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Abstract

Generative models for 3D geometric data arise in many
important applications in 3D computer vision and graph-
ics. In this paper, we focus on 3D deformable shapes that
share a common topological structure, such as human faces
and bodies. Morphable Models and their variants, despite
their linear formulation, have been widely used for shape
representation, while most of the recently proposed non-
linear approaches resort to intermediate representations,
such as 3D voxel grids or 2D views. In this work, we intro-
duce a novel graph convolutional operator, acting directly
on the 3D mesh, that explicitly models the inductive bias
of the fixed underlying graph. This is achieved by enforc-
ing consistent local orderings of the vertices of the graph,
through the spiral operator, thus breaking the permutation
invariance property that is adopted by all the prior work
on Graph Neural Networks. Our operator comes by con-
struction with desirable properties (anisotropic, topology-
aware, lightweight, easy-to-optimise), and by using it as a
building block for traditional deep generative architectures,
we demonstrate state-of-the-art results on a variety of 3D
shape datasets compared to the linear Morphable Model
and other graph convolutional operators.

1. Introduction
The success of deep learning in computer vision and im-

age analysis, speech recognition, and natural language pro-
cessing, has driven the recent interest in developing simi-
lar models for 3D geometric data. Generalisations of suc-
cessful architectures such as convolutional neural networks
(CNNs) to data with non-Euclidean structure (e.g. mani-
folds and graphs) is known under the umbrella term Ge-
ometric deep learning [10]. In applications dealing with
3D data, the key challenge of geometric deep learning is
a meaningful definition of intrinsic operations analogous to
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convolution and pooling on meshes or point clouds. Among
numerous advantages of working directly on mesh or point
cloud data is the fact that it is possible to build invariance
to shape transformations (both rigid and nonrigid) into the
architecture, as a result allowing to use significantly sim-
pler models and much less training data. So far, the main
focus of research in the field of geometric deep learning has
been on analysis tasks, encompassing shape classification
and segmentation [36, 38], local descriptor learning, corre-
spondence, and retrieval [32, 9, 28].

On the other hand, there has been limited progress in
representation learning and generation of geometric data
(shape synthesis). Obtaining descriptive and compact repre-
sentations of meshes and point clouds is essential for down-
stream tasks such as classification and 3D reconstruction,
when dealing with limited labelled training data. Addition-
ally, geometric data synthesis is pivotal in applications such
as 3D printing, computer graphics and animation, virtual
reality, and game design, and can heavily assist graphics
designers and speed-up production. Furthermore, given the
high cost and time of acquiring quality 3D data, geomet-
ric generative models can be used as a cheap alternative for
producing training data for geometric ML algorithms.

Most of the previous approaches in this direction rely
on intermediate representations of 3D shapes, such as point
clouds [1], voxels [45] or mappings to a flat domain [33, 4]
instead of direct surface representations, such as meshes.
Despite the success of such techniques, they either suffer
from high computational complexity (e.g. voxels) or ab-
sence of smoothness of the data representation (e.g. point
clouds), while usually pre- and post-processing steps are
needed in order to obtain the output surface model. Learn-
ing directly on the mesh was only recently explored in
[26, 39, 44, 23] for shape completion, non-linear facial mor-
phable model construction and 3D reconstruction from sin-
gle images, respectively.

In this paper, we propose a novel representation learning
and generative framework for fixed topology meshes. For
this purpose, we formulate an ordering-based graph convo-
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Figure 1: Illustration of our Neural3DMM architecture

lutional operator, contrary to the permutation invariant oper-
ators in the literature of Graph Neural Networks. In partic-
ular, similarly to image convolutions, for each vertex on the
mesh, we enforce an explicit ordering of its neighbours, al-
lowing a “1-1” mapping between the neighbours and the pa-
rameters of a learnable local filter. The order is obtained via
a spiral scan, as proposed in [25], hence the name of the op-
erator, Spiral Convolution. This way we obtain anisotropic
filters without sacrificing computational complexity, while
simultaneously we explicitly encode the fixed graph con-
nectivity. The operator can potentially be generalised to
other domains that accept implicit local orderings, such as
arbitrary mesh topologies and point clouds, while it is nat-
urally equivalent to traditional grid convolutions. Via this
equivalence, common CNN practices, such as dilated con-
volutions, can be easily formulated for meshes.

We use spiral convolution as a basic building block for
hierarchical intrinsic mesh autoencoders, which we coin
Neural 3D Morphable Models. We quantitatively eval-
uate our methods on several popular datasets: human
faces with different expressions (COMA [39]) and identities
(Mein3D [7]) and human bodies with shape ad pose varia-
tion (DFAUST [6]). Our model achieves state-of-the-art re-
construction results, outperforming the widely used linear
3D Morphable Model [5] and the COMA autoencoder [39],
as well other graph convolutional operators, including the
initial formulation of the spiral operator [25]. We also qual-
itatively assess our framework showing ‘shape arithmetic’
in the latent space of the autoencoder and by synthesising
facial identities via a spiral convolution Wasserstein GAN.

2. Related Work
Generative models for arbitrary shapes: Perhaps the
most common approaches for generating arbitrary shapes
are volumetric CNNs [46, 37, 29] acting on 3D voxels.
For example, voxel regression from images [20], denois-
ing autoencoders [41] and voxel-GANs [45] have been pro-
posed. Among the key drawbacks of volumetric meth-
ods are their inherent high computational complexity and
that they yield coarse and redundant representations. Point
clouds are a simple and lightweight alternative to volu-
metric representation recently gaining popularity. Several
methods have been proposed for representation learning of
fixed-size point clouds [1] using the PointNet [36] architec-

ture. In [47], point clouds of arbitrary size can be synthe-
sised via a 2D grid deformation. Despite their compactness,
point clouds are not popular for realistic and high-quality
3D geometry generation due to their lack of an underly-
ing smooth structure. Image-based methods have also been
proposed, such as multi-view [3] and flat domain mappings
such as UV maps [33, 4], however they are computation-
ally demanding, require pre- and post-processing steps and
usually produce undesirable artefacts. It is also worth men-
tioning the recently introduced implicit-surface based ap-
proaches [30, 13, 34], that can yield accurate results, though
with the disadvantage of slow inference (dense sampling of
the 3D space followed by marching cubes).
Morphable models: In the case of deformable shapes, such
as faces, bodies, hands etc., where a fixed topology can be
obtained by establishing dense correspondences with a tem-
plate, the most popular methods are still statistical models
given their simplicity. For Faces, the baseline is the PCA-
based 3D Morphable Model (3DMM) [5]. The Large Scale
Face Model (LSFM) [7] was proposed for facial identity
and made publicly available, [12, 24] were proposed for fa-
cial expression, while for the entire head a large scale model
was proposed in [35]. For Body & Hand, the most well
known models are the skinned vertex-based models SMPL
[27] and MANO [40], respectively. SMPL and MANO are
non-linear and require (a) joint localisation and (b) solv-
ing special optimisation problems in order to project a new
shape to the space of the models. In this paper, we take a dif-
ferent approach introducing a new family of differentiable
Morphable Models, which can be applied on a variety of
objects, with strong (i.e. body) and less strong (i.e. face) ar-
ticulations. Our methods have better representational power
and also do not require any additional supervision.
Geometric Deep Learning is a set of recent methods try-
ing to generalise neural networks to non-Euclidean do-
mains such as graphs and manifolds [10]. Such meth-
ods have achieved promising results in geometry process-
ing and computer graphics [28, 9], computational chemistry
[17, 19], and network science [22, 32]. Multiple approaches
have been proposed to construct convolution-like opera-
tions, including spectral methods [11, 15, 22, 48], local
charting based [28, 9, 32, 18, 25] and soft attention [42, 43].
Finally, graph or mesh coarsening techniques [15, 49] have
been proposed, equivalent to image pooling.



3. Spiral Convolutional Networks
3.1. Spiral Convolution

For the following discussion, we assume to be given a
manifold, discretised as a triangular meshM = (V, E ,F)
where V = {1, . . . , n}, E , and F denote the sets of vertices,
edges, and faces respectively. Furthermore, let f : V → R,
a function representing the vertex features.

One of the key challenges in developing convolution-like
operators on graphs or manifolds is the lack of a global sys-
tem of coordinates that can be associated with each point.
The first intrinsic mesh convolutional architectures such as
GCNN [28], ACNN [9] or MoNet [32] overcame this prob-
lem by constructing a local system of coordinates u(x, y)
around each vertex x of the mesh, in which a set of local
weighting functions w1, . . . , wL is applied to aggregate in-
formation from the vertices y of the neighborhood N (x).
This allows to define ‘patch operators’ generalising the slid-
ing window filtering in images:

(f ? g)x =

L∑
`=1

g`
∑

y∈N (x)

w`(u(x, y))f(y) (1)

where
∑

y∈N (x) w`(u(x, y))f(y) are ‘soft pixels’ (L in to-
tal), f are akin to pixel intensity in images, and g` the filter
weights. The problem of the absence of a global coordinate
system is equivalent to the absence of canonical ordering of
the vertices, and the patch-operator based approaches can
be also interpreted as attention mechanisms, as in [42] and
[43]. In particular, the absence of ordering does not allow
the construction of a “1-1” mapping between neighbouring
features f(y) and and filter weights g`, thus a “all-to-all”
mapping is performed via learnable soft-attention weights
w`(u(x, y)). In the Euclidean setting, such operators boil
down to the classical convolution, since an ordering can be
obtained via the global coordinate system.

Besides the lack of a global coordinate system, an-
other motivation for patch-operator based approaches when
working on meshes, is the need for insensitivity to meshing
of the continuous surface, i.e. ideally, each patch operator
should be independent of the underlying graph topology.

Figure 2: Spiral ordering on a mesh and an image patch

However, all the methods falling into this family, come

at the cost of high computational complexity and parame-
ter count and can be hard to optimise. Moreover, patch-
operator based methods specifically designed for meshes,
require hand-crafting and pre-computing the local systems
of coordinates. To this end, in this paper we make a cru-
cial observation in order to overcome the disadvantages of
the aforementioned approaches: the issues of the absence
of a global ordering and insensitivity to graph topology are
irrelevant when dealing with fixed topology meshes. In par-
ticular, one can locally order the vertices and keep the order
fixed. Then, graph convolution can be defined as follows:

(f ? g)x =

L∑
`=1

g`f(x`). (2)

where {x1, . . . , xL} denote the neighbours of vertex x or-
dered in a fixed way. Here, in analogy with the patch oper-
ators, each patch operator is a single neighbouring vertex.

In the Euclidean setting, the order is simply a raster scan
of pixels in a patch. On meshes, we opt for a simple and
intuitive ordering using spiral trajectories inspired by [25].
Let x ∈ V be a mesh vertex, and let Rd(x) be the d-ring,
i.e. an ordered set of vertices whose shortest (graph) path to
x is exactly d hops long; Rd

j (x) denotes the jth element in
the d-ring (trivially,R0

1(x) = x). We define the spiral patch
operator as the ordered sequence

S(x) = {x,R1
1(x), R1

2(x), . . . , Rh
|Rh|}, (3)

where h denotes the patch radius, similar to the size of the
kernel in classical CNNs. Then, spiral convolution is:

(f ∗ g)x =

L∑
`=1

g` f
(
S`(x)

)
. (4)

The uniqueness of the ordering is given by fixing two de-
grees of freedom: the direction of the rings and the first ver-
tex R1

1(x). The rest of the vertices of the spiral are ordered
inductively. The direction is chosen by moving clockwise
or counterclockwise, while the choice of the first vertex, the
reference point, is based on the underlying geometry of the
shape to ensure the robustness of the method. In particular,
we fix a reference vertex x0 on a template shape and choose
the initial point for each spiral to be in the direction of the
shortest geodesic path to x0, i.e.

R1
1(x) = arg min

y∈R1(x)

dM(x0, y), (5)

where dM is the geodesic distance between two vertices on
the mesh M. In order to allow for fixed-sized spirals, we
choose a fixed lengthL as a hyper-parameter and then either
truncate or zero-pad each spiral depending on its size.
Comparison to Lim et al. [25]: The authors choose the
starting point of each spiral at random, for every mesh sam-
ple, every vertex, and every epoch during training. This



choice prevents us from explicitly encoding the fixed con-
nectivity, since corresponding vertices in different meshes
will not undergo the same transformation (as in image con-
volutions). Moreover, single vertices also undergo different
transformations every time a new spiral is sampled. Thus,
in order for the network to obtain robustness to different
spiral samples, it inevitably has to become invariant to dif-
ferent rotations of the neighbourhoods, thus it has reduced
capacity. To this end, we emphasise the need of consistent
orderings across different meshes.

Moreover, in [25], the authors model the vertices on the
spiral via a recurrent network, which has higher computa-
tional complexity, is harder to optimise and does not take
advantage of the stationary properties of the 3D shape (lo-
cal statistics are repeated across different patches), which
are treated by our spiral kernel with weight sharing.
Comparison to spectral filters: Spectral convolutional op-
erators developed in [16, 22] for graphs and used in [39]
for mesh autoencoders, suffer from the fact that the are
inherently isotropic. This is a side-effect when one, un-
der the absence of a canonical ordering, needs to design
a permutation-invariant operator with small number of pa-
rameters. In particular, spectral filters rely on the Lapla-
cian operator, which performs a weighted averaging of the
neighbour vertices :

(∆f)x =
∑

y:(x,y)∈E
wxy

(
f(y)− f(x)

)
, (6)

wherewxy denotes an edge weight. A polynomial of degree
r with learnable coefficients θ0, . . . , θr is then applied to
∆. Then, the graph convolution amounts to filtering the
Laplacian eigenvalues, p(∆) = Φp(Λ)Φ>. Equivalently:

(f ∗ g) = p(∆)f =

r∑
`=0

θ`∆
`f, (7)

While a necessary evil in general graphs, spectral filters
on meshes are rather weak given that they are locally
rotationally-invariant. On the other hand, spiral convolu-
tional filters leverage the fact that on a mesh one can canon-
ically order the neighbours. Thus, they are anisotropic by
construction and as will be shown in the experimental sec-
tion 4 they are expressive by using just one-hop neighbour-
hoods, contrary to the large receptive fields used in [39].
In Fig 3 we visualise the impulse response (centred on a
vertex on the forehead) of a selected laplacian polynomial
filter from the architecture of [39] (left) and from a spiral
convolutional filter with h = 1 (right).

Finally, the equivalence of spiral convolutions to image
convolutions allows the use of long-studied practices in the
computer vision community. For example, small patches
can be used, leading to few parameters and fast computa-
tion. Furthermore, dilated convolutions [50] can also be
adapted to the spiral operator by simply sub-sampling the

Figure 3: Activations of ChebNet vs spiral convolutions

spiral. Finally, we argue here that our operator could be
applied to other domains, such as point clouds, where an
ordering of the data points can be enforced.

3.2. Neural 3D Morphable Models

Let F = [f0|f1|...,fN ], fi ∈ Rd∗m the matrix of all the
signals defined on a set of meshes in dense correspondence
that are sampled from a distribution D, where d the dimen-
sionality of the signal on the mesh (vertex position, texture
etc.) and m the number of vertices. A linear 3D Morphable
Model [5] represents arbitrary instances y ∈ D as a linear
combination of the k largest eigenvectors of the covariance
matrix of F by making a gaussianity assumption:

y ≈ f̄ +

k∑
i

αi

√
divi (8)

where f̄ the mean shape, vi is the ith principal component,
di the respective eigenvalue and αi the linear weight co-
efficient. Given its linear formulation, the representational
power of the 3DMM is constrained by the span of the eigen-
vectors, while its parameters scale linearly w.r.t the number
of the eigencomponents used, leading to large parametrisa-
tions for meshes of high resolution.

In contrast, in this paper, we use spiral convolutions as a
building block to build a fully differentiable non-linear Mor-
phable Model. In essence, a Neural 3D Morphable Model
is a deep convolutional mesh autoencoder, that learns hier-
archical representations of a shape. An illustration of the
architecture can be found in Fig 1. Leveraging the connec-
tivity of the graph with spiral convolutional filters, we al-
low for local processing of each shape, while the hierarchi-
cal nature of the model allows learning in multiple scales.
This way we manage to learn semantically meaningful rep-
resentations and considerably reduce the number of parame-
ters. Furthermore, we bypass the need to make assumptions
about the distribution of the data.

Similar to traditional convolutional autoencoders, we
make use of series of convolutional layers with small re-
ceptive fields followed by pooling and unpooling, for the
encoder and the decoder respectively, where a decimated or
upsampled version of the mesh is obtained each time and



the features of the existing vertices are either aggregated or
extrapolated. We follow [39] for the calculation of the fea-
tures of the added vertices after upsampling, i.e. through in-
terpolation by weighting the nearby vertices with barycen-
tric coordinates. The network is trained by minimising the
L1 norm between the input and the predicted output.

3.3. Spiral Convolutional GAN

In order to improve the synthesis of meshes of high reso-
lution, thus increased detail, we extend our framework with
a distribution matching scheme. In particular, we propose
a mesh Wasserstein GAN [2] with gradient penalty to en-
force the Lipschitz constraint [21], that is trained to min-
imise the wasserstein divergence between the real distribu-
tion of the meshes and the distribution of those produced by
the generator network. The generator and discriminator ar-
chitectures, have the same structure as the decoder and the
encoder of the Neural3DMM respectively. Via this frame-
work, we obtain two additional properties that are inher-
ently absent from the autoencoder: high frequency detail
and a straightforward way to sample from the latent space.

4. Evaluation
In this section, we showcase the effectiveness of our pro-

posed method on a variety of shape datasets. We conduct a
series of ablation studies in order to compare our operator
to other Graph Neural Networks, by using the same autoen-
coder architecture. Fist, we demonstrate the inherent higher
capacity of spiral convolutions compared to ChebNet (spec-
tral). Moreover, we discuss the advantages of our method
compared to soft-attention based Graph Neural Networks,
such as patch-operator based. Finally, we show the impor-
tance of the consistency of the ordering by comparing our
method to different variants of the method proposed in [25].

Furthermore, we quantitatively show that our method
can yield better representations than the linear 3DMM and
COMA, while maintaining a small parameter count and
frequently allowing a more compact latent representation.
Moreover, we proceed with a qualitative evaluation of our
method by generating novel examples through vector space
arithmetic. Finally, we assess our intrinsic GAN in terms of
its ability to produce high resolution realistic examples.

For all the cases, we choose as signal on the mesh the
normalised deformations from the mean shape, i.e. for ev-
ery vertex we subtract its mean position and divide with
the standard deviation. In this way, we encourage sig-
nal stationarity, thus facilitating optimisation. The code
is available at https://github.com/gbouritsas/
neural3DMM.

4.1. Datasets

COMA. The facial expression dataset from Ranjan et al.
[39], consisting of 20K+ 3D scans (5023 vertices) of twelve

unique identities performing twelve types of extreme facial
expressions. We used the same data split as in [39].
DFAUST. The dynamic human body shape dataset from
Bogo et al. [6], consisting of 40K+ 3D scans (6890 vertices)
of ten unique identities performing actions such as leg and
arm raises, jumps, etc. We randomly split the data into a
test set of 5000, 500 validation, and 34,5K+ train.
MeIn3D. The 3D large scale facial identity dataset from
Booth et al. [8], consisting of more than 10,000 distinct
identity scans with 28K vertices which cover a wide range
of gender ethnicity and age. For the subsequent experi-
ments, the MeIn3D dataset was randomly split within de-
mographic constraints to ensure gender, ethnic and age di-
versity, into 9K train and 1K test meshes.

For the quantitative experiments of sections 4.3 and 4.4
the evaluation metric used is generalisation, which mea-
sures the ability of a model to represent novel shapes from
the same distribution as it was trained on. More specifi-
cally we evaluate the average per sample and per vertex eu-
clidean distance in the 3D space (in millimetres) between
corresponding vertices in the input and its reconstruction.

4.2. Implementation Details

We denote as SC(h,w) a spiral convolution of h hops
and w filters, DS(p) and US(p) a downsampling and an
upsampling by a factor of p, respectively, FC(d) a fully
connected layer, l the number of vertices after the last down-
sampling layer. The simple Neural3DMM for COMA and
DFAUST datasets is the following:

Enc :SC(1, 16)→ DS(4)→ SC(1, 16)→ DS(4)→
SC(1, 16)→ DS(4)→ SC(1, 32)→ DS(4)→ FC(d)

Dec :FC(l ∗ 32)→ US(4)→ SC(1, 32)→ US(4)→
SC(1, 16) → US(4) → SC(1, 16) → US(4) →
SC(1, 3)

For Mein3D, due to the high vertex count, we modi-
fied the COMA architecture for our simple Neural3DMM
by adding an extra convolution and an extra downsam-
pling/upsampling layer in the encoder and the decoder re-
spectively (encoder filter sizes: [8,16,16,32,32], decoder:
mirror of the encoder). The larger Neural3DMM follows
the above architecture, but with an increased parameter
space. For COMA, the convolutional filters of the encoder
had sizes [64,64,64,128] and for Mein3D the sizes were
[8,16,32,64,128], while the decoder is a mirror of the en-
coder. For DFAUST, the sizes were [16,32,64,128] and
[128,64,32,32,16] and dilated convolutions with h = 2 hops
and dilation ratio r = 2 were used for the first and the
last two layers of the encoder and the decoder respectively.
We observed that by adding an additional convolution at
the very end (of size equal to the size of the input feature
space), training was accelerated. All of our activation func-
tions were ELUs [14]. Our learning rate was 10−3 with a
decay of 0.99 after each epoch, and our weight decay was

https://github.com/gbouritsas/neural3DMM
https://github.com/gbouritsas/neural3DMM


Figure 4: Quantitative evaluation of our Neural3DMM against the baselines, in terms of generalisation and # of parameters

5× 10−5. All models were trained for 300 epochs.

Figure 5: Spiral vs ChebNet (spectral) filters

4.3. Ablation Studies

4.3.1 Isotropic vs Anisotropic Convolutions

For the purposes of this experiment we used the architec-
ture deployed by the authors of [39]. The number of pa-
rameters in our case is slightly larger due to the fact that
the immediate neighbours, that affect the size of the spiral,
range from 7 to 10, while the polynomials used in [39] go
up to the 6th power of the Laplacian. For both datasets, as
clearly illustrated in Fig 5, spiral convolution-based autoen-
coders consistently outperform the spectral ones for every
latent dimension, in accordance with the analysis made in
section 3.1. Additionally, increasing the latent dimensions,
our model’s performance increases at a higher rate than its
counterpart. Notice that the number of parameters scales

the same way as the latent size grows, but the spiral model
makes better use of the added parameters especially looking
at dimensions 16, 32, 64, and 128. Especially on the COMA
dataset, the spectral model seems to be flattening between
64 and 128 while the spiral is still noticeably decreasing.

4.3.2 Spiral vs Attention based Convolutions

In this experiment we compare our method with cer-
tain state-of-the-art soft-attention based Graph Neural Net-
works: MoNet: the patch-operator based model of [32],
where the attention weights are the learnable parameters
of gaussian kernels defined on a pseudo-coordinate space1,
FeastNet [43] and Graph Attention [42], where the atten-
tion weights are learnable functions of the input features.

In table 1, we provide results on COMA dataset, using
the simple Neural3DMM architecture with latent size 16.
We choose the number of attention heads (gaussian ker-
nels in [32]) to be either 9 (equal to the size of the spiral
in our method, for a fair comparison) or 25 (as in [32],
to showcase the effect of over-parametrisation). When it
comes to similar number of parameters our method man-
ages to outperform its counterparts, while compared to
over-parametrised soft attention networks it either outper-
forms them, or achieves slightly worse performance. This
shows that the spiral operator can make more efficient use of
the available learnable parameters, thus being a lightweight
alternative to attention-based methods without sacrificing
performance. Also, its formulation allows for fast compu-
tation; in table 1 we measure per mesh inference time in ms
(on a GeForce RTX 2080 Ti GPU).

4.3.3 Comparison to Lim et al. [25]

In order to showcase how the operator behaves when the
ordering is not consistent, we perform experiments under
four scenarios: the original formulation of [25], where

1here we display the best obtained results when choosing the pseudo-
coordinates to be local cartesian.



GAT FeastNet MoNet Ours
kernels 9 25 9 25 9 25 -
error 0,762 0,732 0,750 0,623 0,708 0,583 0,635
params 50K 101K 49K 98K 48K 95K 48K
time 12,77 15,37 9,04 9,66 10,55 10,96 8,18

Table 1: Spirals vs soft-attention operators

each spiral is randomly oriented for every mesh and every
epoch (rand mesh & epoch); choosing the same orienta-
tion across all the meshes randomly at every epoch (rand
epoch); choosing different orientations for every mesh, but
keeping them fixed across epochs (rand mesh); and fixed
ordering (Ours). We compare the LSTM-based approach of
[25] and our linear projection formulation (Eq (2)). The ex-
perimental setting and architecture is the same as in the pre-
vious section. The proposed approach achieves over 28%
improved performance compared to [25], which substanti-
ates the benefits of passing corresponding points through
the same transformations.

operation rand mesh & epoch rand mesh rand epoch fixed ordering
LSTM 0.888 [25] 0.880 0,996 0.792
lin. proj. 0.829 0.825 0.951 0.635 (Ours)

Table 2: Importance of the ordering consistency

4.4. Neural 3D Morphable models

Figure 6: Colour coding of the per vertex euclidean error of
the reconstructions produced by PCA (2nd), COMA (3rd),
and our Neural3DMM (bottom). Top row is ground truth.

4.4.1 Quantitative results

In this section, we compare the following methods for dif-
ferent dimensions of the latent space: PCA, the 3D Mor-

phable Model [5], COMA, the ChebNet-based Mesh Au-
toencoder, Neural3DMM (small), ours spiral convolution
autoencoder with the same architecture as in COMA, Neu-
ral3DMM (ours), our proposed Neural3DMM framework,
where we enhanced our model with a larger parameter space
(see Sec. 4.2). The latent sizes were chosen based on the
variance explained by PCA (explained variance of roughly
85%, 95% and 99% of the total variance).

As can be seen from the graphs in Fig 4, our Neu-
ral3DMM achieves smaller generalisation errors in every
case it was tested on. For the COMA and DFAUST datasets
all hierarchical intrinsic architectures outperform PCA for
small latent sizes. That should probably be attributed to the
fact that the localised filters used allow for effective recon-
struction of smaller patches of the shape, such as arms and
legs (for the DFAUST case), whilst PCA attempts a more
global reconstruction, thus its error is distributed equally
across the entire shape. This is well shown in Fig 6, where
we compare exemplar reconstructions of samples from the
test set (latent size 16). It is clearly visible that PCA pri-
oritises body shape over pose resulting to body parts in the
wrong locations (for example see the right leg of the woman
on the leftmost column). On the contrary COMA places the
vertices in approximately correct locations, but struggles to
recover the fine details of the shape leading to various arte-
facts and deformities; our model on the other hand seem-
ingly balances these two difficult tasks resulting in quality
reconstructions that preserve pose and shape.

Comparing to [39], it is again apparent here that our
spiral-based autoencoder has increased capacity, which to-
gether with the increased parameter space, makes our larger
Neural3DMM outperform the other methods by a consid-
erably large margin in terms of both generalisation and
compression. Despite the fact that for higher dimensions,
PCA can explain more than 99% of the total variance, thus
making it a tough-to-beat baseline, our larger model still
manages to outperform it. The main advantage here is the
substantially smaller number of parameters of which we
make use. This is clearly seen in the comparison for the
MeIn3D dataset, where the large vertex count makes non-
local methods as PCA impractical. It is necessary to men-
tion here, that larger latent space sizes are not necessarily
desirable for an autoencoder because they might lead to less
semantically meaningful and discriminative representation
for downstream tasks.

4.4.2 Qualitative results

Here, we assess the representational power of our models
by the common practice of testing their ability to perform
linear algebra in their latent spaces.
Interpolation Fig 7: We choose two sufficiently different
samples x1 and x2 from our test set, encode them in their



latent representations z1 and z2 and then produce interme-
diate encodings by sampling the line that connects them i.e.
z = az1 + (1− a)z2, where a ∈ (0, 1).

Figure 7: Interpolations between expressions and identities

Extrapolation Fig 8: Similarly, we decode latent represen-
tations that reside on the line defined by z1 and z2, but out-
side the respective line segment, i.e. z = a∗z1+(1−a)∗z2,
where a ∈ (−∞, 0)∪(1,+∞). We choose z1 to be our neu-
tral expression for COMA and neutral pose for DFAUST, in
order to showcase the exaggeration of a specific character-
istic on the shape.

Figure 8: Extrapolation. Left: neutral expression/pose

Shape Analogies Fig 9: We choose three meshes A, B, C,
and construct a D such that it satisfies A:B::C:D using lin-
ear algebra in the latent space as in [31]: e(B) − e(A) =
e(D) − e(C) (e(∗) the encoding), where we then solve for
e(D) and decode it. This way we transfer a specific charac-
teristic using meshes from our dataset.

Figure 9: Analogies in MeIn3D and DFAUST

4.5. GAN evaluation

In figure 10, we sampled several faces from the la-
tent distribution of the trained generator. Notice that they
are realistically looking and, following the statistics of the

dataset, span a large proportion of the real distribution of the
human faces, in terms of ethnicity, gender and age. Com-
pared to the most popular approach for synthesizing faces,
i.e. the 3DMM, our model learns to produce fine details on
the facial structure, making them hard to distinguish from
real 3D scans, whereas the 3DMM, although it produces
smooth surfaces, frequently makes it easy to tell the differ-
ence between real and artificially produced samples. We
direct the reader to the supplementary material to compare
with samples drawn from the 3DMM’s latent space.

Figure 10: Generated identities from our intrinsic 3D GAN

5. Conclusion
In this paper we introduced a representation learning and

generative framework for fixed topology 3D deformable
shapes, by using a mesh convolutional operator, spiral con-
volutions, that efficiently encodes the inductive bias of the
fixed topology. We showcased the inherent representational
power of the operator, as well as its reduced computational
complexity, compared to prior work on graph convolutional
operators and show that our mesh autoencoder achieves
state-of-the-art results in mesh reconstruction. Finally, we
present the generation capabilities of our models through
vector space arithmetic, as well as by synthesising novel fa-
cial identities. Regarding future work, we plan to extend
our framework to general graphs and 3D shapes of arbitrary
topology, as well as to other domains that have capacity for
an implicit ordering of their primitives, such as point clouds.
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