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Abstract

We tackle the fundamentally ill-posed problem of 3D
human localization from monocular RGB images. Driven
by the limitation of neural networks outputting point es-
timates, we address the ambiguity in the task by predict-
ing confidence intervals through a loss function based on
the Laplace distribution. Our architecture is a light-weight
feed-forward neural network that predicts 3D locations and
corresponding confidence intervals given 2D human poses.
The design is particularly well suited for small training
data, cross-dataset generalization, and real-time applica-
tions. Our experiments show that we (i) outperform state-
of-the-art results on KITTI and nuScenes datasets, (ii) even
outperform a stereo-based method for far-away pedestri-
ans, and (iii) estimate meaningful confidence intervals. We
further share insights on our model of uncertainty in cases
of limited observations and out-of-distribution samples.

1. Introduction
Autonomous driving vehicles commonly rely on Li-

DAR sensing solutions despite high cost and sparsity
of point clouds over long ranges [10, 59, 45]. Cost-
effective perception systems have been proposed by adopt-
ing stereo/multiple cameras to address the fundamental am-
biguity of monocular solutions [9, 32]. Yet researchers are
studying how to push the limits of monocular perception to
further contribute to multi-sensor fusion [33]. Progress has
been made estimating 3D positions of vehicles from monoc-
ular images [8, 38, 48], while pedestrians have received
far less attention due to lack of adequate performances. In
fact, inferring 3D locations of pedestrians from a single im-
age is particularly ambiguous due to the variance in human
heights and shapes. In this work, we explicitly study the
intrinsic ambiguity of locating pedestrians in the scene and
investigate whether we can learn this ambiguity from the
data. Driven by this perception task, we aim at providing
more insights to the general problem of uncertainty estima-
tion in deep learning.

Figure 1. 3D localization of pedestrians from a single RGB image.
Our method leverages 2D poses to find 3D locations as well as
confidence intervals. The confidence intervals are shown as blue
lines in the left 3D view and as ellipses in the right birds-eye-view.

Kendall and Gal [25] introduced practical uncertainty es-
timation for deep learning in perception tasks, distinguish-
ing between aleatoric and epistemic uncertainty [11, 25].
The former models noise inherent in the observations, while
the latter is a property of the model parameters and can be
reduced by collecting more data. While their proposed mea-
sure of uncertainty is inspiring, they could not compare it
with a known uncertainty, referred to as a task error. In
this work, based on the statistical variation of human height
within the adult population [52], we quantify the ambigu-
ity of the task, i.e., the task error: an upper bound of per-
formances for monocular 3D pedestrian localization. Sur-
prisingly, the task error is reasonably low. Our experiments
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show accurate results in 3D localization without overcom-
ing the limitation due to this intrinsic ambiguity.

We propose a simple probabilistic method for monocu-
lar 3D localization tailored for pedestrians. We specifically
address the challenges of the ill-posed task by predicting
confidence intervals in contrast to point estimates, which ac-
count for aleatoric and epistemic uncertainties. Our method
is composed of two distinct steps. First, we leverage the ex-
ceptional progress of pose estimators to obtain 2D joints,
a low-dimensional meaningful representation of humans.
Second, we input the detected joints to a light-weight feed-
forward network and output the 3D location of each in-
stance along with a confidence interval. We explore whether
2D joints contain enough information for a network to learn
the intrinsic ambiguity of the task as well as accurate lo-
calization. We leverage a recently introduced loss func-
tion based on the Laplace distribution [25] to incorporate
aleatoric uncertainty for each predicted location without di-
rect supervision at training time. MC dropout at inference
time is used to capture epistemic uncertainty [16]. Our net-
work, referred to as MonoLoco, independently learns the
distribution of uncertainties, and predicts confidence inter-
vals comparable with the corresponding task error. The
code is publicly available online 1.

2. Related Work

Monocular 3D Object Detection. Recent approaches for
monocular 3D object detection in the transportation do-
main focused only on vehicles as they are rigid objects with
known shape. To the best of our knowledge, no previous
work explicitly evaluated pedestrians from monocular RGB
images. Kundegorski and Breckon [29] achieved reason-
able performances combining infrared imagery and real-
time photogrammetry. Alahi et al. combined monocular
images with wireless signals [3] or with additional visual
priors [1, 2]. The seminal work of Mono3D [8] exploited
deep learning to create 3D object proposals for car, pedes-
trian and cyclist categories but it did not evaluate 3D local-
ization of pedestrians. It assumed a fixed ground plane or-
thogonal to the camera and the proposals were then scored
based on scene priors, such as shape, semantic and instance
segmentations. Following methods continued to leverage
Convolutional Neural Networks and focused only on Car
instances. To regress 3D pose parameters from 2D detec-
tions, Deep3DBox [38], MonoGRnet [46], and Hu et al.
[23] used geometrical reasoning for 3D localization, while
Multi-fusion [57] and ROI-10D [35] incorporated a mod-
ule for depth estimation. Recently, Roddick et al. [48] es-
caped the image domain by mapping image-based features
into a birds-eye view representation using integral images.
Another line of work fits 3D templates of cars to the im-

1https://github.com/vita-epfl/monoloco

age [54, 55, 7, 30].
While many of the related methods achieved reasonable

performances for vehicles, current literature lacks monoc-
ular methods addressing other categories in the context of
autonomous driving, such as pedestrians and cyclists.

Uncertainty in Computer Vision. Deep neural networks
need to have the ability not only to provide the correct out-
puts but also a measure of uncertainty, especially in safety-
critical scenarios like autonomous driving. Traditionally,
Bayesian Neural Networks [47, 40] were used to model
epistemic uncertainty through probability distributions over
the model parameters. However, these distributions are of-
ten intractable and researchers have proposed interesting so-
lutions to perform approximate Bayesian inference to mea-
sure uncertainty, including Variational Inference [20, 4, 50]
and Deep Ensembles [31]. Alternatively, Gal et al. [16, 17]
showed that applying dropout [51] at inference time yields
a form of variational inference where parameters of the net-
work are modeled as a mixture of multivariate Gaussian
distributions with small variances. This technique, called
Monte Carlo (MC) dropout, became popular also due to its
adaptability to non-probabilistic deep learning frameworks.

In computer vision, uncertainty estimation using MC
dropout has been applied for depth regression tasks [25],
scene segmentation [39, 25] and, more recently, LiDAR 3D
object detection for cars [14].

Human pose estimation. Detecting people in images and
estimating their skeleton is a widely studied problem. State-
of-the-art methods are based on Convolutional Neural Net-
works and can be grouped into top-down [43, 13, 21, 56]
and bottom-up methods [6, 41, 42, 27].

Related to our work is Simple Baseline [36], which
showed the effectiveness of latent information contained in
2D joints stimuli. They achieved state-of-the-art results by
simply predicting 3D joints from 2D poses through a light,
fully connected network. However, similarly to [37, 58, 49],
they estimated relative 3D joint positions, not providing any
information about the real 3D location in the scene.

3. Localization Ambiguity
Inferring depth of pedestrians from monocular images is

a fundamentally ill-posed problem. This additional chal-
lenge is due to human variation of height. If every pedes-
trian has the same height, there would be no ambiguity.
In this section, we quantify the ambiguity and analyze the
maximum accuracy expected from monocular 3D pedes-
trian localization.

In our distance estimates, we assume that all humans
have the same height hmean and we analyze the error of this
assumption. Inspired by Kundegorski and Breckon [29],
we model the localization error due to variation of height
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Figure 2. Localization error due to human height variations at dif-
ferent distances from the camera. We approximate the distribu-
tion of height for a generic adult as Gaussian mixture distribution
and we define the task error: an upper bound of performances for
monocular methods.

as a function of the ground truth distance from the cam-
era, which we call task error. From the triangle similarity
relation of human heights and distances, dh-mean/hmean =
dgt/hgt, where hgt and dgt are the the ground-truth human
height and distance, hmean is the assumed mean height of
a person and dh-mean the estimated distance under the hmean
assumption. We can define the task error for any person
instance in the dataset as:

e ≡ |dgt − dh-mean| = dgt

∣∣∣∣1− hmean

hgt

∣∣∣∣ . (1)

Previous studies from a population of 63,000 European
adults have shown that the average height is 178cm for
males and 165cm for females with a standard deviation of
around 7cm in both cases [52]. However, a pose detector
does not distinguish between genders. Assuming that the
distribution of human stature follows a Gaussian distribu-
tion for male and female populations [15], we define the
combined distribution of human heights, a Gaussian mix-
ture distribution P (H), as our unknown ground-truth height
distribution. The expected task error becomes

ê = dgt Eh∼P (H)

[∣∣∣∣1− hmean

h

∣∣∣∣] (2)

which represents a lower bound for monocular 3D pedes-
trian localization due to the intrinsic ambiguity of the task.
The analysis can be extended beyond adults. A 14-year old
male reaches about 90% of his full height and a female
about 95% [15, 29]. Including people down to 14 years
old leads to an additional source of height variation of 7.9%
and 5.6% for men and women, respectively [29]. Figure 2

shows the expected localization error ê due to height vari-
ations in different cases as a function of the ground-truth
distance from the camera dgt. This analysis shows that the
ill-posed problem of localizing pedestrians, while imposing
an intrinsic limit, does not prevent from robust localization
in general cases.

4. Method

The goal of our method is to detect pedestrians in 3D
given a single image. We argue that effective monocular
localization implies not only accurate estimates of the dis-
tance but also realistic predictions of uncertainty. Conse-
quently, we propose a method which learns the ambiguity
from the data without supervision and predicts confidence
intervals in contrast to point estimates. The task error mod-
eled in Eq. 2 allows to compare the predicted confidence
intervals with the intrinsic ambiguity of the task.

Figure 3 illustrates our overall method, which consists
of two main steps. First, we exploit a pose detector to es-
cape the image domain and reduce the input dimensionality.
2D joints are a meaningful low-level representation which
provides invariance to many factors, including background
scenes, lighting, textures and clothes. Second, we use the
2D joints as input to a feed-forward neural network which
predicts the distance and the associated ambiguity of each
pedestrian. In the training phase, there is no supervision for
the localization ambiguity. The network implicitly learns it
from the data distribution.

4.1. Setup

Input. We use a pose estimator to detect a set of keypoints
[ui, vi]

T for every instance in the image. We then back-
project each keypoint i into normalized image coordinates
[x∗i , y

∗
i , 1]

T using the camera intrinsic matrix K:

[x∗i , y
∗
i , 1]

T
= K−1 [ui, vi, 1]

T
. (3)

This transformation is essential to prevent the method
from overfitting to a specific camera. Furthermore, even if
we are not predicting a relative 3D location but the distance
to the camera, we zero-center the 2D inputs around the cen-
ter coordinates. This ensures that the model uses relative
distances between joints to make predictions and it prevents
overfitting on specific locations in the image.

2D Human Poses. We obtain 2D joint locations of pedes-
trians using two off-the-shelf pose detectors: the top-down
method Mask R-CNN [21] and the bottom-up one Pif-
Paf [28], both trained on the COCO dataset [34]. The de-
tector can be regarded as a stand-alone module independent
from our network, which uses 2D joints as inputs. None
of the detectors has been fine-tuned on KITTI or nuScenes
datasets as no annotations for 2D poses are available.

3



Figure 3. Network architecture. The input is a set of 2D joints extracted from a raw image and the output is the 3D location of a pedestrian
µ and the spread bwhich represents the associated aleatoric uncertainty. The confidence interval is obtained as µ±b. Epistemic uncertainty
is obtained through stochastic forward passes applying MC dropout [16]. The dashed ellipse represents the two combined uncertainties.
Every fully connected layer outputs 256 features and is followed by a Batch Normalization layer [24] and a ReLU activation function.

Output. We parametrize the 3D physical location of each
instance through its center location D = [xc, yc, zc]

T . We
further assume that the projection of the center into the im-
age plane corresponds to the center of the detected bound-
ing box [uc, vc]

T . Under these settings, the location of each
pedestrian has three degrees of freedom and two constraints.
We choose to regress the norm of the vector ||D||2 =√
x2c + y2c + z2c to further constrain the location of a pedes-

trian. For brevity, we will use the notation d = ||D||2. The
main criterion is that the dimensions of any object projected
into the image plane only depend on the norm of the vector
D and they are not affected by the combination of its com-
ponents. The same pedestrian in front of a camera or at the
margin of the camera field-of-view will appear as having
the same height in the image plane, as long as the distance
from the camera d is the same.

Base Network. The building blocks of our model are
shown in Figure 3. The architecture, inspired by Martinez et
al. [36], is a simple, deep, fully-connected network with six
linear layers with 256 output features. It includes dropout
[51] after every fully connected layer, batch-normalization
[24] and residual connections [22]. The model contains ap-
proximately 400k training parameters.

4.2. Uncertainty

In this work, we propose a probabilistic network which
models two types of uncertainty: aleatoric and epistemic
[11, 25].

Aleatoric uncertainty is an intrinsic property of the task
and the inputs. It does not decrease when collecting more
data. In the context of 3D monocular localization, the in-
trinsic ambiguity of the task represents a quota of aleatoric
uncertainty. In addition, some inputs may be more noisy
than others, leading to an input-dependent aleatoric uncer-
tainty. Epistemic uncertainty is a property of the model pa-
rameters, and it can be reduced by gathering more data. It

is useful to quantify the ignorance of the model about the
collected data, e.g., in case of out-of-distribution samples.

Aleatoric Uncertainty. Aleatoric uncertainty is captured
through a probability distribution over the model outputs.
We define a relative Laplace loss based on the negative log-
likelihood of a Laplace distribution as:

LLaplace(x|µ, b) =
|1− µ/x|

b
+ log(2b) (4)

where x is the ground truth and {µ, b} are the parameters
predicted by the model. µ represents the predicted distance
while b is the spread, making this training objective an at-
tenuated L1-type loss via spread b. During training, the
model has the freedom to predict a large spread b, leading to
attenuated gradients for noisy data. At inference time, the
model predicts the distance µ and a spread bwhich indicates
its confidence about the predicted distance. Following [25],
to avoid the singularity for b = 0, we apply a change of
variable to predict the log of the spread s = log(b).

Compared to previous methods [25, 53], we design a
Laplace loss which works with relative distances to keep
into account the role of distance in our predictions. Esti-
mating the distance of a pedestrian with an absolute error
can lead to a fatal accident if the person is very close, or be
negligible if the same human is far away from the camera.

Epistemic Uncertainty. To model epistemic uncertainty,
we follow [16, 25] and consider each parameter as a mix-
ture of two multivariate Gaussians with small variances and
means 0 and θ. The additional minimization objective for
N data points is:

Ldropout(θ, pdrop) =
1− pdrop

2N
||θ||2 . (5)

In practice, we perform dropout variational inference by
training the model with dropout before every weight layer
and then performing a series of stochastic forward passes at
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Method Type ALP [%] ALE [m]
< 0.5m < 1m < 2m Easy Moderate Hard

Mono3D [8] Mono 13.2 23.2 38.9 2.13 (2.32) 2.85 (3.09) 3.68 (4.46)
MonoDepth [19] + PifPaf [28] Mono 20.5 35.3 50.6 1.48 (1.69) 2.32 (2.99) 3.03 (3.67)
Our Geometric baseline Mono 16.6 32.6 62.2 1.40 (1.48) 1.35 (1.69) 1.61 (1.91)
Our MonoLoco - trained on KITTI Mono 29.0 49.6 71.2 0.94 (0.98) 1.09 (1.49) 1.27 (1.90)
Our MonoLoco - trained on nuScenes Mono 30.8 51.7 72.1 0.86 (0.92) 1.00 (1.25) 1.17 (1.65)
3DOP [9] Stereo 41.4 54.9 63.2 0.63 (0.71) 1.18 (1.27) 1.94 (2.11)
Task Error - 49.0 67.3 80.0 0.62 (0.55) 0.68 (0.99) 0.64 (0.75)

Table 1. Comparing our proposed method against baseline results on KITTI dataset [18]. The ALE metric is reported for pedestrians com-
monly detected by all methods to make fair comparison and, on parenthesis, for all the pedestrians detected by each method independently.
We outperform all monocular methods and we achieve comparable performances against 3DOP which leverages stereo images for training
and testing. Our method uses monocular images and shows cross-dataset generalization when trained on nuScenes dataset [5]. We use
PifPaf [28] as off-the-shelf network to extract 2D poses.

test time using the same dropout probability pdrop of train-
ing time. The use of fully-connected layers makes the net-
work particularly suitable for this approach, which does not
require any substantial modification of the model.

The combined epistemic and aleatoric uncertainties are
captured by the sample variance of predicted distances x̃.
They are sampled from multiple Laplace distributions pa-
rameterized with the predictive distance µ and spread b from
multiple forward passes with MC dropout:

V ar(X̃) =
1

TI

T∑
t=1

I∑
i=1

x̃2t,i(µt, bt)

−

[
1

TI

T∑
t=1

I∑
i=1

x̃t,i(µt, bt)

]2
(6)

where for each of the T computationally expensive forward
passes, I computationally cheap samples are drawn from
the Laplace distribution.

5. Experiments
5.1. Implementation details.

Datasets. We train and evaluate our model on KITTI
Dataset [18]. It contains 7481 training images along with
camera calibration files. All the images are captured in the
same city from the same camera. To analyze cross-dataset
generalization properties, we train another model on the
teaser of the recently released nuScenes dataset [5] and we
test it on KITTI. We do not perform cross-dataset training.

Training/Evaluation Procedure. To obtain input-output
pairs of 2D joints and distances, we apply an off-the-shelf
pose detector and use intersection over union of 0.3 to
match our detections with the ground-truths, obtaining 5000
instances for KITTI and 14500 for nuScenes teaser. KITTI
images are upscaled by a factor of two to match the mini-
mum dimension of 32 pixels of COCO instances. NuScenes

already contains high-definition images, which are not mod-
ified. We follow the KITTI train/val split of Chen et al.
[8] and we run the training procedure for 200 epochs us-
ing Adam optimizer [26], a learning rate of 10−3 and mini-
batches of 512. The code, available online 1, is developed
using PyTorch [44]. Working with a low-dimensional la-
tent representation is very appealing as it allows fast exper-
iments with different architectures and hyperparameters.

5.2. Evaluation.

Localization Error. We evaluate 3D pedestrian localiza-
tion using the Average Localization Precision (ALP) met-
ric defined by Xiang et al. [54] for the car category. ALP
considers a prediction as correct if the error between the
predicted distance and the ground-truth is smaller than a
threshold. We also analyze the average localization error
(ALE) in two different conditions. Following KITTI guide-
lines, we split the instances in three difficulty regimes based
on bounding box height, levels of occlusion and truncation:
easy, medium and hard. We also compare the results against
the task error of Eq. 2, which defines the target error for
monocular approaches due to the ambiguity of the task.

Geometrical Approach. 3D pedestrian localization is an
ill-posed task due to human height variations. On the other
side, estimating the distance of an object of known dimen-
sions from its projections into the image plane is a well-
known deterministic problem. As a baseline, we consider
humans as fixed objects with the same height and we inves-
tigate the localization accuracy under this assumption.

For every pedestrian, we apply a pose detector to cal-
culate distances in pixels between different body parts in
the image domain. Combining this information with the lo-
cation of the person in the world domain, we analyze the
distribution of the real dimensions (in meters) of all the in-
stances in the training set for three segments: head to shoul-
der, shoulder to hip and hip to ankle.

5



Figure 4. Average localization error for the instances commonly
detected by all methods. We outperform the monocular Mono3D
[8] while achieving comparable performances with the stereo
3DOP [9]. Monocular performances are bounded by our modeled
task error in Eq. 2.

For our calculation we assume a pinhole model of the
camera and that all instances stand upright. Using the cam-
era intrinsic matrix K and knowing the ground truth location
of each instance D = [xc, yc, zc]

T we can back-project each
keypoint from the image plane to its 3D location and mea-
sure the height of each segment using Eq. 3. We calculate
the mean and the standard deviation in meters of each of the
segments for all the instances in the training set. The stan-
dard deviation is used to choose the most stable segment
for our calculations. For instance, the position of the head
with respect to shoulders may vary a lot for each instance.
To take into account noise in the 2D joints predictions we
also average between left and right keypoints values. The
result is a single height ∆y1−2 which represents the aver-
age length of two body parts. In practice, our geometric
baseline uses the shoulder-hip segment and predicts an av-
erage height of 50.5cm. Combining the study on human
heights [52] described in Section 3 with the anthropome-
try study of Drillis et al. [12], we can compare our esti-
mated ∆y1−2 with the human average shoulder-hip height:
0.288 ∗ 171.5cm = 49.3cm.

The next step is to calculate the location of each in-
stance knowing the value in pixels of the chosen keypoints
v1 and v2 and assuming ∆y1−2 to be their relative distance
in meters. This configuration requires to solve an over-
constrained linear system with two specular solutions, of
which only one is inside the camera field of view.

Baselines. We compare our method on KITTI against two
monocular approaches and a stereo one:

• Mono3D [8] is a monocular 3D object detector for
cars, cyclists and pedestrians. 3D localization of

Figure 5. Results of aleatoric uncertainty predicted by MonoLoco
(spread b) and the modeled aleatoric uncertainty due to human
height variation (task error ê). The term b − ê is indicative of the
aleatoric uncertainty due to noisy observations. On the top figure,
we visualize the average predicted and ground truth confidence in-
tervals ±b and ±ê at various distances, using ellipses with minor
axis of one meter as a reference.

|x− µ|/σ |σ − e| [m] Recall [%]
pdrop = 0.05 0.60 0.90 82.8
pdrop = 0.2 0.58 0.96 84.3
pdrop = 0.4 0.50 1.26 88.3

Table 2. Precision and recall of uncertainty for KITTI validation
set with 50 stochastic forward passes. |x − µ| is the localization
error, σ the predicted confidence interval, ê the task error mod-
eled in Eq. 2 and Recall is represented by the % of ground truth
instances inside the predicted confidence interval.

pedestrians is not evaluated but detection results are
publicly available.
• MonoDepth [19] is a monocular depth estimator

which predicts a depth value for each pixel in the im-
age. To estimate a reference depth value for every
pedestrian, we detect 2D joints using PifPaf and cal-
culate the depth for a set of 9 pixels around each key-
point. We then consider the minimum depth as our
reference value. Experimentally, the minimum depth
increases the performances compared to the average
one. From the depth, we calculate the distance d using
the normalized image coordinates of the center of the
bounding box.
• 3DOP [9] is a stereo approach for pedestrians, cars and

cyclists and their 3D detections are publicly available.

5.3. Results.

Localization Accuracy. Table 1 summarizes our quan-
titative results on KITTI. We strongly outperform all the
other monocular approaches on all metrics with any of the

6



Figure 6. Simulating the outlier case of a person lying on the
ground. In the top image, the predicted confidence interval is small
and the detection accurate. In the bottom image, we create an out-
lier pose by projecting on the ground the original pose. The net-
work predicts higher uncertainty, a useful indicator to warn about
out-of-distribution samples.

Mask R-CNN ALE [m]
[21] 10

0
20
10

30
20

+
30 All

Geometric 0.79 1.52 3.17 9.08 3.73
L1 loss 0.85 1.17 2.24 4.11 2.14
Gaussian loss 0.90 1.28 2.34 4.32 2.26
Laplace Loss 0.74 1.17 2.25 4.12 2.12
PifPaf [28] ALE [m]

10
0

20
10

30
20

+
30 All

Geometric 0.83 1.40 2.15 3.59 2.05
L1 loss 0.83 1.24 2.09 3.32 1.92
Gaussian loss 0.89 1.22 2.14 3.50 1.97
Laplace Loss 0.75 1.19 2.24 3.25 1.90

Table 3. Impact of different loss functions and pose detectors on
nuScenes teaser validation set [5].

Method \ Time [ms] tpose tmodel ttotal

Mono3D [8] - 1800 1800
3DOP [9] - 2000 2000
Our (1 forward pass) 89 / 162 10 99 / 172
Our (50 forward passes) 89 / 162 51 140 / 213

Table 4. Single-image inference time on a GTX 1080Ti for KITTI
dataset with Pifpaf as pose detector. We only considered images
with positive detections. Most computation comes from the pose
detector (ResNet 50 / ResNet 152 backbones). For Mono3D and
3DOP we report published statistics on a Titan X GPU.

two models trained either on KITTI or nuScenes. We ob-
tain comparable results with the stereo approach 3DOP [9],
which has been trained and evaluated on KITTI and makes
use of stereo images during training and test time.

In Figure 4, we make an in-depth comparison analyzing

the average localization error as a function of the ground
truth distance, while Figure 7 shows qualitative results on
challenging images from KITTI and nuScenes datasets.A
video with additional results is available online. 2.

Aleatoric Uncertainty. We compare in Figure 5 the
aleatoric uncertainty predicted by our network through
spread b with the task error due to human height variation
defined in Eq. 2. The predicted spread b is a property of
each set of inputs and, differently from ê, is not only a func-
tion of the distance from the camera d. Indeed, the predicted
aleatoric uncertainty includes not only the uncertainty due
to the ambiguity of the task, but also the uncertainty due
to noisy observations [25], i.e., the 2D joints inferred by
the pose detector. Hence, we can approximately define the
predictive aleatoric uncertainty due to noisy joints as b − ê
and we observe that the further a person is from the camera,
the higher is the term b − ê. The spread b is the result of
a probabilistic interpretation of the model and the resulting
confidence intervals are calibrated. On KITTI validation set
they include 68% of the instances.

Combined Uncertainty. The combined aleatoric and
epistemic uncertainties are captured by sampling from mul-
tiple Laplace distributions using MC dropout. The mag-
nitude of the uncertainty depends on the chosen dropout
probability pdrop in Eq. 5. In Table 2, we analyze the preci-
sion/recall trade-off for different dropout probabilities and
choose pdrop = 0.2. We perform 50 computationally expen-
sive forward passes and, for each of them, 100 computation-
ally cheap samples from Laplace distribution using Eq. 6.
As a result, 84% of pedestrians lie inside the predicted con-
fidence intervals for the validation set of KITTI.

Our final goal is to make self-driving cars safe and be-
ing able to predict a confidence interval instead of a single
regression number is a first step towards this direction. To
illustrate the benefits of predicting intervals over point es-
timates, we construct a controlled risk analysis. We define
as high-risk cases all those instances where the ground truth
distance is smaller than the predicted one, hence a collision
is more likely to happen. We estimate that among the 1932
detected pedestrians in KITTI which match a ground truth,
48% of them are considered as high-risk cases, but for 89%
of them the ground truth lies inside the predicted interval.

Outliers. Leveraging on the simplicity of manipulation of
2D joints, we analyze the role of the predicted uncertainty
in case of an outlier. As shown in Figure 6, we recreate
the pose of a person lying down and we compare it with a
“standard” detection of the same person standing up. When
the pedestrian is lying down, the network predicts an un-
usually large confidence interval which includes the ground
truth location.

2https://youtu.be/ii0fqerQrec
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Figure 7. Illustration of results from KITTI [18] (top and middle) and nuScenes [5] (bottom) datasets containing true and inferred distance
information as well as confidence intervals (represented by ellipses with minor axis of one meter). We observe that the predicted uncertainty
increases in case of occlusions (bottom image, pedestrians 1 and 2).

In the bottom image of Figure 7, we also highlight the
behavior of the model in case of partially occluded pedes-
trians (pedestrians 1 and 2), where we also empirically ob-
serve larger confidence intervals when compared to visible
pedestrians at similar distances.

Ablation studies. In Table 3 we analyze the effects of
choosing a top-down or a bottom-up pose detector with dif-
ferent loss functions and with our deterministic geometric
baseline. L1-type losses perform slightly better than the
Gaussian loss, but the main improvement is given by choos-
ing PifPaf as pose detector.

Run time. A run time comparison is shown in Table 4.
Our method is 9-20 times faster than compared methods

(depending on the pose detector backbone) and it is the only
one suitable for real-time applications.

6. Conclusions
We have proposed a new approach for 3D pedestrian lo-

calization based on monocular images which addresses the
intrinsic ambiguity of the task by predicting calibrated con-
fidence intervals. We have shown that our method even out-
performs a stereo approach at further distances because it is
less sensitive to low-resolution imaging issues.

For autonomous driving applications, combining our
method with a stereo approach is an exciting direction for
accurate, low-cost and real-time 3D localization.
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