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Abstract

Monocular depth prediction plays a crucial role in un-
derstanding 3D scene geometry. Although recent methods
have achieved impressive progress in evaluation metrics
such as the pixel-wise relative error, most methods neglect
the geometric constraints in the 3D space. In this work, we
show the importance of the high-order 3D geometric con-
straints for depth prediction. By designing a loss term that
enforces one simple type of geometric constraints, namely,
virtual normal directions determined by randomly sampled
three points in the reconstructed 3D space, we can consid-
erably improve the depth prediction accuracy. Significantly,
the byproduct of this predicted depth being sufficiently ac-
curate is that we are now able to recover good 3D structures
of the scene such as the point cloud and surface normal di-
rectly from the depth, eliminating the necessity of training
new sub-models as was previously done. Experiments on
two benchmarks: NYU Depth-V2 and KITTI demonstrate
the effectiveness of our method and state-of-the-art perfor-
mance. Code is available at:
https://tinyurl.com/virtualnormal

1. Introduction
Monocular depth prediction aims to predict distances be-

tween scene objects and the camera from a single monoc-
ular image. It is a critical task for understanding the 3D
scene, such as recognizing a 3D object and parsing a 3D
scene.

Although the monocular depth prediction is an ill-posed
problem because many 3D scenes can be projected to the
same 2D image, many deep convolutional neural networks
(DCNN) based methods [7, 8, 12, 14, 24, 27, 35] have
achieved impressive results by using a large amount of la-
belled data, thus taking advantage of prior knowledge in la-
belled data to solve the ambiguity.

These methods typically formulate the optimization
problem as either point-wise regression or classification.
That is, with the i.i.d. assumption, the overall loss is sum-
ming over all pixels. To improve the performance, some
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Depth Surface NormalPoint Cloud

Figure 1. Example results of ground truth (the first row), our
method (the second row) and Hu et al. [18] (the third row). By
enforcing the geometric constraints of virtual normals, our recon-
structed 3D point cloud can represent better shape of sofa (see the
left part) and the recovered surface normal has much less errors
(see green parts) even though the absolute relative error (rel) of
our predicted depth is only slightly better than Hu et al. (0.108 vs.
0.115).

endeavours have been made to employ other constraints be-
sides the pixel-wise term. For example, a continuous con-
ditional random field (CRF) [28] is used for depth predic-
tion, which takes pair-wise information into account. Other
high-order geometric relations [9, 31] are also exploited,
such as designing a gravity constraint for local regions [9]
or incorporating the depth-to-surface-normal mutual trans-
formation inside the optimization pipeline [31]. Note that,
for the above methods, almost all the geometric constraints
are ‘local’ in the sense that they are extracted from a small
neighborhood in either 2D or 3D. Surface normal is ‘local’
by nature as it is defined by the local tangent plane. As
the ground truth depth maps of most datasets are captured
by consumer-level sensors, such as the Kinect, depth values
can fluctuate considerably. Such noisy measurement would
adversely affect the precision and subsequently the effec-
tiveness of those local constraints inevitably. Moreover, lo-
cal constraints calculated over a small neighborhood have
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not fully exploited the structure information of the scene ge-
ometry that may be possibly used to boost the performance.

To address these limitations, here we propose a more
stable geometric constraint from a global perspective to
take long-range relations into account for predicting depth,
termed virtual normal. A few previous methods already
made use of 3D geometric information in depth estima-
tion, almost all of which focus on using surface normal.
We instead reconstruct the 3D point cloud from the esti-
mated depth map explicitly. In other words, we gener-
ate the 3D scene by lifting each RGB pixel in the 2D im-
age to its corresponding 3D coordinate with the estimated
depth map. This 3D point cloud serves as an intermediate
representation. With the reconstructed point cloud, we can
exploit many kinds of 3D geometry information, not lim-
ited to the surface normal. Here we consider the long-range
dependency in the 3D space by randomly sampling three
non-colinear points with the large distance to form a virtual
plane, of which the normal vector is the proposed virtual
normal (VN). The direction divergence between ground-
truth and predicted VN can serve as a high-order 3D geom-
etry loss. Owing to the long-range sampling of points, the
adverse impact caused by noises in depth measurement is
much alleviated compared to the computation of the surface
normal, making VN significantly more accurate. Moreover,
with randomly sampling we can obtain a large number of
such constraints, encoding the global 3D geometric. Sec-
ond, by converting estimated depth maps from images to
3D point cloud representations it opens many possibilities
of incorporating algorithms for 3D point cloud processing
to 2D images and 2.5D depth processing. Here we show
one instance of such possibilies.

By combining the high-order geometric supervision and
the pixel-wise depth supervision, our network can predict
not only an accurate depth map but also the high-quality 3D
point cloud, subsequently other geometry information such
as the surface normal. It is worth noting that we do not use
a new model or introduce network branches for estimating
the surface normal. Instead it is computed directly from the
reconstructed point cloud. The second row of Fig. 1 demon-
strates an example of our results. By contrast, although the
previously state-of-the-art method [18] predicts the depth
with low errors, the reconstructed point cloud is far away
from the original shape (see, e.g., left part of ‘sofa’). The
surface normal also contains many errors. We are probably
the first to achieve high-quality monocular depth and sur-
face normal prediction with a single network.

Experimental results on NYUD-v2 [36] and KITTI [13]
datasets demonstrate state-of-the-art performance of our
method. Besides, when training with the lightweight back-
bone, MobileNetV2 [34], our framework provides a better
trade-off between network parameters and accuracy. Our
method outperforms other state-of-the-art real-time systems

by up to 29% with a comparable number of network param-
eters. Furthermore, from the reconstructed point cloud, we
directly calculate the surface normal, with a precision being
on par with that of specific DCNN based surface normal
estimation methods.

In summary, our main contributions of this work are as
follow.

• We demonstrate the effectiveness of enforcing a high-
order geometric constraint in the 3D space for the
depth prediction task. Such global geometry informa-
tion is instantiated with a simple yet effective concept
termed virtual normal (VN). By enforcing a loss de-
fined on VNs, we demonstrate the importance of 3D
geometry information in depth estimation, and design
a simple loss to exploit it.
• Our method can reconstruct high-quality 3D scene

point clouds, from which other 3D geometry fea-
tures can be calculated, such as the surface normal.
In essence, we show that for depth estimation, one
should not consider the information represented by
depth only. Instead, converting depth into 3D point
clouds and exploiting 3D geometry is likely to improve
many tasks including depth estimation.
• Experimental results on NYUD-V2 and KITTI illus-

trate that our method achieves state-of-the-art perfor-
mance.

1.1. Related Work

Monocular Depth Prediction. Depth prediction from im-
ages is a long-standing problem. Previous work can be di-
vided into active methods and passive methods. The for-
mer ones use the assistant optical information for predic-
tion, such as coded patterns [41], while the latter ones com-
pletely focus on image contents. Monocular depth predic-
tion [2, 7, 8, 28, 43] has been extensively studied recently.
As limited geometric information can be directly extracted
from the monocular image, it is essentially an ill-posed
problem. Recently, owing to the structural features from
very deep convolution neural network, such as ResNet [16],
various DCNN-based methods learn to predict depth with
deep CNN features. Fu et al. [12] proposed an encoder-
decoder network, which extracts multi-scale features from
the encoder and is trained in an end-to-end manner with-
out iterative refinement. They achieved state-of-the-art per-
formance on several datasets. Jiao et al. [19] proposed an
attention-driven loss, which merges the semantic priors to
improve the prediction precision on unbalanced distribution
datasets.

Most previous methods only adopted the pixel-wise
depth supervision to train a network. By contrast, Liu et
al. [28] combined DCNN with the continuous conditional
random field (CRF) to exploit consistency information of
neighbouring pixels. CRF establishes a pair-wise constraint



for local regions. Furthermore, several high-order con-
straints are investigated. Chen et al. [5] applied the gen-
erative adversarial training to lead the network to learn a
context-aware and patch-level loss automatically. Note that
most of these methods directly work with the depth, instead
of in the 3D space.
Surface Normal. Surface normal is an important geome-
try information for 3D scene understanding. Several data-
driven methods [7, 8, 10, 11, 39, 42] have achieved promis-
ing results. Eigen et al. [7] proposed a CNN with different
output channels to directly predict depth map, surface nor-
mal and semantic labels. Bansal et al. [1] proposed a two-
stream network to predict the surface normal first, which is
further joined with the input image to learn the pose. Note
that most of these methods formulate surface normal pre-
diction and depth prediction as multiple different tasks.

2. Our Method
Our approach resolves the monocular depth prediction

and reconstructs the high-quality scene 3D point cloud from
the predicted depth at the same time. The pipeline is illus-
trated in Fig. 2.

We take an RGB image Iin as the input of an encoder-
decoder network and predict the depth map Dpred. From
the Dpred, the 3D scene point cloud Ppred can be recon-
structed. The ground truth point cloud Pgt is reconstructed
from Dgt.

We enforce two types of supervision for training the net-
work.We firstly follow standard monocular depth prediction
methods to enforce pixel-wise depth supervision overDpred

with Dgt. With the reconstructed point clouds, we then
align the spatial relationship between the Ppred and the Pgt

using the proposed virtual normal.
When the network is well trained, we not only obtain ac-

curate depth map but also high-quality point clouds. From
the reconstructed point clouds, other 3D features can be di-
rectly calculated, such as the surface normal.

2.1. High-order Geometric Constraints

Surface Normal. The surface normal is an important ‘lo-
cal’ feature for many point-cloud based applications such
as registration [33] and object detection [17, 15]. It appears
to be a promising 3D cue for improving depth prediction.
One can apply the angular difference between ground-truth
and calculated surface normal to be a geometric constraint.
One major issue of this approach is, when computing sur-
face normal from either a depth map or 3D point cloud, it is
sensitive to noise. Moreover, surface normal only considers
short-range local information.

We follow [21] to calculate the surface normal. It
assumes that local 3D points locate in the same plane,
of which the normal vector is the surface normal. In
practice ground-truth depth maps are usually captured by

a consumer-level sensor with limited precision, so depth
maps are contaminated by noise. The reconstructed point
clouds in the local region can vary considerably due to
noises as well as the size of local patch for sampling
(Fig. 3(a)). We experiment on the NYUD-V2 dataset to test
the robustness of the surface normal computation. Five dif-
ferent sampling sizes around the target pixel are employed
to sample points, which are used to calculate its surface nor-
mal. The sample area is a = (2i+1) · (2i+1), i = 1, ..., 5.
The Mean Difference Error (Mean) [7] between calculated
surface normals is evaluated. From Fig. 3(b), we can learn
that the surface normal varies significantly with different
sampling sizes. For example, the Mean between 3×3 and
11×11 is 22◦. Such unstable surface normal negatively af-
fects its effectiveness for learning. Likewise, other 3D ge-
ometric constraints demonstrating the ‘local’ relative rela-
tions also encounter this problem.
Virtual Normal. In order to enforce robust high-order ge-
ometric supervision in the 3D space, we propose the vir-
tual normal (VN) to establish 3D geometric connections
between regions in a much larger range. The point cloud
can be reconstructed from the depth based on the pinhole
camera model. For each pixel pi(ui, vi), the 3D location
Pi(xi, yi, zi) in the world coordinate can be obtained by the
prospective projection. We set the camera coordinate as the
world coordinate. Then the 3D coordinate Pi is denoted as
follows:

zi = di, xi =
di · (ui − u0)

fx
, yi =

di(vi − v0)
fy

(1)

where di is the depth. fx and fy are the focal length along
the x and y coordinate axis respectively. u0 and v0 are the
2D coordinate of the optical center.

We randomly sample N groups points from the depth
map, with three points in each group. The corresponding 3D
points are S = {(PA, PB , PC)i|i = 0...N}. Three points
in a group are restricted to be non-colinear based on the
restriction R1. ∠(·) is the angle between two vectors.

R1 = {α ≥ ∠(
−−−→
PAPB ,

−−−→
PAPC) ≥ β,

α ≥ ∠(
−−−→
PBPC ,

−−−→
PBPA) ≥ β|P ∈ S}

(2)

where α, β are hyper-parameters. In all experiments, we set
α = 120◦, β = 30◦

In order to sample more long-range points, which have
ambiguous relative locations in 3D space, we perform long-
range restriction R2 for each group in S.

R2 = {‖
−−−→
PkPm‖ > θ|k,m ∈ [A,B,C], P ∈ S} (3)

where θ = 0.6m in our experiments.
Therefore, three 3D points in each group can establish a

plane. We compute the normal vector of the plane to encode
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Figure 2. Illustration of the pipeline of our method. An encoder-decoder network is employed to predict the depth, from which the point
cloud can be reconstructed. A pixel-wise depth supervision is firstly enforced on the predicted depth, while a geometric supervision, virtual
normal constraint, is enforced in 3D space. With the well trained model, other 3D features, such as the surface normal, can be directly
recovered from the reconstructed 3D point cloud in the inference.
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Figure 3. Illustration of fitting point clouds to obtain the local sur-
face normal. The directions of the surface normals is fitted with
different sampling sizes on a real point cloud (a). Because of noise,
the surface normals vary significantly. (b) compares the angular
difference between surface normals computed with different sam-
ple sizes in Mean Difference Error. The error can vary signifi-
cantly.
geometric relations, which can be written as

N = {ni =

−−−−→
PAiPBi ×

−−−−→
PAiPCi∥∥∥−−−−→PAiPBi ×
−−−−→
PAiPCi

∥∥∥ |
(PA, PB , PC)i ∈ S, i = 0...N}

(4)

where ni is the normal vector of the virtual plane i.
Robustness to Depth Noise. Compared with local surface
normal, our virtual normal is more robust to noise. In Fig. 4,
we sample three 3D points with large distance. PA and PB

are assumed to locate on theXY plane, PC is on the Z axis.
When PC varies to PC

′, the direction of the virtual normal
changes fromn ton′. PC

′′ is the intersection point between
plane PAPBPC

′ and Z axis. Because of restrictions R1 and
R2, the difference between n and n′ is usually very small,
which is simple to show:

∠(n,n′) =∠(
−−→
OPC ,

−−−→
OPC

′′) = arctan
‖
−−−−→
PCPC

′′‖
‖
−−→
OPC‖

≈ 0,

‖
−−−−→
PCPC

′′‖ � ‖
−−→
OPC‖

(5)
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Figure 4. Robustness of VN to depth noise.

Furthermore, we conduct a simple experiment to verify
the robustness of our proposed virtual normal against data
noise. We create an unit sphere and then add gaussian noise
to simulate the ideal noise-free data and the real noisy data
(see Fig. 5a). We then sample 100K groups points from the
noisy surface and the ideal one to compute the virtual nor-
mal respectively, while 100K points are sampled to com-
pute the surface normal as well. For the gaussian noise,
we use different deviations to simulate different noise levels
by varying deviation σ = [0.0002, ..., 0.01], and the mean
being µ = 0. The experimental results are illustrated in
Fig. 15c. We can learn that our proposed virtual normal is
much more robust to the data noise than the surface normal.
Other local constraints are also sensitive to data noise.

Most ‘local’ geometric constraints, such as the surface
normal, actually enforcing the first-order smoothness of the
surface but are less useful for helping the depth map predic-
tion. In contrast, the proposed VN establishes long-range
relations in the 3D space. Compared with pairwise CRFs,
VN encodes triplet based relations, thus being of high order.
Virtual Normal Loss. We can sample a large number of
triplets and compute corresponding VNs. With the sam-
pled VNs, we compute the divergence as the Virtual Normal
Loss (VNL):

`V N =
1

N
(

N∑
i=0

‖npred
i − ngt

i ‖1) (6)

where theN is the number of valid sampling groups satisfy-
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Figure 5. Robustness of virtual normal and surface normal against
data noise. (a) The ideal surface and noisy surface. (b) The Mean
Difference Error (Mean) is applied to evaluate the robustness of
virtual normal and surface normal against different noise level.
Our proposed virtual normal is more robust.

ing R1,R2. In experiments we have employed online hard
example mining.
Pixel-wise Depth Supervision. We also use a standard
pixel-wise depth map loss. We quantize the real-valued
depth and formulate the depth prediction as a classifica-
tion problem instead of regression, and employ the cross-
entropy loss. In particular we follow [2] to use the weighted
cross-entropy loss (WCEL), with the weight being the in-
formation gain. See [2] for details.

To obtain the accurate depth map and recover high-
quality 3D information, we combine WCEL and VNL to-
gether to supervise the network output. The overall loss is:

` = `WCE + λ`V N , (7)

where λ is a trade-off parameter, which is set to 5 in all ex-
periments to make the two terms roughly of the same scale.

Note that the above overall loss function is differentiable.
The gradient of the `V N loss can be easily computed as
Eq. (4) and Eq. (6) are both differentiable.

3. Experiments
In this section, we conduct several experiments to com-

pare ours against state-of-the-art methods. We evaluate our
methods on two datasets, NYUD-V2 and KITTI.

3.1. Datasets

NYUD-V2. The NYUD-V2 dataset consists of 464 differ-
ent indoor scenes, which are further divided into 249 scenes
for training and 215 for testing. We randomly sample 29K
images from the training set to form NYUD-Large. Note
that DORN uses the whole training set, which is signifi-
cantly larger than that what we use. Apart from the whole
dataset, there are officially annotated 1449 images (NYUD-
Small), in which 795 images are split for training and others
are for testing. In the ablation study, we use the NYUD-
Small data.

Table 1. Results on NYUD-V2. Our method outperforms other
state-of-the-art methods over all evaluation metrics.

Method rel log10 rms δ1 δ2 δ3
Lower is better Higher is better

Saxena et al. [35] 0.349 - 1.214 0.447 0.745 0.897
Karsch et al. [20] 0.349 0.131 1.21 - - -

Liu et al. [29] 0.335 0.127 1.06 - - -
Ladicky et al. [23] - - - 0.542 0.829 0.941

Li et al. [25] 0.232 0.094 0.821 0.621 0.886 0.968
Roy et al. [32] 0.187 0.078 0.744 - - -
Liu et al. [28] 0.213 0.087 0.759 0.650 0.906 0.974

Wang et al. [38] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen et al. [7] 0.158 - 0.641 0.769 0.950 0.988
Chakrabarti [3] 0.149 - 0.620 0.806 0.958 0.987

Li et al. [26] 0.143 0.063 0.635 0.788 0.958 0.991
Laina et al. [24] 0.127 0.055 0.573 0.811 0.953 0.988

DORN [12] 0.115 0.051 0.509 0.828 0.965 0.992

Ours 0.108 0.048 0.416 0.875 0.976 0.994

KITTI. The KITTI dataset contains over 93K outdoor im-
ages and depth maps with the resolution around 1240×374.
All images are captured on driving cars by stereo cameras
and a Lidar. We test on 697 images from 29 scenes split by
Eigen et al. [8], validate on 888 images, and train on about
23488 images from the remaining 32 scenes.

3.2. Implementation Details

The pre-trained ResNeXt-101 [40] (32 × 4d) model on
ImageNet [6] is used as our backbone model. A polyno-
mial decaying method with the base learning rate 0.0001
and the power of 0.9 is applied for SGD. The weight de-
cay and the momentum are set to 0.0005 and 0.9 respec-
tively. Batch size is 8 in our experiments. The model
is trained for 10 epochs on NYUD-Large and KITTI, and
is trained for 40 epochs on NYUD-Small in the ablation
study. We perform the data augmentation on the training
samples by the following methods. For NYUD-V2, the
RGB image and the depth map are randomly resized with
ratio [1, 0.92, 0.86, 0.8, 0.75, 0.7, 0.67], randomly flipped in
the horizon, and finally randomly cropped with the size
384×384 for NYUD-V2. The similar process is applied for
KITTI but resizing with the ratio [1, 1.1, 1.2, 1.3, 1.4, 1.5]
and cropping with 384 × 512. Note that the depth map
should be scaled with the corresponding resizing ratio.

3.3. Evaluation Metrics

We follow previous methods [24] to evaluate the perfor-
mance of monocular depth prediction quantitatively based
on following metrics: mean absolute relative error (rel),
mean log10 error (log10), root mean squared error (rms) ,
root mean squared log error (rms (log)) and the accuracy
under threshold (δi < 1.25i, i = 1, 2, 3).

3.4. Comparison with State-of-the-art

In this section, we detail the comparison of our methods
with state-of-the-art methods.



NYUD-V2. In this experiment, we compare with other
state-of-the-art methods on the NYUD-V2 dataset. Table 1
demonstrates that our proposed method outperforms other
state-of-the-art methods across all evaluation metrics sig-
nificantly. Compare to DORN, we have improved the accu-
racy from 0.2% to 18% over all evaluation metrics that they
report.

In addition to the quantitative comparison, we demon-
strate some visual results between our method and the state-
of-the-art DORN in Fig. 6. Clearly, the predicted depth by
the proposed method is much more accurate. The plane of
ours is much smoother and has fewer errors (see the wall
regions colored with red in the 1st, 2nd, and 3rd row). Fur-
thermore, the last row in Fig. 6 manifests that our predicted
depth is more accurate in the complicated scene. We have
fewer errors in shelf and desk regions.

Image DORN Ours GT

Image DORN Ours GT

Figure 6. Examples of predicted depth maps by our method and the
state-of-the-art DORN on NYUD-V2. Color indicates the depth
(red is far, purple is close). Our predicted depth maps have fewer
errors in planes (see walls) and have high-quality details in com-
plicated scenes (see the desk and shelf in the last row)

.

KITTI. In order to demonstrate that our proposed method
can still reach the state-of-the-art performance on outdoor
scenes, we test our method on the KITTI dataset. Results
in Table 2 show that our method has outperformed all other
methods on all evaluation metrics except root mean square
(rms) error. The rms error is only slightly behind that of
DORN. Note that for outdoor scenes, the rms (log) error,
instead of rms, is usually the metric of interest, in which
ours is better.

3.5. Ablation Studies

In this section, we conduct several ablation studies to an-
alyze the details of our approach.
Effectiveness of VNL. In this study, in order to prove the

Table 2. Results on KITTI. Our method outperforms other meth-
ods over all evaluation metrics except rms.

Method δ1 δ2 δ3 rel rms rms (log)
Higher is better Lower is better

Make3D [35] 0.601 0.820 0.926 0.280 8.734 0.361
Eigen et al. [8] 0.692 0.899 0.967 0.190 7.156 0.270
Liu et al. [28] 0.647 0.882 0.961 0.114 4.935 0.206

Semi. [22] 0.862 0.960 0.986 0.113 4.621 0.189
Guo et al. [14] 0.902 0.969 0.986 0.090 3.258 0.168

DORN [12] 0.932 0.984 0.994 0.072 2.727 0.120

Ours 0.938 0.990 0.998 0.072 3.258 0.117

Table 3. Illustration of the effectiveness of VNL.
Metrics rel log10 rms δ1 δ2 δ3

Pixel-wise Depth Supervision
CEL 0.1456 0.061 0.617 0.8087 0.9559 0.9862

WCEL 0.1427 0.060 0.511 0.8117 0.9611 0.9895
WCEL+L1 0.1429 0.061 0.626 0.8098 0.9539 0.9858

Pixel-wise Depth Supervision + Geometric Supervision

WCEL+PL‡ 0.1380 0.059 0.504 0.8212 0.9643 0.9913
WCEL+PL+VNL 0.1341 0.056 0.485 0.8336 0.9671 0.9913

WCEL+SNL† 0.1406 0.059 0.599 0.8209 0.9602 0.9886

WCEL+VNL‡ (Ours) 0.1337 0.056 0.480 0.8323 0.9669 0.9920

† ‘Local’ geometric supervision in 3D.
‡ ‘Global’ geometric supervision in 3D.

effectiveness of the proposed VNL we compare it with two
types of pixel-wise depth map supervision, a pair-wise geo-
metric supervision, and a high-order geometric supervision:
1) the ordinary cross-entropy loss (CEL); 2) the L1 loss
(L1); 3) the surface normal loss (SNL); 4) the pair-wise ge-
ometric loss (PL). We reconstruct the point cloud from the
depth map and further recover the surface normal from the
point cloud. The angular discrepancy between the ground
truth and recovered surface normal is defined as the surface
normal loss, which is a high-order geometric supervision
in 3D space. The pair-wise loss is the direction difference
of two vectors in 3D, which are established by randomly
sampling paired points in ground-truth and predicted point
cloud. The loss function of PL is as follow,

`PL =
1

N

N∑
i=0

(1−
−−−−→
P ∗AiP

∗
Bi ·
−−−−→
PAiPBi∥∥∥−−−−→P ∗AiP

∗
Bi

∥∥∥ · ∥∥∥−−−−→PAiPBi

∥∥∥ ) (8)

where (P ∗A, P
∗
B)i and (PA, PB)i are paired points sampled

from the ground truth and the predicted point cloud respec-
tively. N is the total number of pairs.

We also employ the long-range restriction R2 for the
paired points. Therefore, similar to VNL, PL can also be
seen as a global geometric supervision in 3D space. The
experimental results are reported in Table. 3. WCEL is the
baseline for all following experiments.

Firstly, we analyze the effect of pixel-wise depth super-
vision for prediction performance. As WCE employs an
weight in the CE loss, its performance is slightly better than
that of CEL. However, when we enforce two pixel-wise su-
pervision (WCEL+L1) on the depth map, the performance
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Figure 7. Depth maps in the red dashed boxes with sign, pedestrian and traffic lights are zoomed in. One can see that with the help of
virtual normal, predicted depth maps in these ambiguous regions are considerably more accurate.

cannot improve any more. Thus using two pixel-wise loss
terms does not help.

Secondly, we analyze the effectiveness of the supple-
mentary 3D geometric constraint (PL, SNL, VNL). Com-
pared with the baseline (WCEL), three supplementary 3D
geometric constraints can promote the network perfor-
mance with varying degrees. Our proposed VNL combining
with WCEL has the best performance, which has improved
the baseline performance by up to 8%.

Thirdly, we analyze the difference of three geometric
constraints. As SNL can only exploit geometric relations
of homogeneous local regions, its performance is the low-
est among the three constraints over all evaluation metrics.
Compared with SNL, since PL constrains the global geo-
metric relations, its performance is clearly better. How-
ever, the performance of WCEL+PL is not as good as our
proposed WCEL+VNL. When we further add our VNL on
top of WCEL+PL, the precision can further be slightly im-
proved and is comparable to WCEL+VNL. Therefore, al-
though PL is a global geometric constraint in 3D, the pair-
wise constraint cannot encode as strong geometry informa-
tion as our proposed VNL.

At last, in order to further demonstrate the effectiveness
of VNL, we analyze the results of network trained with and
without VNL supervision on the KITTI dataset. The vi-
sual comparison is shown in Fig. 7. One can see that VNL
can improve the performance of the network in ambiguous
regions. For example, the sign (1st row), the distant pedes-
trian (2nd row), and traffic light in the last row of the figure
can demonstrate the effectiveness of the proposed VNL.

In conclusion, the geometric constraints in the 3D space
can significantly boost the network performance. Moreover,
the global and high-order constraints can enforce stronger

supervision than the ‘local’ and pair-wise ones in 3D space.
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Figure 8. Illustration of the impact of the samples size. The more
samples will promote the performance.

Impact of the Amount of Samples. Previously, we have
proved the effectiveness of VNL. Here the impact of the
size of samples for VNL is discussed. We sample six dif-
ferent sizes of point groups, 0K, 20K, 40K, 60K, and 80K
and 100K, to establish VNL. ‘0K’ means that the model is
trained without VNL supervision. The rel error is reported
for evaluation. Fig. 8 demonstrates that ‘rel’ slumps by
5.6% with 20K point groups to establish VNL. However,
it only drops slightly when the samples for VNL increase
from 20K to 100K. Therefore, the performance saturates
with more samples, when samples reach a certain number
in that the diversity of samples is enough to construct the
global geometric constraint.
Lightweight Backbone Network. We train the network
with the MobileNetV2 backbone to evaluate the effective-
ness of the proposed geometric constraint on the light net-
work. We train it on the NYUD-Large for 10 epochs. Re-
sults in Table 4 show that the proposed VNL can improve
the performance by 1% - 8%. Comparing with previous
state-of-the-art methods, we have improved the accuracy by
around 29% over all evaluation metrics and achieved a bet-



ter trade-off between parameters and the accuracy.

Table 4. Performance on NYUD-V2 with MobileNetV2 backbone.
†Trained without VN. ‡Trained with VN.

Metrics CReaM [37] RF-LW[30] Ours-B† Ours-VN‡

δ1 0.704 0.790 0.814 0.829
δ2 0.917 0.955 0.947 0.956
δ3 0.977 0.990 0.972 0.980
rel 0.190 0.149 0.144 0.134

rms 0.687 0.565 0.502 0.485
rms (log) 0.251 0.205 0.201 0.185

params 1.5M 3.0M 2.7M 2.7M

3.6. Recovering 3D Features from Estimated Depth

We have argued that, with geometric constraints in the
3D space, the network can achieve more accurate depth and
also obtain higher-quality 3D information. Here we show
the recovered 3D point cloud and the surface normal to sup-
port this.
3D Point Cloud. Firstly, we compare the reconstructed 3D
point cloud from our predicted depth and that of DORN.
Fig. 9 demonstrate that the overall quality of ours outper-
forms theirs significantly. Although our predicted depth is
only slightly better than theirs on evaluation metrics, the re-
constructed wall (see the 2nd row in 9) of ours is much
flatter and has fewer errors. The shape of the bed is more
similar to the ground truth. From the bird view, it is hard to
recognize the bed shape of their results. The point cloud in
Fig. 1 also leads to a similar conclusion.

DORN Ours GT

Figure 9. Comparison of reconstructed point clouds from esti-
mated depth maps between DORN [12] and ours. We can see that
our point cloud results contain less noise and are closer to groud-
truth than that of DORN.

Surface Normal. Lastly, we compare the calculated surface
normal with previous state-of-the-art methods and demon-
strate the quantitative results in Table 5. The ground truth

is obtained as described in [7]. We first compare our ge-
ometrically calculated results with DCNN-based optimiza-
tion methods. Although we do not optimize a sub-model
to achieve the surface normal, our results can outperform
most of the previous methods and even are the best on 30◦

metric.

Table 5. Evaluation of the surface normal on NYUD-V2.

Method
Mean Median 11.2◦ 22.5◦ 30◦

Lower is better Higher is better
Predicted Surface Normal from the Network

3DP [10] 33.0 28.3 18.8 40.7 52.4
Ladicky et al. [42] 35.5 25.5 24.0 45.6 55.9
Fouhey et al. [11] 35.2 17.9 40.5 54.1 58.9

Wang et al. [39] 28.8 17.9 35.2 57.1 65.5
Eigen et al. [7] 23.7 15.5 39.2 62.0 71.1

Calculated Surface Normal from the Point cloud

GT-GeoNet† [31] 36.8 32.1 15.0 34.5 46.7

DORN‡ [12] 36.6 31.1 15.7 36.5 49.4
Ours 24.6 17.9 34.1 60.7 71.7

† Cited from the original paper.
‡ Using authors’ released models.

Image GT Ours

Figure 10. Recovered surface normal from 3D point cloud. Ac-
cording to the visual effect, the surface normal is in high-quality
in planes (1st row) and the complicated curved surface (2nd and
last row).

Furthermore, we compare the surface normals directly
computed from the reconstructed point cloud with that of
DORN [12] and GeoNet [31]. Note that we run the re-
leased code and model of DORN to obtain depth maps and
then calculate surface normals from the depth, while the
evaluation of GeoNet is cited from the original paper. In
Table 5, we can see that, with high-order geometric supervi-
sion, our method outperforms DORN and GeoNet by a large
margin, and even is close to Eigen method which trains to
output normals. It suggests that our method can lead the
model to learn the shape from images.



Apart from the quantitative comparison, the visual effect
is shown in Fig. 10, demonstrating that our directly calcu-
lated surface normals are not only accurate in planes (the
1st row), but also are of higher quality in regions with so-
phisticated curved surface (the 2nd and last row).

4. Conclusion
In this paper, we have proposed to construct a long-range

geometric constraint (VNL) in the 3D space for monocular
depth prediction. In contrast to previous methods with only
pixel-wise depth supervision in 2D space, our method can
not only obtain the accurate depth maps but also recover
high-quality 3D features, such as the point cloud and the
surface normal, eliminating necessities to optimize a new
sub-model. Compared with other 3D constrains, our pro-
posed VNL is more robust to noise and can encode strong
global constraints. Experimental results on NYUD-V2 and
KITTI have proved the effectiveness of our method and the
state-of-the-art performance.

In particular, to demonstrate that our method is able to
produce sensible local shapes, the normals directly derived
from the estimated depth of our method outperform many
other recent depth estimation methods and are close to that
of those trained to output normals. We hope that our method
provides a useful tool and stimulates insight into predicting
not only depth but also shape from monocular images.

5. Appendix
5.1. Model

An overview architecture of our model is illustrated in
Fig.11. The network is mainly composed of two parts,
an encoder to establish features in different levels from
Iin, and a decoder to reconstruct the depth map. Inspired
by [27], the decoder is composed of several adaptive merg-
ing blocks (AMB) to fuse features from different levels and
dilated residual blocks (DRB) to transform features. In or-
der to improve the receptive field of the decoder, we set the
dilation rates of all 3×3 convolutions in DRB to 2 and insert
an Astrous Spatial Pyramid Pooling (ASPP) module (dila-
tion rate: 2, 4, 8) [4] between the encoder and the decoder.
Furthermore, we establish 4 flip connections from different
levels of encoder blocks to the decoder to merge more low-
level features. The AMB will learn a merging parameter
for adaptive merging. Apart from features from the highest
level with 512 channels, other flips’ features dimension are
256. At last, a prediction module, a 3× 3 convolution and a
softmax, is applied to transfer the features dimensions from
256 channels to 150 depth bins.

In the lightweight backbone network experiment, the
backbone is replaced with MobileNetV2. In order to further
reduce parameters, the dimensions of four flip connections
are reduced to (128, 64, 64, 64). In the prediction module,

the features are transferred from 64 channels to 60 depth
bins.
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Figure 11. Model architecture. The encoder-decoder network has
four flip connections to merge low-level features.

5.2. Predicted Depth and Surface Normal

We provide more predicted depth maps and recovered
surface normals on KITTI and NYUD-V2 dataset. Depth
maps are illustrated in Fig. 12, and Fig. 14, the recovered
surface normals are demonstrated in Fig. 13.

5.3. 3D point cloud

In order to further show the quality of reconstructed
point cloud from the predicted depth, we randomly select
3 scenes from the testing part of NYUD-V2 and KITTI.
3 views are randomly selected to display the reconstructed
point cloud. The results are shown in Fig. 15 and Fig. 16.
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scene, 3 views are selected to demonstrate the point cloud. (a) Scene 1; (b) Scene 2; (c) Scene 3.
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Figure 16. Reconstructed point clouds. Three scenes are randomly selected from KITTI. For the reconstructed point cloud of each scene,
3 views are selected to demonstrate the quality of the point cloud. (a) Scene 1; (b) Scene 2; (c) Scene 3.
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