.80 dB Basis-14-64 (ours): 39.74 dB Basis-32-32 (ours): 39.94 dB Baseline: 40.28 dB
Figure 10. SR results for upscaling factor x4. Network compression methods are applied on SRResNet. PSNR values are reported.

