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Abstract

Understanding the complex urban infrastructure with

centimeter-level accuracy is essential for many applications

from autonomous driving to mapping, infrastructure mon-

itoring, and urban management. Aerial images provide

valuable information over a large area instantaneously;

nevertheless, no current dataset captures the complexity

of aerial scenes at the level of granularity required by

real-world applications. To address this, we introduce

SkyScapes, an aerial image dataset with highly-accurate,

fine-grained annotations for pixel-level semantic labeling.

SkyScapes provides annotations for 31 semantic categories

ranging from large structures, such as buildings, roads

and vegetation, to fine details, such as 12 (sub-)categories

of lane markings. We have defined two main tasks on

this dataset: dense semantic segmentation and multi-class

lane-marking prediction. We carry out extensive exper-

iments to evaluate state-of-the-art segmentation methods

on SkyScapes. Existing methods struggle to deal with the

wide range of classes, object sizes, scales, and fine details

present. We therefore propose a novel multi-task model,

which incorporates semantic edge detection and is better

tuned for feature extraction from a wide range of scales.

This model achieves notable improvements over the base-

lines in region outlines and level of detail on both tasks.

1. Introduction

Automated methods for creating maps of today’s urban

and rural infrastructures with centimeter-level (cm-level)

accuracy are of great aid in handling their growing com-

plexity. Applications of such accurate maps include ur-

ban management, city planning, and infrastructure moni-

toring/maintenance. Another prominent example is the cre-

ation of high definition (HD) maps for autonomous driving.

Applications here include the use of a general road network

for navigation and more advanced automation tasks in Ad-

vanced driver assistance systems (ADAS), such as lane de-

parture warnings, which rely on precise information about

lane boundaries, sidewalks, etc. [37, 40, 33, 51, 31].

Currently, the data collection process to generate HD

maps is mainly carried out by so-called mobile mapping

systems, which comprise of a vehicle equipped with a broad

range of sensors (e.g., Radar, LiDAR, cameras) followed

by automated analysis of the collected data [17, 18, 5, 24].

The limited field-of-view and occlusions due to the oblique

sensor angle make this automated analysis complicated. In

addition, mapping large urban areas in this way requires

a lot of time and resources. An aerial perspective can

alleviate many of these problems and simultaneously al-

low for processing of much larger areas of cm-level geo-

referenced data in a short time. Existing aerial semantic

segmentation datasets, however, are limited in the range

of their annotations. They either focus on a few individ-

ual classes, such as roads or building footprints in the IN-

RIA [30], Massachusetts [35], SpaceNet [43], or Deep-

Globe [11] datasets, or they provide very coarse classes,

such as the GRSS DFC 2018 [1], or the ISPRS Vaihingen

and Potsdam datasets [20]. Other datasets are recorded at

sensor angles and at flight heights unsuitable for HD map-

ping [29, 15] or contain potentially inaccurate annotations
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generated automatically [44]. In addition, only few works

tackle lane-marking extraction in aerial imagery, and they

either rely on third-party sources such as OpenStreetMap,

or only provide a binary extraction in Azimi et al. [2].

Ground imagery has greatly benefited from large-scale

datasets, such as ImageNet [12], Pascal VOC [13], MS-

COCO [26], but in aerial imagery the annotation is scarce

and more tedious to obtain. In this work, we propose a

new aerial image dataset, called SkyScapes, which closes

this gap by providing detailed annotations of urban scenes

for established classes, such as buildings, vegetation, and

roads, as well as fine-grained classes, such as various types

of lane markings, vehicle entrance/exit zones, danger areas,

etc. Fig. 1 shows sample annotations offered by SkyScapes.

The dataset contains 31 classes and a rigorous annota-

tion process was established to provide a high degree of an-

notation accuracy. SkyScapes uniquely combines the fine-

grained annotation of road infrastructure with an overhead

viewing angle and coverage of large areas, thus enabling the

generation of HD maps for various applications. We eval-

uate several state-of-the-art semantic segmentation models

as baselines on SkyScapes. Existing models achieve a sig-

nificantly lower accuracy on our dataset than on established

benchmarks with either ground-views or a much coarser set

of classes. Our analysis of the most common errors hints at

many merged regions and inaccurate boundaries. We there-

fore propose a novel segmentation model, which incorpo-

rates semantic edge detection as an auxiliary task. The sec-

ondary loss function emphasizes edges more strongly dur-

ing the learning process, leading to a clear reduction of the

prominent error cases. Furthermore, the proposed architec-

ture takes both large- and small-scale objects into account.

In summary: i) we provide a new aerial dataset for se-

mantic segmentation with highly accurate annotations and

fine-grained classes, thus enabling the development of mod-

els for previously unsupported tasks, such as aerial HD-

mapping; ii) we carry out extensive evaluations of current

state-of-the-art models and show that existing approaches

struggle to handle the large number of classes and level of

detail in the dataset; iii) hence, we propose a new multi-task

model, which combines semantic segmentation with edge

detection, yielding more precise region outlines.

2. The SkyScapes Dataset

The data collection was carried out with a helicopter

flying over the greater area of Munich, Germany. A low-

cost camera system [23, 16] consisting of three standard

DSLR cameras and mounted on a flexible platform was

used for recording the data, with only the nadir-looking cap-

turing images. In total, 16 non-overlapping RGB images of

size 5616 × 3744 pixels were chosen. The flight altitude

of about 1000 m above ground led to a ground sampling

distance (GSD) of approximately 13 cm/pixel. The im-

ages represent urban and partly rural areas with highways,

first/second order roads, and complex traffic situations, such

as crossings and congestion, as exemplified in fig. 1.

2.1. Classes and Annotations

Thirty-one semantic categories were annotated: low veg-

etation, paved road, non-paved road, paved parking place,

non-paved parking place, bike-way, sidewalk, entrance/exit,

danger area, building, car, trailer, van, truck, large truck,

bus, clutter, impervious surface, tree, and 12 lane-marking

types. The considered lane-markings are the following:

dash-line, long-line, small dash-line, turn sign, plus sign,

other signs, crosswalk, stop-line, zebra zone, no parking

zone, parking zone, other lane-markings. The selection of

classes was influenced by their relevance to real-world ap-

plications, hence, road-like objects dominate. Class defini-

tions and visual examples for each class are given in the sup-

plementary materials, class statistics can be found in Fig. 2.

The SkyScapes dataset was manually annotated using

tools adapted to each object class and following a strict an-

notation policy. Annotating aerial images requires consid-

erable time and effort, especially when dealing with many

small objects, such as lane-markings. Shadows, occlusion,

and unclear object boundaries also add to the difficulty.

Due to the size and shape complexity, and to the large

number of classes/instances, annotation required consider-

ably more work than for ground-view benchmarks (such as

CityScapes [10]), also limiting the dataset size. To ensure

high quality, the annotation process was performed itera-

tively with a three-level quality check over each class, over-

all taking about 200 man-hours per image. We show one

such annotated image in Fig. 1.

In SkyScapes, we enforce pixel-accurate annotations, as

even small offsets lead to large localization errors in aerial

images (e.g., a 1-pixel offset in SkyScapes would lead to

a 13 cm error). As autonomous vehicles require a min. ac-

curacy of 20 cm for on-map localization [52], we chose the

highly accurate annotation of a smaller set of images over

coarser annotations of a much larger set. In fact, in sec-

tion 6, we show high generalization of our model when

trained on SkyScapes and tested on third-party data.

2.2. Dataset Splits and Tasks

We split the dataset into training, validation, and test sets

with 50%, 12.5%, and 37.5% portions respectively. We

chose this particular split due to the class imbalance and

to avoid splitting larger images. The training and validation

sets will be publicly available. Test images will be released

as an online benchmark with undisclosed ground-truth.

Lane-markings and the rest of the scene elements (such

as buildings, roads, vegetation, and vehicles) present dif-

ferent challenges, with lane-markings operating on much

finer scales and requiring a fine-grained differentiation,
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Figure 1: SkyScapes image with overlaid annotation and zoomed-in samples (×2: solid line, ×4: dashed line). Top to bottom:

RGB, dense annotation (20 classes), lane markings annotation (12 classes), multi-class edges. Class colors as in fig. 2.

whereas other scene elements are represented on a much

wider scale. Having considered these challenges, we de-

fined five different tasks: 1) SkyScapes-Dense with 20

classes as the lane-markings were merged into a sin-

gle class, 2) SkyScapes-Lane with 13 classes comprising

12 lane-marking classes and a non-lane-marking one, 3)

SkyScapes-Dense-Category with 11 merged classes com-

prising nature (low-vegetation, tree), driving-area (paved,

non-paved), parking-area (paved, non-paved), human-area

(bikeway, sidewalk, danger area), shared human and vehi-

cle area (entrance/exit), road-feature (lane-marking), resi-

dential area (building), dynamic-vehicle (car, van, truck,

large-truck, bus), static-vehicle (trailer), man-made sur-

face (impervious surface), and others objects (clutter),

4) SkyScapes-Dense-Edge-Binary, and 5) SkyScapes-

Dense-Edge-Multi. The two latter tasks are binary and

multi-class edge detection, respectively. Defining separate

tasks allows for more fine-grained control to fit the model to

the dense object regions, their boundaries, and their classes.

This is especially helpful when object boundary accuracy is

paramount and difficult to extract, e.g., for multi-class lane-

markings.

2.3. Statistical Properties

SkyScapes is comprised of more than 70K annotated in-

stances that are divided into 31 classes. The number of an-

notated pixels and instances per class for SkyScapes-Dense

and SkyScapes-Lane are given in fig. 2. The majority of

pixels are annotated as low vegetation, tree, or building,

whereas the most common classes are lane markings, tree,

low vegetation, and car. This illustrates the wide range

from classes with fewer large regions to those with many
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Figure 2: Number of annotated pixels (filled) and instances

(non-filled) per class in SkyScapes-Dense and SkyScapes-

Lane for low-vegetation (LV), tree (T), building (B), paved-

road (PR), paved-parking-place (PP), non-paved-parking-

place (nPP), non-paved-road (nPR), lane-marking (LM),

sidewalk (SW), bikeway (BW), danger-area (DA), entrance-

exit (EE), car (Ca), van (V), truck (TK), trailer (TR), long-

truck (LT), bus (Bu), impervious-surface (IS), clutter (Cl),

long line (LL), dash line (DL), tiny dash line (TDL), zebra

zone (ZZ), turn sign (TS), stop line (SL), other signs (OS),

the rest of lane-markings (R), parking zone (PZ), no parking

zone (nPZ), crosswalk (CW), and plus sign (PS).

small regions. A similar range can be observed among

the lane markings within the more fine-grained SkyScapes-

Lane task. With an average pixel area of about 9 pixels,
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‘tiny dash lines’ are the smallest instances.

A quantitative comparison of SkyScapes against existing

aerial segmentation datasets is provided in table 1. Exist-

ing datasets lack the high detail level and annotation quality

of SkyScapes. Potsdam contains fewer classes (6 vs 31),

less accurate labels, and image distortions due to subopti-

mal orthorectification. TorontoCity focuses on quantity: its

wider spatial coverage requires (a less precise) automated

labeling. SkyScapes offers the largest number of classes

including various fine-structures (e.g., lane markings). In

absolute terms, SkyScapes contains also notably more re-

gion instances, which emphasizes the higher complexity of

SkyScapes. Handling this range of classes and variety of

object instance sizes is one of the main challenges. The ca-

pability of state-of-the-art segmentation methods to address

these challenges has not yet been thoroughly explored.

3. Semantic Benchmarks

In the following, we review several state-of-the-art seg-

mentation methods and benchmark these on SkyScapes.

3.1. Metrics

To assess the segmentation performance, we use the Jac-

card Index, known as the PASCAL VOC Intersection over

Union (IoU) metric: TP
TP+FP+FN

[13], where TP, FP, and

FN stand for the numbers of true positive, false positive,

and false negative pixels for each class, determined over the

test set. We also report other metrics, such as frequency

weighted IoU, pixel accuracy, average recall/precision, and

mean IoU, i.e., the average of IoUs over all classes as

defined in [28]. In the supplementary material, we re-

port IoUclass for SkyScapes-Dense and IoUcategory for the

best baseline on SkyScapes-Dense-Category. Unlike in the

street scenes of CityScapes [10], in aerial scenes the objects

can be as long as the image size (roads or long-line lane-

markings). Therefore, we do not report IoUinstance.

3.2. State of the Art in Semantic Segmentation

As detection results have matured, reaching around 80%

mean AP on Pascal VOC [22] and on the DOTA aerial

object detection dataset [45, 3], the interest has shifted to

pixel-level segmentation, which yields a more detailed lo-

calization of an object and handles occlusion better than

bounding boxes. In recent years, fully-convolutional neu-

ral networks (FCNs) [28, 41] achieved remarkable perfor-

mance on several semantic segmentation benchmarks. Cur-

rent state-of-the-art methods include Auto-Deeplab [27],

DenseASPP [46], BiSeNet [47], Context-Encoding [49],

and OcNet [48]. While specific architecture choices offer a

good baseline performance, the integration of a multi-scale

context aggregation module is key to competitive perfor-

mance. Indeed, context information is crucial in pixel label-

ing tasks. It is best leveraged by so-called “pyramid pooling

modules”, using either stacks of input images at different

scales, as in PSPNet [50], or stacks of convolutional lay-

ers with different dilation rates, as in DeepLab [6]. How-

ever, context aggregation is often performed at the expense

of fine-grained details. As a remedy, FRRN [38] imple-

ments an architecture comprising a full-resolution stream

for segmenting the details and a separate pooling stream

for analyzing the context. Similarly, GridNet [14] uses

multiple interconnected streams working at several resolu-

tions. For our benchmark, in addition to the aforementioned

models, we train several other popular segmentation net-

works: FCN [28], U-Net [39], MobileNet [19], SegNet [4],

RefineNet [25], Deeplabv3+ [9], AdapNet [42], and FC-

DenseNet [21], as well as a custom U-Net-like MobileNet

and custom Decoder-Encoder with skip-connections.

In tables 2 and 4, we report our benchmarking results

for the above methods. As anticipated, all methods strug-

gle on SkyScapes due to the significant differences between

ground and aerial imagery exposed in the introduction. On

the SkyScapes-Dense task (table 2), classification mistakes

are for the most part found around the inter-class bound-

aries. We observe the same inter-class misclassification on

the SkyScapes-Lane task (table 4), and furthermore notice

that many lane-markings are entirely missed and classified

as background, certainly due to their few-pixel size. Both

tasks hence represent a new type of challenge. This is rein-

forced by the fact that the performance of the networks re-

mained consistent from one task to the other, showing that

none are specialized enough to obtain a significant advan-

tage on either task. In our method, we tackled this challenge

by focusing on object boundaries.

4. Method

Thirty-one highly similar classes and small complex

objects in SkyScapes necessitate a specialized architec-

ture that unifies latest architectural improvements (FC-

DenseNet [21], auxiliary tasks, etc.) and proves more effec-

tive than the state of the art. Motivated by the major errors

from our benchmarking analysis, we propose a multi-task

method that tackles both dense prediction and edge detec-

tion to improve performance on boundary regions. In the

case of multi-class lane-markings, we modify the method to

enable both multi-class and binary lane-marking segmenta-

tion to decrease the number of false positives in non-lane

areas. We consider FC-DenseNet [21] as the main base-

line. SkyScapesNet, illustrated in fig. 3, can be seen as

a modified case of FC-DenseNet, but more generally as

a multi-task ensemble-model network, encapsulating units

from [21, 38, 7, 36]. Thus, it also shares their advantages,

such as alleviating the gradient-vanishing problem. Figure 4

illustrates the building blocks, which are explained below.

FDB: in fully dense block (FDB), we use more residual

connections compared to the existing Dense Blocks (DBs)
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Table 1: Statistics of SkyScapes and other aerial datasets. To date, TorontoCity is not publicly available.

SkyScapes Potsdam [20] Vaihingen [20] Aerial KITTI [32] TorontoCity [44]

Classes 31 6 6 4 2+8

Images 16 38 33 20 N/A

Image dimension (px) 5616×3744 6000×6000 2493×2063 (avg) variable N/A

GSD (cm/pixel) 13 5 9 9 10

Aerial coverage (km2) 5.69 (urban&rural) 3.42 1.36 3.23 712

Instances 70,346 42,389 10,700 2,814 N/A

Figure 3: The architecture of SkyScapesNet. Three branches are used to predict dense semantics and multi-class/binary

edges. For multi-class lane-marking prediction, two branches are used to predict multi-class and binary lane-markings.

Figure 4: Configuration of SkyScapesNet building blocks.

SL, DoS, and UpS are Separable, Downsampling, and Up-

sampling blocks, UpS-NN is a Nearest-Neighbor Upsam-

pling layer. Add/Cat are addition/concatenation operators.

in the baseline, as inspired by DenseASPP [46]. However,

instead of using atrous convolutions, we add separable-

convolutions due to their recent success [7]. Moreover,

as SkyScapes contains large scale variation, making recep-

tive fields larger by using larger atrous rates deteriorates

the feature extraction from very small objects such as lane-

markings. The number of sub-blocks, referred to as Separa-

ble Layer (SL), is the same as in the DBs from the baseline.

FRSR: inspired by [38] and the comparable perfor-

mance of this model with DenseNet, we add a residual-

pooling stream (similar to the full-resolution residual unit

– FRRU from [38]) as full-resolution separable residual

(FRSR) unit to the main stream. Similar to FDB, we uti-

lize separable convolutions. As the original FRRU, FRSR

has two processing streams: a residual stream (for bet-

ter localization) and a pooling stream (for better recog-

nition). Inside the pooling stream, the downsampled re-

sults go through several depth-wise separable convolutions,

batch-normalization, and ReLU layers and, after applying

a 1 × 1 convolution, the output is upsampled and added to

FDB. We limit the number of downsamplings in FRSR to

one as the main stream applies consecutive downsampling.

CRASPP: inspired by the success of atrous spatial pyra-

mid pooling block (ASPP) [46, 9], after five downsampling

steps, we add the concatenated reverse ASPP (CRASPP) to

enhance the feature extraction of large objects. In CRASPP,

we ‘reverse’ the original ASPP (i.e., the order of atrous

rates) and concatenate it with the original ASPP, so as to

obtain receptive fields optimal for both small/large objects.

LKBR: for boundary refinement and to improve the ex-

traction of tiny objects, we apply – in addition to five skip-

connections – large-kernels with boundary refinements (LK-

BRs). LKBR [36] is composed of two streams including a

boundary refinement module. Unlike [21], we apply a resid-

ual path from the output of the last downsampling module

to the input of the first upsampling module.
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Multi-task learning: we use three separate branches to

predict dense semantics and multi-class and binary edges

simultaneously. The streams are separated from each other

after the second upsampling layer. The motivation is to

allow the auxiliary tasks to modify the shared weights so

as to augment the network performance on boundary re-

gions. For multi-class lane-marking segmentation, we con-

sider two streams with similar configuration.

Loss functions: instead of relying only on cross-

entropy, we propose to add either the Soft-IoU-loss [31] or

the Soft-Dice-loss [34] to it (taking the sum of indiv. losses).

By the direct application of the cost-aware cross-entropy

loss, the network tries to fill in lane-marking areas which

leads to a high TP rate for the lane-marking classes, but

also high FP for the non-lane class. However, due to the

very high number of non-lane pixels, the resulting FP does

not have much effect on the overall accuracy. To allevi-

ate this, we propose the scheduled weighting mechanism in

which the costs of corresponding classes gradually move to-

wards the final weighted coefficients as the training process

evolves. Further details about the architecture as well as

loss formulas are included in the supplementary material.

5. Evaluation

For our experiments, we crop the images into

512 × 512 patches, as the original 21 MP images would not

fit into GPUs. As data augmentation, we carry out hori-

zontal and vertical flipping, and use 50% overlap between

neighboring crops both in vertical and horizontal directions.

During inference we use 10% overlap as a partial solution to

the lower performance at image boundaries. We use Titan

XP and Quadro P6000 GPUs for training. The learning rate

was 0.0001 and a batch size of 1 was chosen. We trained

the algorithms for 60 epochs to make the comparison fair

(the majority of the methods converged at this step). In to-

tal, there are 8820 training images. Our model has 137 M

parameters. As we deal with offline mapping, inference at

355 ms per 512 × 512 image patch is of little concern.

SkyScapes-Dense – 20 main classes: The benchmarking

results reported in table 2 demonstrate the complexity of the

task. Our method described above achieves 1.93% mIoU

improvement over the best benchmark. Qualitative exam-

ples of the best baselines and our proposed algorithm are

depicted in fig. 5. Our algorithm exhibits the best trade-off

between accurately segmented coarse and fine structures.

Ablation studies in table 3 quantifying the effect of several

components show that the main improvement is achieved

by including both binary and multi-class edge detection.

SkyScapes-Lane – multi-class lane prediction: Here, a

further challenge is the highly imbalanced dataset. Results

Table 2: Benchmark of the state of the art on the SkyScapes-

Dense task over all 20 classes; ‘-’ means no specific back-

bone; ‘f.w.’ is frequency weighted IoU; * skip connections.

Method Base IoU [%] average [%]
mean f.w. recall prec.

FCN-8s [28] ResNet50 33.06 67.02 40.78 65.01

SegNet [4] – 23.14 61.32 29.21 59.56

U-Net [39] – 14.15 36.33 21.88 22.87

BiSeNet [47] ResNet50 30.82 59.62 40.25 49.42

DenseASPP [46] ResNet101 24.73 56.58 32.21 40.82

Encoder-Decoder* – 37.16 67.18 48.26 50.16

FC-DenseNet-103 [21] – 37.78 67.44 46.66 53.89

FRRNA [38] – 37.20 65.10 46.44 53.22

GCN [36] ResNet152 32.92 65.12 41.60 49.65

Mobile-U-Net* – 34.96 65.26 44.52 49.49

PSPNet [50] ResNet101 30.44 61.62 40.48 43.63

RefineNet [25] ResNet152 36.39 65.52 46.12 52.17

DeepLabv3+ [7] Xception65 38.20 68.81 47.97 55.34

SkyScapesNet – 40.13 72.67 47.85 65.93

Table 3: Evaluation of different parts of SkyScapesNet.

‘Baseline’ was trained only with cross-entropy (i.e., no IoU

loss added). Max stride is 32 pixels. * using original num-

ber of sub-sampling as in the baseline in SkyScapesNet.
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Baseline* [21] 37.78
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SkyScapesNet X 37.08

SkyScapesNet X X 38.55

SkyScapesNet X X X 38.77

SkyScapesNet X X X X 38.90

SkyScapesNet X X X X X 39.09

SkyScapesNet X X X X X X 39.30

SkyScapesNet* X X X X X X 40.13

in table 4 show that despite the tiny object sizes, our al-

gorithm achieves 51.93% mIoU, outperforming the state of

the art by 3.06%. Qualitative examples in fig. 6 highlight

that our algorithm generates fewer decomposed segments.

SkyScapes-Dense – auxiliary tasks: We further pro-

vide results for the three auxiliary tasks SkyScapes-

Dense-Category, SkyScapes-Dense-Edge-Binary, and

SkyScapes-Dense-Edge-Multi in table 5 (cf. sec. 2.2 for

task definitions). As multiple categories are merged into

a single category, e.g., low vegetation and tree into na-

ture, the mIoU for SkyScapes-Dense-Category is notably

higher than for the more challenging SkyScapes-Dense. For

the edge detection branches, used to enforce the learning

of more accurate boundaries, high mIoU is obtained for

SkyScapes-Dense-Edge-Binary, while still a low one for the

more challenging multi-class edge detection.
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(a) RGB Image (b) Ground Truth (c) SkyScapesNet (d) DeepLabv3+ (e) FC-DenseNet103

Figure 5: Result samples for SkyScapes-Dense task by SkyScapesNet and the two best baselines. For class colors, cf. fig. 2.

Table 4: Benchmark of the state of the art on the SkyScapes-

Lane task over all 13 classes. Cf. table 2 for abbreviations.

Method Base IoU [%] average [%]
mean f.w. recall precision

FCN-8s [28] ResNet50 13.74 99.69 15.23 77.96

U-Net [39] – 8.97 99.62 12.73 88.26

AdapNet [42] – 20.20 99.67 22.21 53.60

BiSeNet [47] ResNet50 23.77 99.66 28.71 51.42

DeepLabv3 [8] Res50 16.15 99.62 18.94 55.44

DenseASPP [46] ResNet101 17.00 99.65 18.74 46.02

FC-DenseNet-103 [21] – 48.42 99.85 55.32 69.01

FRRN-B [38] – 47.02 99.85 54.72 66.19

GCN [36] Res50 35.65 99.82 43.09 55.65

Mobile-U-Net* – 41.21 99.84 47.48 64.60

PSPNet [50] Res101 35.85 99.82 42.64 58.23

DeepLabv3+ [7] Xception65 37.14 99.77 43.14 62.07

Encoder-Decoder* – 48.87 99.85 55.31 70.63

SkyScapesNet – 51.93 99.87 60.53 72.29

(a) Image (b) GT (c) Ours (d) Enc-Dec*

Figure 6: Result samples for the SkyScapes-Lane task by

SkyScapesNet and the best baseline. Class colors: cf. fig. 2.

6. Generalization

Our aim in this paper is to promote aerial imagery (in

its widest sense) as a means to create HD-maps. Hence,

Table 5: Results on SkyScapes-Dense-Category, multi-class

edge, and binary edge prediction tasks.

Method Task IoU [%] average [%]
mean f.w. recall prec.

SkyScapesNet Category 52.27 77.77 63.49 65.65

SkyScapesNet Multi-class Edge 13.00 88.74 16.82 22.74

SkyScapesNet Binary Edge 58.72 89.52 64.81 71.99

Table 6: Generalization of our model trained on SkyScapes-

Dense and evaluated on Potsdam and DFC2018.

training data test data IoU [%] average [%]
mean f.w. recall prec.

SkyScapes Potsdam 47.46 70.58 62.28 66.09

SkyScapes Data Fusion Contest 2018 26.42 47.58 55.67 37.64

our method is not restricted to aerial images captured by a

helicopter, but would work for satellites and lower-flying

drones, too. To demonstrate the good generalization capa-

bility of our method, here we show results on four addi-

tional data types covering a wide range of sensors (camera

and platform), spatial resolutions, and geographic locations.

For quantitative evaluation we consider the Potsdam [20]

and GRSS DFC 2018 datasets [1], and show qualitative re-

sults also on an aerial images of Perth, Australia. Quali-

tative results can be seen in figs. 7 to 9. By adjusting the

GSD of the test images (through scaling) to match that of

our dataset, our model trained on SkyScapes indicates good

generalization even without fine-tuning. This is demon-

strated also in the quantitative results on Potsdam (see ta-

ble 6) as the mean IoU is in the range of SkyScapes-Dense-

Category. For the quantitative evaluation, we merged our

categories according to the Potsdam categories.

Moreover, fig. 10 demonstrates the generalization capa-

bility of our algorithm for binary lane-marking extraction

at a widely different scale (30 cm/pixel) on a WorldView-4

7



Figure 7: Results of our model trained on SkyScapes and

tested on the Potsdam dataset with GSD adjustment and no

fine-tuning. Patches from left to right: RGB, ground truth,

prediction. Potsdam classes: ����������������� impervious, ����������������� building,

����������������� low vegetation, ����������������� tree, ����������������� car, ����������������� clutter.

Figure 8: Results of our model trained on SkyScapes

and tested on the GRSS DFC 2018 dataset (over Houston,

USA) with GSD adjustment and without fine-tuning.

satellite image. To the best of our knowledge, satellite im-

ages have not been used for lane-marking extraction before.

7. Conclusion

In this paper, we introduced SkyScapes, an image dataset

for cm-level semantic labeling of aerial scenes to facilitate

the creation of HD maps for autonomous driving, urban

management, city planning, and infrastructure monitoring.

We presented an extensive evaluation of several state-of-

the-art methods on SkyScapes and proposed a novel multi-

task network that, thanks to its specialized architecture and

auxiliary tasks, proves more effective than all tested base-

lines. Finally, we demonstrated good generalization of our

method on four additional image types ranging from high-

resolution aerial images to even satellite images.

Figure 9: Segmentation result samples of our model trained

on SkyScapes and tested on an aerial image over Perth, Aus-

tralia, with GSD adjustment and without fine-tuning.

Figure 10: Binary lane segmentation on a Worldview4

satellite image over Munich using our model trained on

SkyScapes, and tested on a highway scene with GSD ad-

justment and no fine-tuning.
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