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Abstract

Most state-of-the-art action localization systems process
each action proposal individually, without explicitly exploit-
ing their relations during learning. However, the relations
between proposals actually play an important role in ac-
tion localization, since a meaningful action always con-
sists of multiple proposals in a video. In this paper, we
propose to exploit the proposal-proposal relations using
Graph Convolutional Networks (GCNs). First, we con-
struct an action proposal graph, where each proposal is
represented as a node and their relations between two pro-
posals as an edge. Here, we use two types of relations,
one for capturing the context information for each pro-
posal and the other one for characterizing the correlations
between distinct actions. Then we apply the GCNs over
the graph to model the relations among different propos-
als and learn powerful representations for the action clas-
sification and localization. Experimental results show that
our approach significantly outperforms the state-of-the-art
on THUMOS14 (49.1% versus 42.8%). Moreover, augmen-
tation experiments on ActivityNet also verify the efficacy of
modeling action proposal relationships. Codes are avail-
able at https://github.com/Alvin-Zeng/PGCN.

1. Introduction

Understanding human actions in videos has been becom-
ing a prominent research topic in computer vision, owing to
its various applications in security surveillance, human be-
havior analysis and many other areas [10, 35, 38, 12, 13, 14,
15, 16, 42]. Despite the fruitful progress in this vein, there
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Figure 1. Schematic depiction of our approach. We apply graph
convolutional networks to model the proposal-proposal interac-
tions and boost the temporal action localization performance.

are still some challenging tasks demanding further explo-
ration — temporal action localization is such an example.
To deal with real videos that are untrimmed and usually con-
tain the background of irrelevant activities, temporal action
localization requires the machine to not only classify the ac-
tions of interest but also localize the start and end time of
every action instance. Consider a sport video as illustrated
in Figure 1, the detector should find out the frames where
the action event is happening and identify the category of
the event.

Temporal Action localization has attracted increasing at-
tention in the last several years [6, 18, 26, 33, 34]. Inspired
by the success of object detection, most current action de-
tection methods resort to the two-stage pipeline: they first
generate a set of 1D temporal proposals and then perform
classification and temporal boundary regression on each
proposal individually. However, processing each proposal
separately in the prediction stage will inevitably neglect the
semantic relations between proposals.

We contend that exploiting the proposal-proposal rela-
tions in the video domain provides more cues to facilitate
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the recognition of each proposal instance. To illustrate this,
we revisit the example in Figure 1, where we have gener-
ated four proposals. On the one hand, the proposals p1, p2

and p3 overlapping with each other describe different parts
of the same action instance (i.e., the start period, main body
and end period). Conventional methods perform prediction
on p1 by using its feature alone, which we think is insuffi-
cient to deliver complete knowledge for the detection. If we
additionally take the features of p2 and p3 into account, we
will obtain more contextual information around p1, which is
advantageous especially for the temporal boundary regres-
sion of p1. On the other hand, p4 describes the background
(i.e., the sport field), and its content is also helpful in identi-
fying the action label of p1, since what is happening on the
sport field is likely to be sport action (e.g. “discus throw-
ing”) but not the one happens elsewhere (e.g. “kissing”). In
other words, the classification of p1 can be partly guided by
the content of p4 even they are temporally disjointed.

To model the proposal-proposal interactions, one may
employ the self-attention mechanism [39] — as what has
been conducted previously in language translation [39] and
object detection [22] — to capture the pair-wise similar-
ity between proposals. A self-attention module can affect
an individual proposal by aggregating information from all
other proposals with the automatically learned aggregation
weights. However, this method is computationally expen-
sive as querying all proposal pairs has a quadratic complex-
ity of the proposal number (note that each video could con-
tain more than thousands of proposals). On the contrary,
Graph Convolutional Networks (GCNs) , which generalize
convolutions from grid-like data (e.g. images) to non-grid
structures (e.g. social networks), have received increasing
interests in the machine learning domain [25, 47]. GCNs
can affect each node by aggregating information from the
adjacent nodes, and thus are very suitable for leveraging
the relations between proposals. More importantly, unlike
the self-attention strategy, applying GCNs enables us to ag-
gregate information from only the local neighbourhoods for
each proposal, and thus can help decrease the computational
complexity remarkably.

In this paper, we regard the proposals as nodes of a spe-
cific graph and take advantage of GCNs for modeling the
proposal relations. Motivated by the discussions above, we
construct the graph by investigating two kinds of edges be-
tween proposals, including the contextual edges to incorpo-
rate the contextual information for each proposal instance
(e.g., detecting p1 by accessing p2 and p3 in Figure 1) and
the surrounding edges to query knowledge from nearby but
distinct proposals (e.g., querying p4 for p1 in Figure 1).

We then perform graph convolutions on the constructed
graph. Although the information is aggregated from local
neighbors in each layer, message passing between distant
nodes is still possible if the depth of GCNs increases. Be-

sides, we conduct two different GCNs to perform classifica-
tion and regression separately, which is demonstrated to be
effective by our experiments. Moreover, to avoid the over-
whelming computation cost, we further devise a sampling
strategy to train the GCNs efficiently while still preserving
desired detection performance. We evaluate our proposed
method on two popular benchmarks for temporal action de-
tection, i.e., THUMOS14 [24] and AcitivityNet1.3 [4].

To sum up, our contributions are as follow:

• To the best of our knowledge, we are the first to exploit
the proposal-proposal relations for temporal action lo-
calization in videos.

• To model the interactions between proposals, we con-
struct a graph of proposals by establishing the edges
based on our valuable observations and then apply
GCNs to do message aggregation among proposals.

• We have verified the effectiveness of our proposed
method on two benchmarks. On THUMOS14 espe-
cially, our method obtains the mAP of 49.1% when
tIoU = 0.5, which significantly outperforms the state-
of-the-art, i.e. 42.8% by [6]. Augmentation experi-
ments on ActivityNet also verify the efficacy of mod-
eling action proposal relationships.

2. Related work
Temporal action localization. Recently, great progress has
been achieved in deep learning [5, 9, 19, 53], which facili-
tates the development of temporal action localization. Ap-
proaches on this task can be grouped into three categories:
(1) methods performing frame or segment-level classifica-
tion where the smoothing and merging steps are required to
obtain the temporal boundaries [33, 28, 51]; (2) approaches
employing a two-stage framework involving proposal gen-
eration, classification and boundary refinement [34, 46, 52];
(3) methods developing end-to-end architectures integrating
the proposal generation and classification [48, 1, 26].

Our work is built upon the second category where the
action proposals are first generated and then used to per-
form classification and boundary regression. Following this
paradigm, Shou et al. [34] propose to generate proposals
from sliding windows and classify them. Xu et al. [46] ex-
ploit the 3D ConvNet and propose a framework inspired by
Faster R-CNN [30]. The above methods neglect the context
information of proposals, and hence some attempts have
been developed to incorporate the context to enhance the
proposal feature [8, 17, 18, 52, 6]. They show encourag-
ing improvements by extracting features on the extended
receptive field (i.e., boundary) of the proposal. Despite their
success, they all process each proposal individually. In con-
trast, our method has considered the proposal-proposal in-
teractions and leveraged the relations between proposals.
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Figure 2. Schematic of our P-GCN model. Given a set of proposals from the input untrimmed video, we instantiate the nodes in the graph
by each proposal. Then, edges are established among nodes to model the relations between proposals. We employ two separate GCNs on
the same constructed graph with different input features (i.e., the original feature and the extended feature). Finally, P-GCN model outputs
the predicted action category, completeness and boundary regression results for all proposals simultaneously.

Graph Convolutional Networks. Kipf et al. [25] propose
the Graph Convolutional Networks (GCNs) to define convo-
lutions on the non-grid structures [37]. Thanks to its effec-
tiveness, GCNs have been successfully applied to several
research areas in computer vision, such as skeleton-based
action recognition [47], person re-identification [32], and
video classification [45]. For real-world applications, the
graph can be large and directly using GCNs is inefficient.
Therefore, several attempts are posed for efficient training
by virtue of the sampling strategy, such as the node-wise
method SAGE [20], layer-wise model FastGCN [7] and
its layer-dependent variant AS-GCN [23]. In this paper,
considering the flexibility and implementability, we adopt
SAGE method as the sampling strategy in our framework.

3. Our Approach

3.1. Notation and Preliminaries

We denote an untrimmed video as V = {It ∈
RH×W×3}Tt=1, where It denotes the frame at the time slot
t with height H and width W . Within each video V , let
P = {pi | pi = (xi, (ti,s, ti,e))}Ni=1 be the action pro-
posals of interest, with ti,s and ti,e being the start and end
time of a proposal, respectively. In addition, given proposal
pi, let xi ∈ Rd be the feature vector extracted by certain
feature extractor (e.g., the I3D network [5]) from frames be-
tween Iti,s and Iti,e .

Let G(V, E) be a graph of N nodes with nodes vi ∈ V
and edge eij = (vi, vj) ∈ E . Furthermore, let A ∈ RN×N

be the adjacency matrix associated with G. In this paper,
we seek to exploit graphs G(P, E) on action proposals in P
to better model the proposal-proposal interactions in videos.
Here, each action proposal is treated as a node and the edges

in E are used to represent the relations between proposals.

3.2. General Scheme of Our Approach

In this paper, we use a proposal graph G(P, E) to present
the relations between proposals and then apply GCN on the
graph to exploit the relations and learn powerful represen-
tations for proposals. The intuition behind applying GCN
is that when performing graph convolution, each node ag-
gregates information from its neighborhoods. In this way,
the feature of each proposal is enhanced by other proposals,
which helps boost the detection performance eventually.

Without loss of generality, we assume the action propos-
als have been obtained beforehand by some methods (e.g.,
the TAG method in [52]). In this paper, given an input video
V , we seek to predict the action category ŷi and temporal
position (t̂i,s, t̂i,e) for each proposal pi by exploiting pro-
posal relations. Formally, we compute

{(ŷi, (t̂i,s, t̂i,e))}Ni=1 = F (GCN({xi}Ni=1,G(P, E)), (1)

where F denotes any mapping functions to be learned. To
exploit GCN for action localization, our paradigm takes
both the proposal graph and the proposal features as input
and perform graph convolution on the graph to leverage pro-
posal relations. The enhanced proposal features (i.e., the
outputs of GCN) are then used to jointly predict the cate-
gory label and temporal bounding box. The schematic of
our approach is shown in Figure 2. For simplicity, we de-
note our model as P-GCN henceforth.

In the following sections, we aim to answer two ques-
tions: (1) how to construct a graph to represent the relations
between proposals; (2) how to use GCN to learn represen-
tations of proposals based on the graph and facilitate the
action localization.



3.3. Proposal Graph Construction

For the graph G(P, E) of each video, the nodes are in-
stantiated as the action proposals, while the edges E be-
tween proposals are demanded to be characterized specif-
ically to better model the proposal relations.

One way to construct edges is linking all proposals with
each other, which yet will bring in overwhelming compu-
tations for going through all proposal pairs. It also incurs
redundant or noisy information for action localization, as
some unrelated proposals should not be connected. In this
paper, we devise a smarter approach by exploiting the tem-
poral relevance/distance between proposals instead. Specif-
ically, we introduce two types of edges, the contextual edges
and surrounding edges, respectively.
Contextual Edges. We establish an edge between proposal
pi and pj if r(pi,pj) > θctx, where θctx is a certain thresh-
old. Here, r(pi,pj) represents the relevance between pro-
posals and is defined by the tIoU metric, i.e.,

r(pi,pj) = tIoU(pi,pj) =
I(pi,pj)

U(pi,pj)
, (2)

where I(pi,pj) and U(pi,pj) compute the temporal inter-
section and union of the two proposals, respectively. If we
focus on the proposal pi, establishing the edges by comput-
ing r(pi,pj) > θctx will select its neighbourhoods as those
have high overlaps with it. Obviously, the non-overlapping
portions of the highly-overlapping neighbourhoods are able
to provide rich contextual information for pi. As already
demonstrated in [8, 6], exploring the contextual informa-
tion is of great help in refining the detection boundary and
increasing the detection accuracy eventually. Here, by our
contextual edges, all overlapping proposals automatically
share the contextual information with each other, and these
information are further processed by the graph convolution.
Surrounding Edges. The contextual edges connect the
overlapping proposals that usually correspond to the same
action instance. Actually, distinct but nearby actions (in-
cluding the background items) could also be correlated, and
the message passing among them will facilitate the detec-
tion of each other. For example in Figure 1, the background
proposal p4 will provide a guidance on identifying the ac-
tion class of proposal p1 (e.g., more likely to be sport ac-
tion). To handle such kind of correlations, we first utilize
r(pi,pj) = 0 to query the distinct proposals, and then com-
pute the following distance

d(pi,pj) =
|ci − cj |
U(pi,pj)

, (3)

to add the edges between nearby proposals if d(pi,pj) <
θsur, where θsur is a certain threshold. In Eq. (3), ci (or cj)
represents the center coordinate of pi (or pj). As a com-
plement of the contextual edges, the surrounding edges en-

able the message to pass across distinct action instances and
thereby provides more temporal cues for the detection.

3.4. Graph Convolution for Action Localization

Given the constructed graph, we apply the GCN to do
action localization. We build K-layer graph convolutions
in our implementation. Specifically for the k-th layer (1 ≤
k ≤ K), the graph convolution is implemented by

X(k) = AX(k−1)W (k). (4)

Here, A is the adjacency matrix; W(k) ∈ Rdk×dk is the
parameter matrix to be learned; X(k) ∈ RN×dk are the
hidden features for all proposals at layer k; X(0) ∈ RN×d

are the input features.
We apply an activation function (i.e., ReLU) after each

convolution layer before the features are forwarded to the
next layer. In addition, our experiments find it more effec-
tive by further concatenating the hidden features with the
input features in the last layer, namely,

X(K) := X(K)‖X(0), (5)

where ‖ denotes the concatenation operation.
Joining the previous work [52], we find that it is benefi-

cial to predict the action label and temporal boundary sepa-
rately by virtue of two GCNs—one conducted on the orig-
inal proposal features xi and the other one on the extended
proposal features x′

i. The first GCN is formulated as

{ŷi}Ni=1 = softmax(FC1(GCN1({xi}Ni=1,G(P, E)))),
(6)

where we apply a Fully-Connected (FC) layer with soft-
max operation on top of GCN1 to predict the action label
ŷi. The second GCN can be formulated as

{(t̂i,s, t̂i,e)}Ni=1 = FC2(GCN2({x′
i}Ni=1,G(P, E))), (7)

{ĉi}Ni=1 = FC3(GCN2({x′
i}Ni=1,G(P, E))), (8)

where the graph structure G(P, E) is the same as that in
Eq. (6) but the input proposal feature is different. The ex-
tended feature x′

i is attained by first extending the tem-
poral boundary of pi with 1

2 of its length on both the left
and right sides and then extracting the feature within the
extended boundary. Here, we adopt two FC layers on top of
GCN2, one for predicting the boundary (t̂i,s, t̂i,e) and the
other one for predicting the completeness label ĉi, which in-
dicates whether the proposal is complete or not. It has been
demonstrated by [52] that, incomplete proposals that have
low tIoU with the ground-truths could have high classifica-
tion score, and thus it will make mistakes when using the
classification score alone to rank the proposal for the mAP
test; further applying the completeness score enables us to
avoid this issue.



Adjacency Matrix. In Eq. (4), we need to compute the
adjacency matrix A. Here, we design the adjacency matrix
by assigning specific weights to edges. For example, we can
apply the cosine similarity to estimate the weights of edge
eij by

Aij =
xTi xj

‖xi‖2 · ‖xj‖2
. (9)

In the above computation, we compute Aij relying on the
feature vector xi. We can also map the feature vectors into
an embedding space using a learnable linear mapping func-
tion as in [44] before the cosine computation. We leave the
discussion in our experiments.

3.5. Efficient Training by Sampling

Typical proposal generation methods usually produce
thousands of proposals for each video. Applying the afore-
mentioned graph convolution (Eq. (4)) on all proposals de-
mands hefty computation and memory footprints. To accel-
erate the training of GCNs, several approaches [7, 23, 20]
have been proposed based on neighbourhood sampling.
Here, we adopt the SAGE method [20] in our method for
its flexibility.

The SAGE method uniformly samples the fixed-size
neighbourhoods of each node layer-by-layer in a top-down
passway. In other words, the nodes of the (k − 1)-th layer
are formulated as the sampled neighbourhoods of the nodes
in the k-th layer. After all nodes of all layers are sampled,
SAGE performs the information aggregation in a bottom-up
fashion. Here we specify the aggregation function to be a
sampling form of Eq. (4), namely,

x
(k)
i =

 1

Ns

Ns∑
j=1

Aijx
(k−1)
j + x

(k−1)
i

W (k), (10)

where node j is sampled from the neighbourhoods of node
i, i.e., j ∈ N (i); Ns is the sampling size and is much less
than the total number N . The summation in Eq. (10) is fur-
ther normalized by Ns, which empirically makes the train-
ing more stable. Besides, we also enforce the self addition
of its feature for node i in Eq. (10). We do not perform any
sampling when testing. For better readability, Algorithm 1
depicts the algorithmic Flow of our method.

4. Experiments
4.1. Datasets

THUMOS14 [24] is a standard benchmark for action lo-
calization. Its training set known as the UCF-101 dataset
consists of 13320 videos. The validation, testing and back-
ground set contain 1010, 1574 and 2500 untrimmed videos,
respectively. Performing action localization on this dataset

Algorithm 1 The training process of P-GCN model.
Input: Proposal set P = {pi | pi = (xi, (ti,s, ti,e))}Ni=1;
original proposal features {x(0)

i }Ni=1; extended proposal
features {x′(0)

i }Ni=1; graph depth K; sampling size Ns
Parameter: Weight matrices W(k), ∀k ∈ {1, . . . ,K}

1: instantiate the nodes by the proposals pi, ∀pi ∈ P
2: establish edges between nodes
3: obtain a proposal graph G(P, E)
4: calculate adjacent matrix using Eq. (9)
5: while not converges do
6: for k = 1 . . .K do
7: for p ∈ P do
8: sample Ns neighborhoods of p
9: aggregate information using Eq. (10)

10: end for
11: end for
12: predict action categories {ŷi}Ni=1 using Eq. (6)
13: perform boundary regression using Eq. (7)
14: predict completeness {ĉi}Ni=1 using Eq. (8)
15: end while
Output: Trained P-GCN model

is challenging since each video has more than 15 action
instances and its 71% frames are occupied by background
items. Following the common setting in [24], we apply 200
videos in the validation set for training and conduct evalua-
tion on the 213 annotated videos from the testing set.

ActivityNet [4] is another popular benchmark for action
localization on untrimmed videos. We evaluate our method
on ActivityNet v1.3, which contains around 10K training
videos and 5K validation videos corresponded to 200 dif-
ferent activities. Each video has an average of 1.65 action
instances. Following the standard practice, we train our
method on the training videos and test it on the validation
videos. In our experiments, we contrast our method with the
state-of-the-art methods on both THUMOS14 and Activi-
tyNet v1.3, and perform ablation studies on THUMOS14.

4.2. Implementation details

Evaluation Metrics. We use mean Average Precision
(mAP) as the evaluation metric. A proposal is consid-
ered to be correct if its temporal IoU with the ground-
truth instance is larger than a certain threshold and the
predicted category is the same as this ground-truth in-
stance. On THUMOS14, the tIOU thresholds are chosen
from {0.1, 0.2, 0.3, 0.4, 0.5}; on ActivityNet v1.3, the IoU
thresholds are from {0.5, 0.75, 0.95}, and we also report the
average mAP of the IoU thresholds between 0.5 and 0.95
with the step of 0.05.
Features and Proposals. Our model is implemented under
the two-stream strategy [35]: RGB frames and optical flow



fields. We first uniformly divide each input video into 64-
frame segments. We then use a two-stream Inflated 3D Con-
vNet (I3D) model pre-trained on Kinetics [5] to extract the
segment features. In detail, the I3D model takes as input the
RGB/optical-flow segment and outputs a 1024-dimensional
feature vector for each segment. Upon the I3D features, we
further apply max pooling across segments to obtain one
1024-dimensional feature vector for each proposal that is
obtained by the BSN method [27]. Note that we do not fine-
tune the parameters of the I3D model in our training phase.
Besides the I3D features and BSN proposals, our ablation
studies in § 5 also explore other types of features (e.g. 2-D
features [27]) and proposals (e.g. TAG proposals [52]).
Proposal Graph Construction. We construct the proposal
graph by fixing the values of θctx as 0.7 and θsur as 1 for
both streams. More discussions on choosing the values of
θctx and θsur could be found in the supplementary mate-
rial. We adopt 2-layer GCN since we observed no clear im-
provement with more than 2 layers but the model complex-
ity is increased. For more efficiency, we choose Ns = 4
in Eq. (10) for neighbourhood sampling unless otherwise
specified.
Training. The initial learning rate is 0.001 for the RGB
stream and 0.01 for the Flow stream. During training, the
learning rates will be divided by 10 every 15 epochs. The
dropout ratio is 0.8. The classification ŷi and completeness
ĉi are trained with the cross-entropy loss and the hinge loss,
respectively. The regression term (t̂i,s, t̂i,e) is trained with
the smooth L1 loss. More training details can be found in
the supplementary material.
Testing. We do not perform neighbourhood sampling (i.e.
Eq. (10)) for testing. The predictions of the RGB and Flow
steams are fused using a ratio of 2:3. We multiply the classi-
fication score with the completeness score as the final score
for calculating mAP. We then use Non-Maximum Suppres-
sion (NMS) to obtain the final predicted temporal proposals
for each action class separately. We use 600 and 100 pro-
posals per video for computing mAPs on THUMOS14 and
ActivityNet v1.3, respectively.

4.3. Comparison with state-of-the-art results

THUMOS14. Our P-GCN model is compared with the
state-of-the-art methods in Table 1. The P-GCN model
reaches the highest mAP over all thresholds, implying that
our method can recognize and localize actions much more
accurately than any other method. Particularly, our P-GCN
model outperforms the previously best method (i.e. TAL-
Net [6]) by 6.3% absolute improvement and the second-best
result [27] by more than 12.2%, when tIoU = 0.5.
ActivityNet v1.3. Table 2 reports the action localization
results of various methods. Regarding the average mAP, P-
GCN outperforms SSN [52], CDC [33], and TAL-Net [6]
by 3.01%, 3.19%, and 6.77%, respectively. We observe that

Table 1. Action localization results on THUMOS14, measured by
mAP (%) at different tIoU thresholds α.

tIoU 0.1 0.2 0.3 0.4 0.5
Oneata et al. [29] 36.6 33.6 27.0 20.8 14.4
Wang et al. [40] 18.2 17.0 14.0 11.7 8.3
Caba et al. [3] - - - - 13.5
Richard et al. [31] 39.7 35.7 30.0 23.2 15.2
Shou et al. [34] 47.7 43.5 36.3 28.7 19.0
Yeung et al. [48] 48.9 44.0 36.0 26.4 17.1
Yuan et al. [49] 51.4 42.6 33.6 26.1 18.8
Escorcia et al. [11] - - - - 13.9
Buch et al. [2] - - 37.8 - 23.0
Shou et al. [33] - - 40.1 29.4 23.3
Yuan et al. [50] 51.0 45.2 36.5 27.8 17.8
Buch et al. [1] - - 45.7 - 29.2
Gao et al. [18] 60.1 56.7 50.1 41.3 31.0
Hou et al. [21] 51.3 - 43.7 - 22.0
Dai et al. [8] - - - 33.3 25.6
Gao et al. [17] 54.0 50.9 44.1 34.9 25.6
Xu et al. [46] 54.5 51.5 44.8 35.6 28.9
Zhao et al. [52] 66.0 59.4 51.9 41.0 29.8
Lin et al. [27] - - 53.5 45.0 36.9
Chao et al. [6] 59.8 57.1 53.2 48.5 42.8
P-GCN 69.5 67.8 63.6 57.8 49.1

Table 2. Action localization results on ActivityNet v1.3 (val), mea-
sured by mAP (%) at different tIoU thresholds and the average
mAP of IoU thresholds from 0.5 to 0.95. (*) indicates the method
that uses the external video labels from UntrimmedNet [41].

tIoU 0.5 0.75 0.95 Average
Singh et al. [36] 34.47 - - -
Wang et al. [43] 43.65 - - -
Shou et al. [33] 45.30 26.00 0.20 23.80
Dai et al. [8] 36.44 21.15 3.90 -
Xu et al. [46] 26.80 - - -
Zhao et al. [52] 39.12 23.48 5.49 23.98
Chao et al. [6] 38.23 18.30 1.30 20.22
P-GCN 42.90 28.14 2.47 26.99
Lin et al. [27] * 46.45 29.96 8.02 30.03
P-GCN* 48.26 33.16 3.27 31.11

the method by Lin et al. [27] (called LIN below) performs
promisingly on this dataset. Note that LIN is originally de-
signed for generating class-agnostic proposals, and thus re-
lies on external video-level action labels (from Untrimmed-
Net [41]) for action localization. In contrast, our method
is self-contained and is able to perform action localization
without any external label. Actually, P-GCN can still be
modified to take external labels into account. To achieve
this, we assign the top-2 video-level classes predicted by
UntrimmedNet to all the proposals in that video. We pro-
vide more details about how to involve external labels in
P-GCN in the supplementary material. As summarized in
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Figure 3. Action localization results on THUMOS14 with different
backbones, measured by mAP@tIoU=0.5.

Table 2, our enhanced version P-GCN* consistently out-
performs LIN, hence demonstrating the effectiveness of our
method under the same setting.

5. Ablation Studies
In this section, we will perform complete and in-depth

ablation studies to evaluate the impact of each component
of our model. More details about the structures of baseline
methods (such as MLP and MP) can be found in the supple-
mentary material.

5.1. How do the proposal-proposal relations help?

As illustrated in § 3.4, we apply two GCNs for action
classification and boundary regression separately. Here,
we implement the baseline with a 2-layer MultiLayer-
Perceptron (MLP). The MLP baseline shares the same
structure as GCN except that we remove the adjacent matrix
A in Eq. (4). To be specific, for the k-th layer, the propaga-
tion in Eq. (4) becomes Xk = Xk−1W k, where W k are
the trainable parameters. Without using A, MLP processes
each proposal feature independently. By comparing the per-
formance of MLP with GCN, we can justify the importance
of message passing along proposals. To do so, we replace
each GCN with an MLP and have the following variants of
our model including: (1) MLP1 + GCN2 where GCN1 is
replaced; (2) GCN1 + MLP2 where GCN2 is replaced; and
(3) MLP1 + MLP2 where both GCNs are replaced. Ta-
ble 3 reads that all these variants decrease the performance
of our model, thus verifying the effectiveness of GCNs for
both action classification and boundary regression. Over-
all, our model P-GCN significantly outperforms the MLP
protocol (i.e. MLP1 + MLP2), validating the importance of
considering proposal-proposal relations in temporal action
localization.

Table 3. Comparison between our P-GCN model and MLP on
THUMOS14, measured by mAP (%).

mAP@tIoU=0.5 RGB Gain Flow Gain
MLP1 + MLP2 34.75 - 43.68 -
MLP1 + GCN2 35.94 1.19 44.59 0.91
GCN1 + MLP2 35.82 1.07 45.26 1.58
P-GCN (GCN1 + GCN2) 37.27 2.52 46.53 2.85

Table 4. Comparison between our P-GCN model and mean-
pooling (MP) on THUMOS14, measured by mAP (%).

mAP@tIoU=0.5 RGB Gain Flow Gain
MP1 + MP2 35.32 - 43.97 -
MP1 + GCN2 36.50 1.18 45.78 1.81
GCN1 + MP2 36.22 0.90 44.42 0.45
P-GCN (GCN1 + GCN2) 37.27 1.95 46.53 2.56

Table 5. Comparison of different types of edge functions on THU-
MOS14, measured by mAP (%).

mAP@tIoU=0.5 RGB Flow
MLP 34.75 43.68
P-GCN(cos-sim) 35.55 44.83
P-GCN(cos-sim, self-add) 37.27 46.53
P-GCN(embed-cos-sim, self-add) 36.81 46.89

5.2. How does the graph convolution help?

Besides graph convolutions, performing mean pooling
among proposal features is another way to enable informa-
tion dissemination between proposals. We thus conduct an-
other baseline by first adopting MLP on the proposal fea-
tures and then conducting mean pooling on the output of
MLP over adjacent proposals. The adjacent connections
are formulated by using the same graph as GCN. We term
this baseline as MP below. Similar to the setting in § 5.1,
we have three variants of our model including: (1) MP1 +
MP2; (2) MP1 + GCN2; and (3) GCN1 + MP2. We re-
port the results in Table 4. Our P-GCN outperforms all MP
variants, demonstrating the superiority of graph convolution
over mean pooling on capturing between-proposal connec-
tions. The protocol MP1 + MP2 in Table 4 performs better
than MLP1 + MLP2 in Table 3, which again reveals the
benefit of modeling the proposal-proposal relations, even
we pursue it using the naive mean pooling.

5.3. Influences of different backbones

Our framework is general and compatible with different
backbones (i.e., proposals and features). Beside the back-
bones applied above, we further perform experiments on
TAG proposals [52] and 2D features [27]. We try different
combinations: (1) BSN+I3D; (2) BSN+2D; (3) TAG+I3D;
(4) TAG+2D, and report the results of MLP and P-GCN in
Figure 3. In comparison with MLP, our P-GCN leads to sig-
nificant and consistent improvements in all types of features



Table 6. Comparison of two types of edge on THUMOS14, mea-
sured by mAP (%).

mAP@tIoU=0.5 RGB Gain Flow Gain
w/ both edges (P-GCN) 37.27 - 46.53 -
w/o surrounding edges 35.84 -1.43 45.89 -0.64
w/o contextual edges 36.81 -0.46 45.57 -0.96
w/o both edges (MLP) 34.75 -2.52 43.68 -2.85

Table 7. Comparison of different sampling size and training time
for each iteration on THUMOS14, measured by mAP@tIoU=0.5.

Ns 1 2 3 4 5 10
RGB 36.0 36.92 35.68 37.27 36.11 36.37
Flow 46.15 45.06 45.13 46.53 46.28 46.14

Time(s) 0.10 0.23 0.33 0.41 0.48 1.72

and proposals. These results conclude that, our method is
generally effective and is not limited to the specific feature
or proposal type.

5.4. The weights of edge and self-addition

We have defined the weights of edges in Eq. (9), where
the cosine similarity (cos-sim) is applied. This similarity
can be further extended by first embedding the features be-
fore the cosine computation. We call the embedded version
as embed-cos-sim, and compare it with cos-sim in Table 5.
No obvious improvement is attained by replacing cos-sim
with embed-cos-sim (the mAP difference between them is
less than 0.4%). Eq. (10) has considered the self-addition
of the node feature. We also investigate the importance of
this term in Table 5. It suggests that the self-addition leads
to at least 1.7% absolute improvements on both RGB and
Flow streams.

5.5. Is it necessary to consider two types of edges?

To evaluate the necessity of formulating two types of
edges, we perform experiments on two variants of our P-
GCN, each of which considers only one type of edge in the
graph construction stage. As expected, the result in Table 6
drops remarkably when either kind of edge is removed. An-
other crucial point is that our P-GCN still boosts MLP when
only the surrounding edges are remained. The rationale be-
hind this could be that, actions in the same video are cor-
related and exploiting the surrounding relation will enable
more accurate action classification.

5.6. The efficiency of our sampling strategy

We train P-GCN efficiently based on the neighbourhood
sampling in Eq. (10). Here, we are interested in how the
sampling size Ns affects the final performance. Table 7 re-
ports the testing mAPs corresponded to differentNs varying
from 1 to 5 (and also 10). The training time per iteration
is also added in Table 7. We observe that when Ns = 4
the model achieves higher mAP than the full model (i.e.,
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MLP High Jump66.6s 72.5s
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P‐GCN (Ours) Shotput70.6s 79.4s

MLP Throw Discus76.7s 80.3s

time

Figure 4. Qualitative results on THUMOS14 dataset.

Ns = 10) while reducing 76% of training time for each it-
eration. This is interesting, as sampling fewer nodes even
yields better results. We conjecture that, the neighbour-
hood sampling could bring in more stochasticity and guide
our model to escape from the local minimal during training,
thus delivering better results.

5.7. Qualitative Results

Given the significant improvements, we also attempt to
find out in what cases our P-GCN model improves over
MLP. We visualize the qualitative results on THUMOS14
in Figure 4. In the top example, both MLP and our P-
GCN model are able to predict the action category correctly,
while P-GCN predicts a more precise temporal boundary. In
the bottom example, due to similar action characteristic and
context, MLP predicts the action of “Shotput” as “Throw
Discus”. Despite such challenge, P-GCN still correctly pre-
dicts the action category, demonstrating the effectiveness of
our method. More qualitative results could be found in the
supplementary material.

6. Conclusions
In this paper, we have exploited the proposal-proposal

interaction to tackle the task of temporal action localization.
By constructing a graph of proposals and applying GCNs to
message passing, our P-GCN model outperforms the state-
of-the-art methods by a large margin on two benchmarks,
i.e., THUMOS14 and ActivithNet v1.3. It would be inter-
esting to extend our P-GCN for object detection in image
and we leave it for our future work.
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A. Proposal Features
We have two types of proposal features and the process

of feature extraction is shown in Figure A.
Proposal features. For the original proposal, we first obtain
a set of segment-level features within the proposal and then
apply max-pooling across segments to obtain one 1024-
dimensional feature vector.
Extended proposal features. The boundary of the original
proposal is extended with 1

2 of its length on both the left
and right sides, resulting in the extended proposal. Thus,
the extended proposal has three portions: start, center and
end. For each portion, we follow the same feature extrac-
tion process as the original proposal. Finally, the extended
proposal feature is obtained by concatenating the feature of
three portions.

Original Proposal
Feature
1024-d

Extended Proposal
Feature
3072-d

Segment-level
Features

Boundary
Extension

Original Proposal Extended Proposal

Max-pooling Max-pooling

Concatenate

Figure A. The illustration of (extended) proposal feature extrac-
tion.

B. Network Architectures
P-GCN. The network architecture of our P-GCN model is
shown in Figure B. Let N and Nclass be the number of
proposals in one video and the total number of action cat-
egories, respectively. On the top of GCN, we have three
fully-connected (FC) layers for different purposes. The one
with Nclass × 2 outputs is for boundary regression and the
other two with Nclass outputs are designed for action clas-
sification and completeness classification, respectively.
MLP baseline. The network architecture of MLP baseline
is shown in Figure C. We replace each of GCNs with a 2-
layer multilayer perceptron (MLP). We set the number of
parameters in MLP the same as GCN’s for a fair compari-
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Figure B. The network architecture of P-GCN model.
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Figure C. The network architecture of the MLP baseline.

son. Note that MLP processes each proposal independently
without exploiting the relations between proposals.
Mean-Pooling baseline. As shown in Figure D, the net-
work architecture of Mean-Pooling baseline is the same as
the MLP baseline’s except that we conduct mean-pooling
on the output of MLP over the adjacent proposals.

C. Training Details
We have three types of training samples chosen by two

criteria, i.e., the best tIoU and best overlap. For each pro-
posal, we calculate its tIoU with all the ground truth in that
video and choose the largest tIoU as the best tIoU (similarly
for best overlap). For simplicity, we denote the best tIoU
and best overlap as tIoU and OL. Then, three types of train-
ing samples can be described as: (1) Foreground sample:
tIoU ≥ θ1; (2) Incomplete sample: OL ≥ θ2, tIoU ≤ θ3;
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Figure D. The network architecture of the Mean-Pooling baseline.

(3) Background sample: tIoU ≤ θ4. These certain thresh-
olds are slightly different on two datasets as shown in Table
A. We consider all foreground proposals as the complete
proposals.

Table A. The thresholds on different datasets.
Dataset θ1 θ2 θ3 θ4
THUMOS14 0.7 0.7 0.3 0
ActivityNet v1.3 0.7 0.7 0.6 0.1

Each mini-batch contains examples sampled from a sin-
gle video. The ratio of three types of samples is fixed to
(1):(2):(3)=1:6:1. We set the mini-batch size to 32 on THU-
MOS14 and 64 on ActivityNet v1.3.

For more efficiency, we fix the number of neighborhoods
for each node to be 10 by selecting contextual edges with
the largest relevance scores and surrounding edges with the
smallest distances, where the ratio of contextual and sur-
rounding edges is set to 4:1.

In addition, we empirically found that setting Ai,j to 0
(when Ai,j < 0) leads to better results.

D. Loss function

Multi-task Loss. Our P-GCN model can not only pre-
dict action category but also refine the proposals temporal
boundary by location regression. With the action classifier,
completeness classifier and location regressors, we define a
multi-task loss by:

L =
∑
i

Lcls(yi, ŷi) + λ1
∑
i

[yi ≥ 1, ei = 1]Lreg(oi, ôi)

+ λ2
∑
i

[yi ≥ 1]Lcom(ei, ĉi),

(11)

where ŷi and yi ∈ {0, . . . , Nclass} is the predicted proba-
bility and ground truth action label of the i-th proposal in a
mini-batch, respectively. Here, 0 represents the background
class. ei is the completeness label. ôi and oi are the pre-
dicted and ground truth offset, which will be detailed below.
In all experiments, we set λ1 = λ2 = 0.5.
Completeness Loss. Here, the completeness term Lcom is
used only when yi ≥ 1, i.e., the proposal is not considered
as part of the background.
Regression Loss. We devise a set of location regressors
{Rm}Nclass

m=1 , each for an activity category. For a proposal,
we regress the boundary using the closest ground truth in-
stance as the target. Our P-GCN model does not predict the
start time and end time of each proposal directly. Instead, it
predicts the offset ôi = (ôi,c, ôi,l) relative to the proposal,
where ôi,c and ôi,l are the offset of center coordinate and
length, respectively. The ground truth offset is denoted as
oi = (oi,c, oi,l) and parameterized by:

oi,c = (ci − cgt)/li,
oi,l = log(li/lgt),

(12)

where ci and li denote the original center coordinate and
length of the proposal, respectively. cgt and lgt account for
the center coordinate and length of the closest ground truth,
respectively. Lreg is the smooth L1 loss and used when
yi ≥ 1 and ei = 1, i.e., the proposal is a foreground sample.

E. Details of Augmentation Experiments on
ActivityNet

Our P-GCN model can be further augmented by taking
the external video-level labels into account. To achieve this,
we replace the predicted action classes in Eq. (6) with the
external action labels. Specifically, given an input video, we
use UntrimmedNet to predict the top-2 video-level classes
and assign these classes to all the proposals in this video. In
this way, each proposal has two action classes.

To further compute mAP, the score of each proposal is
required. In our implementation, we follow the settings in
BSN by calculating

sprop = sact ∗ scom ∗ sbsn ∗ sunet, (13)

where sact and scom are the action score and completeness
score associated with the action class. sbsn represents the
confidence score produced by BSN and sunet denotes for
the action score predicted by UntrimmedNet.

F. Explanation and ablation study of θctx
The parameter θctx is a threshold value for constructing

contextual edges, i.e. r(pi,pi) > θctx. Since r(pi,pi) ∈
[0, 1], θctx can be chosen from [0, 1). An ablation study is
shown in Table B. Our method performs well when θctx =
0.7, 0.8, 0.9.



Table B. Results on THUMOS14 (Flow) with different θctx.
θctx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mAP(tIoU=0.5) 45.31 45.29 45.37 45.61 45.65 45.82 45.79 46.53 46.64 46.45

G. Ablation study of boundary regression
We conducted an ablation study on boundary regression

in Table C, whose results validate the necessity of using
boundary regression.

Table C. Ablation results of boundary regression on THUMOS14.
mAP@tIoU=0.5 RGB Flow
without boundary regression 36.4 45.4
with boundary regression 37.3 46.5

Table D. Runtime/computation complexity in FLOPs/action local-
ization mAP on THUMOS14. We train each model with 200 iter-
ations on a Titan X GPU and report the average processing time
per video per iteration (note that proposal generation and feature
extraction are excluded for each model). For P-GCN, we choose
the number of sampling neighbourhoods as Ns = 4.

Method Runtime FLOPs mAP@tIoU=0.5
RGB Flow

MLP baseline 0.376s 16.57M 34.8 43.7
P-GCN 0.404s 17.70M 37.3 46.5

H. Additional runtime compared to [52]
The MLP baseline is indeed a particular implementation

of [52], and it shares the same amount of parameters with
our P-GCN. We compare the runtime between P-GCN and
MLP in Table D. It reads that GCN only incurs a relatively
small additional runtime compared to MLP but is able to
boost the performance significantly.


