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Abstract

Recently, consistency-based methods have achieved

state-of-the-art results in semi-supervised learning (SSL).

These methods always involve two roles, an explicit or im-

plicit teacher model and a student model, and penalize pre-

dictions under different perturbations by a consistency con-

straint. However, the weights of these two roles are tightly

coupled since the teacher is essentially an exponential mov-

ing average (EMA) of the student. In this work, we show

that the coupled EMA teacher causes a performance bottle-

neck. To address this problem, we introduce Dual Student,

which replaces the teacher with another student. We also

define a novel concept, stable sample, following which a

stabilization constraint is designed for our structure to be

trainable. Further, we discuss two variants of our method,

which produce even higher performance. Extensive experi-

ments show that our method improves the classification per-

formance significantly on several main SSL benchmarks.

Specifically, it reduces the error rate of the 13-layer CNN

from 16.84% to 12.39% on CIFAR-10 with 1k labels and

from 34.10% to 31.56% on CIFAR-100 with 10k labels. In

addition, our method also achieves a clear improvement in

domain adaptation.

1. Introduction

Deep supervised learning has gained significant success

in computer vision tasks, which leads the community to

challenge larger and more complicated datasets like Ima-

geNet [29] and WebVision [18]. However, obtaining full la-

bels for a huge dataset is usually a very costly task. Hence,

more attention is now drawn on deep semi-supervised learn-

ing (SSL). In order to utilize unlabeled data, many methods

in traditional machine learning have been proposed [36],

and some of them are successfully adapted to deep learn-

ing. In addition, some latest techniques like self-training [5]

and Generative Adversarial Networks (GANs) [31, 23, 20]

have been utilized for deep SSL with promising results.

A primary track of recent deep semi-supervised methods

[28, 17, 7, 33] can be summarized as consistency-based
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Figure 1: Teacher-Student versus Dual Student. The teacher

(T) in Teacher-Student is an EMA of the student (S), impos-

ing a consistency constraint on the student. Their weights

are tightly coupled. In contrast, a bidirectional stabilization

constraint is applied between the two students (S and S’) in

Dual Student. Their weights are loosely coupled.

methods. In this type of methods, two roles are commonly

created, either explicitly or implicitly: a teacher model and

a student model (i.e., a Teacher-Student structure). The

teacher guides the student to approximate its performance

under perturbations. The perturbations could come from the

noise of the input or the dropout layer [32], etc. A consis-

tency constraint is then imposed on the predictions between

two roles, and forces the unlabeled data to meet the smooth-

ness assumption of semi-supervised learning.

The teacher in the Teacher-Student structure can be sum-

marized as being generated by an exponential moving aver-

age (EMA) of the student model. In the VAT Model [21]

and the Π Model [17], the teacher shares the same weights

as the student, which is equivalent to setting the averaging

coefficient to zero. The Temporal Model [17] is similar to Π
Model except that it also applies an EMA to accumulate the

historical predictions. The Mean Teacher [33] applies an

EMA to the student to obtain an ensemble teacher. In this

work, we show that the two roles in the Teacher-Student

structure are tightly coupled and the degree of the coupling

increases as the training goes on. This phenomenon leads

to a performance bottleneck since a coupled EMA teacher

is not sufficient for the student.

To overcome this problem, the knowledge coming from

another independent model should help. Motivated by this

observation, we replace the EMA teacher by another stu-

dent model. The two students start from different initial
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states and are optimized through individual paths during

training. Hence, their weights will not be tightly coupled

and each learns its own knowledge. What remains unclear

is how to extract and exchange knowledge between the stu-

dents. Naively, adding a consistency constraint may lead

to the two models collapsing into each other. Thus, we de-

fine the stable sample and propose a stabilization constraint

for effective knowledge exchange. Our method improves

the performance significantly on several main SSL bench-

marks. Fig. 1 demonstrates the Teacher-Student structure

and our Dual Student structure.

In summary, the main contributions of this work include:

• We demonstrate that the coupled EMA teacher causes

a performance bottleneck of the existing Teacher-

Student methods.

• We define the stable samples of a model and propose a

novel stabilization constraint between models.

• We propose a new SSL structure, Dual Student, and

discuss two variants of Dual Student with higher per-

formances.

• Extensive experiments are conducted to evaluate the

performance of our method on several benchmarks and

in different tasks.

2. Related Work

2.1. Overview

Consistency-based SSL methods are derived from the

network noise regularization [30]. Goodfellow et al. [7]

first showed the advantage of adversarial noise over random

noise. Miyato et al. [21] further explored this idea for unla-

beled data and generated virtual adversarial samples for the

implicit teacher, while Park et al. [25] proposed a virtual

adversarial dropout based on [32]. In addition to noise, the

quality of targets for the consistency constraint is also vital

in this process. Bachman et al. [2] and Rasmus et al. [28]

showed the effectiveness of regularizing the targets. Laine

et al. then proposed the internally consistent Π Model and

Temporal Model in [17]. Tarvainen took advantage of av-

eraging model weights [26] to obtain an explicit ensemble

teacher [33] for generating targets. Some works derived

from the traditional methods also improve the consistency-

based SSL. Smooth Neighbor by Luo et al. [19] utilized the

connection between data points and built a neighbor graph

to cluster data more tightly. Athiwaratkun et al. [1] modi-

fied the stochastic weight averaging (SWA) [14] to obtain a

stronger ensemble teacher faster. Qiao et al. [27] proposed

Deep Co-Training [27], by adding a consistency constraint

between independent models.

2.2. Teacher­Student Structure

The most common structure of recent SSL methods is

the Teacher-Student structure. It applies a consistency con-

straint between a teacher model and a student model to learn

knowledge from unlabeled data. Formally, we assume that

a dataset D consists of an unlabeled subset and a labeled

subset. Let θ
′

denote the weights of the teacher, and θ de-

note the weights of the student. The consistency constraint

is defined as:

Lcon = Ex∈D R(f(θ, x + ζ), Tx) , (1)

where f(θ, x+ ζ) is the prediction from model f(θ) for in-

put x with noise ζ. Tx is the consistency target from the

teacher. R(·, ·) measures the distance between two vec-

tors, and is usually set to mean squared error (MSE) or KL-

divergence. Previous works have proposed several ways to

generate Tx.

Π Model: In Π Model, the implicit teacher shares pa-

rameters with the student. It forwards a sample x twice with

different random noise ζ and ζ′ in each iteration, and treats

the prediction of x+ ζ′ as Tx.

Temporal Model: While Π Model needs to forward a

sample twice in each iteration, Temporal Model reduces this

computational overhead by using EMA to accumulate the

predictions over epochs as Tx. This approach could reduce

the prediction variance and stabilize the training process.

Mean Teacher: Temporal Model needs to store a record

for each sample, and the target Tx gets updated only once

per epoch while the student is updated multiple times.

Hence, Mean Teacher defines an explicit teacher by an

EMA of the student and update its weights in each iteration

before generating Tx.

VAT Model: Although random noise is effective in pre-

vious methods, VAT Model adopts the adversarial noise to

generate better Tx for the consistency constraint.

2.3. Deep Co­Training

It is known that fusing knowledge from multiple models

could improve performance in SSL [35]. However, directly

adding the consistency constraint between models results in

the models collapsing into each other. Deep Co-Training

addressed this issue by utilizing the Co-Training assump-

tion from the traditional Co-Training algorithm [3]. It treats

the features from the convolutional layers as a view of the

input and uses the adversarial samples from other collabora-

tors to ensure that view differences exist among the models.

Consistent predictions can then be used for training. How-

ever, this strategy requires generating adversarial samples

of each model in the whole process, which is complicated

and time-consuming.

Our method also has interactions between models to

break the limits of the EMA teacher, but there are two ma-

jor differences between our method and Deep Co-Training.

First, instead of enforcing the consistency constraint and the

different-views constraint, we only extract reliable knowl-

edge of the models and exchange them by a more effective



stabilization constraint. Second, our method is more effi-

cient since we do not need the adversarial samples.

3. Limits of the EMA Teacher

One fundamental assumption in SSL is the smoothness

assumption - “If two data points in a high-density region

are close, then so should be the corresponding outputs” [4].

All existing Teacher-Student methods utilize unlabeled data

according to this assumption. In practice, if x and x̄ are

generated from a sample with different small perturbations,

they should have consistent predictions by the correspond-

ing teacher and student. Previous methods achieve this by

the consistency constraint and have mainly focused on gen-

erating more meaningful targets through ensemble or well-

designed noise.

However, previous works neglect that the teacher is es-

sentially an EMA of the student. Hence, their weights are

tightly coupled. Formally, the teacher weights θ
′

are an en-

semble of the student weights θ in a successive training step

t with a smoothing coefficient α ∈ [0, 1]:

θ
′

t = α θ
′

t−1 + (1 − α) θt . (2)

InΠ Model and VAT Model, as α is set to zero, θ
′

is equal to

θ. Temporal Model improves Π Model by an EMA on his-

torical predictions, but its teacher still shares weights with

the student. As for Mean Teacher, the updates of the student

weights decreases as the model converges, i.e., |θt − θt−1|
becomes smaller and smaller as the number of training steps

t increases. Theoretically, it can be proved that the EMA of

a converging sequence converges to the same limit as the

sequence, which is shown in Appendix A (Supplementary).

Thus, the teacher will be very close to the student when the

training process converges. In all the above cases, the cou-

pling fact between the teacher and the student is obvious.

To further visualize it, we train two structures on the

CIFAR-10 SSL benchmark. One contains a student and an

EMA teacher (named Sema) while the other contains two

independent models (named Ssplit). We then calculate the

Euclidean distance of the weights and predictions between

the two models in each structure. Fig. 2 shows the results.

As expected, the EMA teacher in Sema is very close to the

student, and their distance approaches zero with increasing

epochs. In contrast, the two models in Ssplit always keep a

larger distance from each other. These results confirm our

conjecture that the EMA teacher is tightly coupled with the

student. In addition, they also demonstrate that the two in-

dependent models are loosely coupled.

Due to the coupling effect between the two roles in

the existing Teacher-Student methods, the teacher does not

have more meaningful knowledge compared to the student.

In addition, if the student has biased predictions for specific

samples, the EMA teacher is most likely to accumulate the
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Figure 2: Left: Sema contains two models with similar

weights, while the weights of the two models in Ssplit keep

a certain distance. Right: The predictions of the two models

in Ssplit keep a larger distance than those of Sema.
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Figure 3: Our method can alleviate the confirmation bias.

f1 and f2 are the independent students from our Dual Stu-

dent, while fs is the student guided by the Mean Teacher.

For a misclassified sample (belonging to class1), f1 can cor-

rect it quickly with the knowledge from f2. However, fs is

unable to correct its prediction due to the wrong guidance

from the EMA teacher.

mistakes and to enforce the student to follow, making the

misclassification irreversible. This is a case of the confir-

mation bias [33]. Most methods apply a ramp-up opera-

tion for the consistency constraint to alleviate the bias, but

it is inadequate to solve the problem. From this perspective,

training independent models are also beneficial. Fig. 3 vi-

sualizes this inability of the EMA teacher. Three models,

f1, f2, and fs, are trained on a two-category task simulta-

neously. fs is the student from Mean Teacher. f1 and f2
are two relatively independent but interactive models, rep-

resenting the two students from our Dual Student structure

(Section 4). They have the same initialization, while f2 is

different from them. The plot shows how the predictions of

a sample from class1 changes with epochs for these three

models, which demonstrates that our method can alleviate

the confirmation bias.

4. Dual Student

As analyzed above, the targets from an EMA teacher

are not adequate to guide the student when the number of

training steps t is large. Therefore, our method gains the

loosely coupled targets by training two independent models

simultaneously. However, the outputs of these two models
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Figure 4: Dual Student structure overview. We train two student models separately. Each batch includes labeled and unlabeled

data and is forwarded twice. The stabilization constraint based on the stable samples is enforced between the students. Each

student also learns labeled data by the classification constraint and meets the smooth assumption by the consistency constraint.

may vary widely, and applying the consistency constraint

directly will cause them to collapse into each other by ex-

changing the wrong knowledge. The EMA teacher does not

suffer from this problem due to the coupling effect.

We propose an efficient way to overcome this problem,

which is to exchange only reliable knowledge of the mod-

els. To put this idea into practice, we need to solve two

problems. One is how to define and acquire reliable knowl-

edge of a model. Another is how to exchange the knowledge

mutually. To address them, we define the stable sample in

Section 4.1 and then elaborate the derived stabilization con-

straint for training in Section 4.2.

4.1. Stable Sample

A model can be regarded as a decision function that can

make reliable predictions for some samples but not for the

others. We define the stable sample and treat it as the reli-

able knowledge of a model. A stable sample satisfies two

conditions. First, according to the smoothness assumption,

a small perturbation should not affect the prediction of this

sample, i.e., the model should be smooth in the neighbor-

hood of this sample. Second, the prediction of this sample

is far from the decision boundary. This means that this sam-

ple has a high probability for the predicted label.

Definition 4.1 (Stable sample). Given a constant ξ ∈ [0, 1),
a dataset D ⊆ R

m that satisfies the smoothness assumption

and a model f : D → [0, 1]n that satisfies ||f(x)||1 = 1 for

all x ∈ D, x is a stable sample with respect to f if:

1. ∀x̄ ∈ D near x, their predicted labels are the same.

2. x satisfies the inequality: ||f(x)||∞ > ξ . 1

Def. 4.1 defines the stable sample, and Fig. 5 illustrates

its conditions in details. Notice that the concept of the stable

1||a ||1 :=
n∑

i=1

| ai |, ||a ||∞ := max
i=1..n

| ai |, a = (a1, a2, ..., an)

sample is specific to the models. A data point x can be

stable with respect to any one model but may not be to the

others. This fact is a key to our stabilization constraint, and

will be elaborated in Section 4.2. In addition to the criterion

of whether a sample point x is stable or not, we would also

like to know the degree of stability of a stable sample x.

This can be reflected by the prediction consistency in its

neighborhood. The more consistent the predictions are, the

more stable x is.

4.2. Training by the Stabilization Constraint

We briefly introduce Dual Student structure before ex-

plaining the details on training. It contains two independent

student models, which share the same network architec-

ture with different initial states and are updated separately

(Fig. 4). For our structure to be trainable, we derive a novel

stabilization constraint from the stable sample.

In practice, we only utilize two close samples to approx-

imate the conditions of the stable sample to reduce the com-

putational overhead. Formally, we use θi and θj to represent

weights of the two students. We first define a boolean func-

tion {condition}1, which outputs 1 when the condition is

true and 0 otherwise. Suppose x̄ is a noisy augmentation of

a sample x. We then check whether x is a stable sample for

student i:

Ri
x = {P i

x = P i
x̄}1 &({Mi

x > ξ}1‖ {M
i
x̄ > ξ}1) ,

where Mi
x = || f(θi, x) ||∞.

(3)

P i
x and P i

x̄ are the predicted labels of x and x̄, respectively,

by student i. Hyperparameter ξ is a confidence threshold in

[0, 1). If the maximum prediction probability of sample x
exceeds ξ, x is considered to be far enough from the clas-

sification boundary. We then use the Euclidean distance to

measure the prediction consistency, to indicate the stability

of x, as:

E i
x = || f(θi, x)− f(θi, x̄) ||2 . (4)
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Figure 5: Illustration of the conditions for a stable sample.

Consider three pairs of adjacent data points: (1) x1 and x̄1

do not satisfy the 1st condition, (2) x2 and x̄2 do not satisfy

the 2nd condition, and (3) x3 and x̄3 satisfy both conditions.

A smaller E i
x means that x is more stable to student i. The

distance between the predictions of students i and j can be

measured using the mean squared error (MSE) as:

Lmse(x) = || f(θi, x)− f(θj , x) ||2 . (5)

Finally, the stabilization constraint for the student i on sam-

ple x is written as:

Li
sta(x) =

{

{E i
x > Ej

x}1 Lmse(x), Ri
x = Rj

x = 1,

Rj
x Lmse(x), otherwise.

(6)

We calculate the stabilization constraint for the student j in

the same way. As we can see, the stabilization constraint

changes dynamically depending on the outputs of the two

students. There are three cases: (1) No constraint is applied

if x is unstable for both students. (2) If x is stable only

for student i, it can guide student j. (3) If x is stable for

both students, the stability is calculated, and the constraint

is applied from the more stable one to the other.

Following previous works, our Dual Student structure

also imposes the consistency constraint in each student to

meet the smoothness assumption. We also apply the decou-

pled top layers trick from the Mean Teacher, which splits

the constraints for the classification and the smoothness.

To train Dual Student, the final constraint for student i
is a combination of three parts: the classification constraint,

consistency constraint in each model, and stabilization con-

straint between models, as:

Li = Li
cls + λ1 Li

con + λ2 Li
sta , (7)

where λ1 and λ2 are hyperparameters to balance the con-

straints. Algorithm 1 summarizes the optimization process.

4.3. Variants of Dual Student

Here, we briefly discuss two variants of Dual Student,

named Multiple Student and Imbalanced Student. Both of

Algorithm 1 Training of Dual Student for SSL.

Require: Batch B containing labeled and unlabeled samples

Require: Two independent models f(θ) and f(θ
′

)
1: for each batch B do

2: Get B1, B2 from B by data augmentation

3: for each model in {f(θ), f(θ
′

)} do

4: Calculate Lcls on labeled samples

5: Calculate Lcon by Eq. 1 between B1 and B2

6: end for

7: for each unlabeled sample x do

8: for each model in {f(θ), f(θ
′

)} do

9: Determine whether x is stable by Eq. 3

10: end for

11: if both f(θ) and f(θ
′

) are stable for x then

12: Calculate the stability of x by Eq. 5

13: end if

14: Calculate Lsta for f(θ) and f(θ
′

) by Eq. 6

15: end for

16: Update f(θ) and f(θ
′

) by the loss in Eq. 7

17: end for

them have higher performances than the standard Dual Stu-

dent. They do not increase the inference time, even though

more computations are required during training.

Multiple Student: Our Dual Student can be easily ex-

tended to Multiple Student. We followed the same strat-

egy as the Deep Co-Training. We assume that our Multiple

Student contains 2n student models. At each iteration, we

randomly divide these students into n pairs. Each pair is

then updated like Dual Student. Since our method does not

require models to have view differences, the data stream

can be shared among the students. This is different from

Deep Co-Training, which requires an exclusive data stream

for each pair. In practice, four students (n = 2) achieve a

notable improvement over two students. However, having

more than four students do not further improve the perfor-

mance, as demonstrated in Section 5.2.

Imbalanced Student: Since a well-designed architec-

ture with more parameters usually has better performance,

a pre-trained high-performance teacher can be used to im-

prove the light-weight student in knowledge distillation task

[9, 10]. Based on the same idea, we extend Dual Student to

Imbalanced Student by enhancing the capability of one stu-

dent. However, we do not consider the sophisticated model

as a teacher, since the knowledge will be exchanged mutu-

ally. We find that the improvement of the weak student is

proportional to the capability of the strong student.

5. Experiments

We first evaluate Dual Student on several common SSL

benchmarks, including CIFAR, SVHN, and ImageNet. We

then evaluate the performances of the two variants of Dual

Student. We further analyze various aspects of our method



Table 1: Test error rate on CIFAR-10 averaged over 5 runs. Parentheses show numbers of training epochs (default 300).

Model 1k labels 2k labels 4k labels all labels

Π [17] 31.65± 1.20† 17.57± 0.44† 12.36± 0.31 5.56± 0.10
Π + SN [19] 21.23± 1.27 14.65± 0.31 11.00± 0.13 5.19± 0.14

Temp [17] 23.31± 1.01† 15.64± 0.39† 12.16± 0.24 5.60± 0.10
Temp + SN [19] 18.41± 0.52 13.64± 0.32 10.93± 0.34 5.20± 0.14

MT [33] 18.78± 0.31† 14.43± 0.20† 11.41± 0.27† 5.98± 0.21†

MT + FSWA [1] 16.84± 0.62 12.24± 0.31 9.86± 0.27 5.14± 0.07
CS 17.38± 0.52 13.76± 0.27 10.24± 0.20 5.18± 0.11
DS 15.74± 0.45 11.47± 0.14 9.65± 0.12 5.20± 0.03
MT + FSWA (1200) [1] 15.58± 0.12 11.02± 0.23 9.05± 0.21 4.73± 0.18
Deep CT (600) [27] - - 9.03± 0.18 -

DS (600) 14.17± 0.38 10.72± 0.19 8.89± 0.09 4.66± 0.07

through ablation experiments. Finally, we demonstrate the

application of Dual Student in a domain adaptation task.

Unless specified otherwise, the architecture used in our

experiments is a same 13-layer convolutional neural net-

work (CNN), following previous works [17, 21, 33]. Its de-

tails are described in Appendix B (Supplementary). As re-

ported in [24], the implementations of recent SSL methods

are not exactly same, and the training details (e.g., num-

ber of training epochs, optimizer and augmentation) may

also be different. For a fair comparison, we implement our

method following the previous state-of-the-art [1], which

uses the standard Batch Norm [13] instead of the mean-

only Batch Norm [12]. The stochastic gradient descent opti-

mizer is adopted with the learning rate adjustment function

γ = γ0 ∗ (0.5 + cos((t− 1) ∗ π/N)), where t is the current

training step, N is the total number of steps, and γ0 is the

initial learning rate. These settings provide better baselines

for Π Model and Mean Teacher. For other methods, we use

the results from the original papers. More training details

are provided in Appendix C (Supplementary).

5.1. SSL Benchmarks

We first evaluate Dual Student on the CIFAR benchmark,

including CIFAR-10 [15] and CIFAR-100 [16]. CIFAR-10

has 50k training samples and 10k testing samples, from 10

categories. Each sample is a 32×32RGB image. We extract

1k, 2k, and 4k balanced labels randomly. CIFAR-100 [16]

is a more complex dataset including 100 categories. Each

category contains only 500 training samples, together with

100 test samples. We extract 10k balanced labels from it

randomly. Besides, we also run experiments with full la-

bels on both datasets. We compare our Dual Student (DS)

with some recent consistency-based models, including Π
Model (Π), Temporal Model (Temp), Mean Teacher (MT),

Smooth Neighbor (SN), FastSWA based on Mean Teacher

(MT+FSWA), and Deep Co-Training (Deep CT). We also

Table 2: Test error rate on CIFAR-100 averaged over 5 runs.

Model 10k labels all labels

Temp [17] 38.65 ± 0.51 26.30 ± 0.15
Π [17] 39.19 ± 0.36 26.32 ± 0.04
Π+ FSWA [1] 35.14 ± 0.71 22.00 ± 0.21

MT [33] 35.96 ± 0.77† 23.37 ± 0.16†

MT + FSWA [1] 34.10 ± 0.31 21.84 ± 0.12

DS 33.08± 0.27 21.90 ± 0.14

MT + FSWA (1200) [1] 33.62 ± 0.54 21.52 ± 0.12

Deep CT (600) [27] 34.63 ± 0.14 -

DS (480) 32.77± 0.24 21.79 ± 0.11

replace the stabilization constraint in our structure with the

consistency constraint (CS) as a baseline.

Table 1 shows the results on CIFAR-10. All models

are trained for 300 epochs, except for those specified with

parentheses. Results marked with a † are obtained from

other works that published better performances than the

original ones. We can see that our Dual Student boosts the

performance on all semi-supervised settings. The results

reveal that as the number of labeled samples decreases, our

method can gain more significant improvements. Specif-

ically, Dual Student improves the result with 1k labels to

14.17% with only half of training epochs comparing to

FastSWA. Similar results can also be observed in the ex-

periments with 2k and 4k labels. Fig. 6 shows that the ac-

curacy on only the stable samples is higher than that on all

samples, which proves that the stable samples represent the

relatively more reliable knowledge of a model. This justi-

fies why our DS with stabilization constraint achieves much

better results than the CS. Our result on full labels shows

less advantages since the labels play a much more impor-

tant role in the fully supervised case. Table 2 lists the re-

sults on CIFAR-100. Especially, in 10k label experiments,

Dual Student records a new state-of-the-art 32.77% with
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ples and on all samples of CIFAR-10. The performance gap

indicates that the stable samples represent relatively more

reliable knowledge of a model. The average ratio of the

stable samples on the test set is about 85% w.r.t. the model.

Table 3: Test error rate on SVHN averaged over 5 runs.

Model 250 labels 500 labels

Supervised [33] 27.77± 3.18 16.88± 1.30
MT [33] 4.35± 0.50 4.18± 0.27
DS 4.24± 0.10 3.96± 0.15

Table 4: Test error rate on ImageNet averaged over 2 runs.

Model 10% labels-top1 10% labels-top5

Supervised 42.15± 0.09 19.76± 0.11
MT [33] 37.83± 0.12 16.65± 0.08
DS 36.48± 0.05 16.42± 0.07

less training epochs than FastSWA and Deep Co-Training.

To evaluate the generalization ability of Dual Student,

we also conduct experiments on both SVHN [22] and Im-

ageNet [29]. Street View House Numbers (SVHN) is a

dataset containing 73,257 training samples and 26,032 test-

ing samples. Each sample is a 32 × 32 RGB image with

a center close-up of a house number. We only experiment

with 250 and 500 labels on SVHN. ImageNet contains more

than 10 million RGB images belonging to 1k categories. We

extract 10% balanced labels and train a 50-layer ResNeXt

model [34]. Tables 3 and 4 show that Dual Student could

improve the results on these datasets of various scales.

5.2. Performance of Variants

We evaluate Multiple Student and Imbalanced Student

on the CIFAR benchmark. Table 5 compares them with the

standard Dual Student, all using the same 13-layer CNN

trained for 300 epochs. For Multiple Student (MS), we train

both the four students and the eight students. The perfor-

Table 5: Test error rate of two variants of Dual Student (all

using the 13-layer CNN) on the CIFAR benchmark aver-

aged over 3 runs. Parentheses of Multiple Student (MS)

indicate the numbers of students. Parentheses of Imbal-

anced Student (IS) indicate the numbers of parameters for

the strong student.

Model
CIFAR-10

1k labels

CIFAR-100

10k labels

DS 15.74± 0.45 33.08± 0.27
MS (4 models) 14.97± 0.36 32.89± 0.32
MS (8 models) 14.77± 0.33 32.83± 0.28
IS (3.53M params) 13.43± 0.24 32.59± 0.27
IS (11.6M params) 12.39± 0.26 31.56± 0.22
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Figure 7: Test accuracy on CIFAR-10 with 1k labels. Left:

Combining our method with Mean Teacher can improve its

performance. Right: The effectiveness of our stabilization

constraint.

mance improvement is limited when more than four stu-

dents are trained simultaneously. For Imbalanced Student

(IS), we replace one student by a ResNet [8] with Shake-

Shake regularization. We then conduct the experiments on

two different model sizes. In particular, a small one with

3.53 million parameters and a large one with 11.65 million

parameters. The small ResNet has almost no increase in

computational cost, as its number of parameters is simi-

lar to that of the 13-layer CNN (3.13 million parameters).

Imbalanced Student achieves a significant performance im-

provement by distilling the knowledge from a more power-

ful student. Notably, the large ResNet improves the result

from 15.74% to 12.39% on CIFAR-10 with 1k labels.

Our structure can also be combined with existing meth-

ods easily to further improve the performance. We re-

place the consistency constraint inside the model by Mean

Teacher. Fig. 7 (left) shows the accuracy curves. The ob-

vious performance improvement shows the ability of Dual

Student in breaking the limits of the EMA teacher. The ac-

curacy of the combination is similar to that using Dual Stu-

dent only, which means that our method is insensitive to the

type of consistency constraint inside each model.



Table 6: Mean test error rate on the CIFAR benchmark aver-

aged over 5 runs, with different confidence threshold values,

ξ. Parentheses show the numbers of the labeled samples.

Dataset (Labels) ξ = 0.0 ξ = 0.4 ξ = 0.6 ξ = 0.8

CIFAR-10 (1k) 16.49 16.12 15.92 15.74

CIFAR-100 (10k) 33.67 33.08 33.23 33.54

5.3. Ablation Experiments

We conduct the ablation experiments on CIFAR-10 with

1k labels to analyze the impact of the confidence threshold

and various constraints in our structure.

Confidence threshold: The confidence threshold ξ con-

trols the 2nd condition in Def. 4.1 of the stable sample by

filtering out samples near to the boundary. Its actual value

can be set approximately, since our method is robust to it.

Typically, ξ is related to the complexity of the task, e.g.,

the number of categories to predict or the size of the given

dataset. More categories or a smaller size would require a

smaller ξ. Table 6 compares different ξ values on the CI-

FAR benchmark. The results show that ξ is necessary for a

better performance, and a meticulous tuning may only help

improve the performance slightly.

Effect of the constraints: Dual Student learns the unla-

beled data by both Lsta between models and the Lcon in-

side each model. We also study their individual impacts.

Besides, we compare the results with the experiment where

only the consistency constraint is applied between models

(named Lcs). Fig. 7 (right) shows that Lcs reduces the ac-

curacy in the late stage while Lsta helps improve the per-

formance continuously. This demonstrates that our Lsta is

better than Lcs. In addition, Lcon inside the model also

plays a role in boosting the performance further.

5.4. Domain Adaptation

Domain adaptation aims to transfer knowledge learned

from a labeled dataset to an unlabeled one. French et al.

[6] modified Mean Teacher and Temporal Model to en-

able domain adaptation and showed the effectiveness of the

Teacher-Student structure. In this section, we apply Dual

Student for adapting the digit recognition model from USPS

to MNIST and show that it could be applied to this kind

of task with great advantages over the EMA teacher based

methods.

Both USPS and MNIST are greyscale hand-written num-

ber dataset. USPS consists of 7,000 images of 16 × 16,

and MNIST contains 60,000 images of 28 × 28. To match

the image resolution, we resize all images from USPS to

28× 28 by cubic spline interpolation. Fig. 8 shows the do-

main difference between the two datasets. In our experi-

ments, we set USPS as the source domain and MNIST as the

target domain. We compare our method with Mean Teacher,

USPS MNIST

Figure 8: Domain difference between USPS and MNIST.

The numbers in USPS are in bold font face and span all

over the images without border.
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Figure 9: Test curves of domain adaptation from USPS to

MNIST versus the number of epochs. Dual Student avoids

overfitting and improves the result remarkably.

source domain (USPS) supervised model, and target do-

main (MNIST) supervised model (trained on 7k balanced

labels). All experiments use a small architecture simplified

from the above 13-layer CNN. More details are available in

Appendix D (Supplementary).

Fig. 9 shows the test accuracy versus the number of

epochs. We can see that naively using supervision from

USPS would result in overfitting. Mean Teacher avoids

it to some extent and improves the top1 accuracy from

69.09% to 80.41%, but it overfits when the number of train-

ing epochs is large. Our Dual Student avoids overfitting and

boosts the accuracy to 91.50%, which is much closer to the

result obtained by supervision from the target domain.

6. Conclusion

In this paper, we have studied the coupling effect of the

existing Teacher-Student methods and shown that it sets a

performance bottleneck for the structure. We have proposed

a new structure, Dual Student, to break limits of the EMA

teacher, and a novel stabilization constraint, which provides

an effective way to train independent models (either with

the same architecture or not). The stabilization constraint

is bidirectional overall but is unidirectional for each sta-

ble sample. The improved performance is notable across

datasets and tasks. Besides, we have also discussed two

variants of Dual Student, with even better results. However,

our method still shares similar limitations as existing meth-

ods, e.g., increased memory usage during training and per-

formance degradation on increasing number of labels. In

the future, we plan to address these issues and extend our

structure to other applications.



Appendix A: Convergence of the EMA

In our paper, we state that the EMA teacher is coupled

with the student in the existing Teacher-Student methods.

We provide below a formal proposition for this statement

and a simple proof.

Proposition 1. Given a sequence { st }t∈N ⊆ R
m and let

s′t = α s′t−1 + (1 − α) st, where 0 < α < 1, t ∈ N,

s′0 ∈ R
m. If { st }t∈N converges to S ∈ R

m, then { s′t }t∈N

converges to S as well.

Proof. By the definition of convergence, if { st }t∈N con-

verges to S, we have: ∀ǫ > 0, ∃T ∈ N such that ∀t > T ,

|st − S| < ǫ. First, when t > T , by the formula of the sum

of a finite geometric series, we rewrite S and s′t as:

S = (1− α)
1− αt−T

1− α
S + αt−T S

= (1− α)
t

∑

i=T+1

αt−iS + αt−TS ,

s′t = αts′0 + (1− α)

t
∑

i=1

αt−isi

= αts′0 + (1− α)

T
∑

i=1

αt−isi + (1 − α)

t
∑

i=T+1

αt−isi .

(8)

Since T is finite, αT s′0 and
∑T

i=1
αT−isi are bounded.

Thus, ∃C ∈ R
+ such that:

|αT s′0 + (1− α)

T
∑

i=1

αT−isi| < C .

Since 0 < α < 1, we have limt→∞ αt = 0. Thus, ∃T ′ > 0
such that ∀t > T ′, αt < min{ ǫ

C
, ǫ

|S| }. Then, after sub-

stituting Eq. 8 into |s′t − S| and applying the Triangular In-

equality, we have:

|s′t − S| ≤ |αts′0 + (1 − α)

T
∑

i=1

αt−isi|

+ |(1− α)
t

∑

i=T+1

αt−i(si − S)|+ |αt−TS| .

(9)

Then ∀t > (T + T ′), we have:

|αts′0 + (1− α)

T
∑

i=1

αt−isi|

= αt−T |αT s′0 + (1 − α)

T
∑

i=1

αT−isi| <
ǫ

C
C < ǫ ,

(10)

|(1 − α)

t
∑

i=T+1

αt−i(si − S)|

≤ (1 − α)
t

∑

i=T+1

αt−i|si − S| = (1 − αt−T ) ǫ < ǫ ,

(11)

|αt−TS| <
ǫ

|S|
|S| < ǫ . (12)

Combining Eq. 9, 10, 11, 12, we have |s′t − S| < 3ǫ, ∀t >
(T + T ′), i.e., {s′t}y∈N converges to S.

Appendix B: Model Architectures

The model architecture used in our CIFAR-10, CIFAR-

100, and SVHN experiments is the 13-layer convolutional

network (13-layer CNN), which is the same as previous

works [33, 17, 1, 19, 27]. We implement it following

FastSWA [1] for comparison. Table 7 describes its archi-

tecture in details. For ImageNet experiments, we use a 50-

layer ResNeXt [34] architecture, which includes 3+4+6+3

residual blocks and uses the group convolution with 32

groups.

Appendix C: Semi-supervised Learning Setups

In our work, all experiments use the SGD optimizer with

the nesterov momentum set to 0.9. The learning rate is ad-

justed by the function γ = γ0 ∗ (0.5+ cos((t− 1) ∗π/N)),
where t is the current training step, N is the total number

of steps, and γ0 is the initial learning rate. We present the

settings of the experiments on each dataset as follows.

CIFAR-10: On CIFAR-10, we set the batch size to 100

and half of the samples in each batch are labeled. The initial

learning rate is 0.1. The weight decay is 1e−4. For the

stabilization constraint, we set its coefficient λ2 = 100 and

ramp it up in the first 5 epochs. We set λ1 = 10. The

confidence threshold for the stable samples is 0.8.

CIFAR-100: On CIFAR-100, each minibatch contains

128 samples, including 31 labeled samples. We set the ini-

tial learning rate to 0.2 and the weight decay to 2e−4. The

confidence threshold is ξ = 0.4. Other hyperparameters are

the same as CIFAR-10.

SVHN: The batch size on SVHN is 100, and each mini-

batch contains only 10 labeled samples. The initial learning

rate is 0.1, and the weight decay is 1e−4. The stabilization

constraint is scaled by 10 (ramp up in 5 epochs). We use the

confidence threshold ξ = 0.8.

ImageNet: We validate our method on ImageNet by

the ResNeXt-50 architecture on 8 GPUs with batch size 320
and half of the batch are labeled samples. Each sample is

augmented following [11] and is resized to 224 × 224. We

warm-up the learning rate from 0.08 to 0.2 in the first 2
epochs. The model is trained for 60 epochs with the weight

decay set to 5e−5, the stabilization constraint coefficient set

to 1000, and a small confidence threshold of 0.01.



Table 7: The 13-layer CNN for our SSL experiments.

Layer Details

input 32× 32× 3 RGB image

augmentation random translation, horizontal flip

convolution 128, 3× 3, pad = same, LReLU α = 0.1
convolution 128, 3× 3, pad = same, LReLU α = 0.1
convolution 128, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool

dropout p = 0.5
convolution 256, 3× 3, pad = same, LReLU α = 0.1
convolution 256, 3× 3, pad = same, LReLU α = 0.1
convolution 256, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool

dropout p = 0.5
convolution 512, 3× 3, pad = valid, LReLU α = 0.1
convolution 256, 1× 1, LReLU α = 0.1
convolution 128, 1× 1, LReLU α = 0.1
pooling 6× 6 ⇒ 1× 1, type = avgpool

dense 128 ⇒ 10, softmax

Table 8: The small CNN for domain adaptation.

Layer Details

input 28× 28× 1 Gray image

augmentation gaussian noise ζ = 0.15
convolution 16, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool

convolution 32, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool

dropout p = 0.5
convolution 32, 3× 3, pad = same, LReLU α = 0.1
pooling 6× 6 ⇒ 1× 1, type = avgpool

dense 32 ⇒ 10, softmax

Appendix D: Domain Adaptation Setups

We design a small convolutional network for the domain

adaptation from USPS (source domain) to MNIST (target

domain). The structure is shown in Table 8. We train all

experiments for 100 epochs by the SGD optimizer with the

nesterov momentum set to 0.9 and the weight decay set to

1e−4. The learning rate declines from 0.1 to 0 by a co-

sine adjustment. Each batch includes 256 samples while

32 of them are labeled. We randomly extract 7000 bal-

anced samples from MNIST for target-supervised experi-

ments, and other experiments are done by using the training

set of USPS. The coefficient of the stabilization constraint

is λ2 = 1.0. We also ramp it up in the first 5 epochs. The

confidence threshold is ξ = 0.6. We discover that the input

noise with ζ = 0.15 is vital for the Mean Teacher but not

for our method in this experiment.
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