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Abstract

Generating semantic layout from scene graph is a cru-
cial intermediate task connecting text to image. We present
a conceptually simple, flexible and general framework us-
ing sequence to sequence (seq-to-seq) learning for this task.
The framework, called Seq-SG2SL, derives sequence prox-
ies for the two modality and a Transformer-based seq-to-
seq model learns to transduce one into the other. A scene
graph is decomposed into a sequence of semantic fragments
(SF), one for each relationship. A semantic layout is rep-
resented as the consequence from a series of brick-action
code segments (BACS), dictating the position and scale of
each object bounding box in the layout. Viewing the two
building blocks, SF and BACS, as corresponding terms in
two different vocabularies, a seq-to-seq model is fittingly
used to translate. A new metric, semantic layout evaluation
understudy (SLEU), is devised to evaluate the task of se-
mantic layout prediction inspired by BLEU. SLEU defines
relationships within a layout as unigrams and looks at the
spatial distribution for n-grams. Unlike the binary preci-
sion of BLEU, SLEU allows for some tolerances spatially
through thresholding the Jaccard Index and is consequently
more adapted to the task. Experimental results on the chal-
lenging Visual Genome dataset show improvement over a
non-sequential approach based on graph convolution.

1. Introduction
Learning the relation from semantic description to its

visual incarnation leads to important applications, such as
text-to-image synthesis [24] and semantic image retrieval
[11]. It remains a challenging and fundamental problem in
computer vision [10]. Recent researches have gradually for-
malized the structured representations of the two modality,
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Figure 1: The Seq-SG2SL framework for inferring seman-
tic layout from scene graph.

scene graph [11][13] for semantic description and semantic
layout [9][26] for image. Therefore, our goal in this work
solves the underlying task, inferring semantic layout from
scene graph, for connecting text to image.

Most existing works infer semantic layout from text
[7][9][20]. However, leading methods still struggle with
complex text inputs depicting multiple objects owing to the
unstructured nature of text. Hence, Johnson et al. [10] pio-
neered to infer semantic layout from scene graph as a sepa-
rate task, isolated from semantic parsing [18]. Scene graph
is adopted because it is a powerful structured representa-
tion that efficiently conveys scene contents in text [13]. As
a notable step forward, they observed that semantic layout
is largely constrained by objects within relationships. As
such, they developed a graph convolution network to embed
a scene graph containing only objects within relationships
into respective object feature vectors that further dictate se-
mantic layout through an object layout network. However,
they inferred all object feature embeddings simultaneously
from a scene graph that comprises exponential variability of
object and relationship combinations. It is extremely chal-
lenging for a model to express such prohibitive diversity.

We view this task from a novel perspective to avoid com-
binatorial explosion that largely restricted the model ex-
pressiveness in the past. Inferring semantic layout from
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scene graph can be compared to constructing a building
from its blueprint. It is unwise to offer corpus of blueprint-
to-building correspondences to directly train a learner how
to construct a building from its blueprint. Instead, teaching
the basic actions to stack the building blocks based on their
counterparts in the blueprint is much more feasible. What
determines the building blocks? It is the relationship.

We propose a conceptually simple, flexible and general
framework using sequence to sequence (seq-to-seq) learn-
ing to infer semantic layout from scene graph (Figure 1).
The framework, called Seq-SG2SL, derives sequence prox-
ies for the two modality and a Transformer-based seq-to-
seq model learns to transduce one into the other. A scene
graph is decomposed into a sequence of semantic frag-
ments (SF), one for each relationship. A semantic layout
is the consequence from a series of brick-action code seg-
ments (BACS), dictating the position and scale of each ob-
ject bounding box in the layout. Viewing the two building
blocks, SF and BACS, as corresponding terms in two dif-
ferent vocabularies, a seq-to-seq model is fittingly used to
translate. Seq-SG2SL is an intuitive framework that learns
BACS to drag-and-drop and scale-adjust the two bounding
boxes of subject and object in a relationship to the layout
supervised by its SF counterpart.

Direct and automated evaluation for semantic layout pre-
diction is another challenging problem unto itself. A new
metric, semantic layout evaluation understudy (SLEU), is
devised for this purpose inspired by BLEU [15]. SLEU de-
fines relationships within a layout as unigrams and looks at
the spatial distribution for n-grams. Unlike the binary pre-
cision of BLEU, SLEU allows for some tolerances spatially
through thresholding the Jaccard Index and is consequently
more adapted to the task. Mean-SLEU over a large corpus
is a proper metric for evaluation.

We experiment on the challenging Visual Genome (VG)
dataset [13] that provides human annotated pairs of scene
graph and semantic layout for each image. We first show
qualitative results from Seq-SG2SL and rationalize SLEU
intuitively. Further quantitative comparison shows the ad-
vantages of Seq-SG2SL over a non-sequential approach
based on graph convolution [10], especially in the aspect of
model expressiveness. We show further that this advantage
originates from our sequential formulation, not merely from
the Transformer model. Various aspects of Seq-SG2SL are
studied extensively from additional ablation experiments.

The key contributions are:
• Seq-SG2SL is the first framework to infer semantic lay-

out from scene graph through seq-to-seq learning and
outperforms the non-sequential state-of-the-art model by
a significant margin.

• SLEU is the first automatic metric to directly evaluate
the performance of semantic layout prediction, allowing
results reproducibility.

2. Related Works
Scene Graph: A scene graph is a directed graph repre-
senting a scene, where nodes are objects and edges give
relationships between objects. Johnson et al. [11] first in-
troduced the notion of scene graph as query input for se-
mantic image retrieval. They predicted the most likely se-
mantic layout from a query scene graph as intermediate re-
sult for the end retrieval task through a conditional random
field (CRF) model. Meanwhile, Schuster et al. [18] com-
plemented their work by introducing an automatic approach
to create a scene graph from unstructured natural language
scene descriptions. Having these brilliant pioneering at-
tempts using scene graph, Krishna et al. [13] constructed
the VG dataset that aimed to bridge language and vision
using dense image annotations. Scene graph and semantic
layout were adopted as intermediate representations for the
two modality. With the advent of VG, scene graph further
shows its value from successive researches, such as in pre-
dicting grounded scene graph for images [14][23], in eval-
uating image captioning [1], and in image generation [10].
Semantic Description to Semantic Layout: Semantic lay-
out was first officially given as spatial distribution of clip
arts in abstract scene proposed by Zitnick et al. [27]. This
representation initially aimed to study directly for inferring
high-level semantics from images. By contrast, Zitnick et
al. [28] formulated the opposite problem of predicting an
abstract scene from its textual description and proposed a
solution using CRF. As clip arts in abstract scene can be eas-
ily generalized to object bounding boxes in semantic layout,
this concept extends to real images [20].

Predicting a semantic layout from text is usually posed as
an intermediate step for complex image generation [7][9].
A complex image refers to the one containing multiple in-
teractive objects. Unlike the family of methods [16][24] that
can give stunning results on limited domains, such as fine-
grained descriptions of birds or flowers, a semantic layout is
usually necessary for complex image generation to dictate
multi-object spatial distribution depicted in a text. Johnson
et al. [10] pioneered to structurize text into scene graph for
further complex image generation. This work is the closest
to ours. We adopt the same idea but only focus on its sub-
task of semantic layout prediction from scene graph. The
rest of the task, image generation from layout, can be sep-
arately solved as [26]. In contrast to the closest work that
proposed a non-sequential approach based on graph convo-
lution, Seq-SG2SL views the task from a novel perspective
and formulates the problem in a seq-to-seq manner.

During quantitative studies, all existing works did not
perform direct evaluations on semantic layout prediction.
Instead, they applied indirect metrics, such as the inception
score or the image captioning score derived from the gener-
ated image. Though human evaluations are all incorporated
for further evaluation, these results are very expensive to



be reproduced, which logjam the way for fruitful research
ideas in this field. The circumstance is exceptionally similar
to that before BLEU [15] was first introduced to the field of
machine translation.
Sequence to Sequence Learning: RNN, LSTM [8] and
GRU [5] are firmly established for sequence modelling and
transduction problems, such as language modelling and ma-
chine translation [4][19]. Attention mechanisms further be-
come integral parts of compelling sequence modelling and
the transduction models, allowing modelling dependencies
without regarding to the distance in the input or output
sentences [2]. Vaswani et al. [21] popularized the Trans-
former architecture that can boost the performance of ma-
chine translation by a significant margin. Larger-scale ar-
chitecture exploration specifically for machine translation
was conducted using Transformer to further converge to-
wards the optimal settings [3]. Similar conclusion was also
drawn by [12]. Seq-to-seq learning is still evolving rapidly.
Beneficial experiences can be borrowed for our purpose.

3. Seq-SG2SL

Seq-SG2SL is conceptually simple: it predicts a series of
actions to form a consequent layout from a corresponding
sequence of symbolic triplets derived from relationships in
a scene graph. Next, we introduce the design of sequence
proxies for the two modality that is key in our work.

3.1. Sequence Proxies

A scene graph encodes objects, attributes and relation-
ships, while its resulting layout is constrained merely by
the objects within relationships. Therefore, a scene graph
is first preprocessed to drop all attributes and independent
objects not within any relationship.

A relationship in scene graph is represented by a sym-
bolic triplet: subject, predicate, object. The sequence proxy
for a triplet is a tuple, named SF. It is a successive concate-
nation of the three elements. The preprocessed scene graph
can be then decomposed into a sequence of SF, one for
each relationship. To fully preserve information in the scene
graph, a node sequence, consisting of corresponding object
node IDs, is additionally maintained. Note that our Seq-
SG2SL framework is flexible to transfer object attributes
from a scene graph to a layout through this sequence.

The visual incarnation of an SF in semantic layout con-
tains a pair of object bounding boxes, each for the subject
and object. They are referred to as visual subject and visual
object. Its sequence proxy is a BACS. The design require-
ments are threefold: first, the series of BACS must uniquely
determine a layout; second, a BACS should correspond to
an SF such that the direction of causality is clear; third, vo-
cabularies in BACS must be representable and repeatable
such that they can concisely represent any layout.

Type Functionality
c set class index of bbox

xp set xmin of subject bbox
yp set ymin of subject bbox
ixp increase xmin of object bbox from subject
ixn decrease xmin of object bbox from subject
iyp increase ymin of object bbox from subject
iyn decrease ymin object bbox from subject
w set width of bbox
h set height of bbox

imgar set aspect ratio index of semantic layout

Table 1: The BACS types and functionalities. The mini-
mum values for x and y are respectively denoted as xmin
and ymin. The bounding box is abbreviated as bbox.

A semantic layout, space-quantized into H ×W square
grids, is called a quantized layout where all BACS are de-
fined. It requires 5 types of actions to form an object bound-
ing box in the layout: four to specify the location and scale,
and the other to set its class index. The bounding box lo-
cation for the subject is represented in absolute coordinates,
whereas that for the object uses the relative position to the
subject. This relativity aims to encode the visual predicate
in a relationship. We show by an experiment that this rela-
tive position encoding is key for good performance.

The BACS types and functionalities are formalized in
Table 1. A BACS is composed of 10 consecutive words
and corresponds to a 3-word SF. Types for the 10 words are
sequentially: c, xp, yp, w, h, c, ixp(n), iyp(n), w, h. The
first and last 5 words in a BACS form the visual subject and
object, respectively. A BACS sequence is the direct con-
catenation of individual BACS with identical relationship
order to its corresponding SF sequence. Optionally, imgar
is added to the front of a BACS sequence in case the aspect
ratio of semantic layout is of interest.

3.2. Sequence-to-Sequence Model

Given an SF sequence and its corresponding BACS se-
quence, a seq-to-seq model is fittingly used to translate. We
adopt the most recent Transformer model with 6 stacked
self-attention and point-wise, fully connected layers for
both the encoder and decoder, exactly identical to the one
in [21]. This model is used because of its superior perfor-
mance in machine translation whose formulation is identi-
cal to ours. We show by an experiment that the advantage
of model expressiveness by Seq-SG2SL originates from our
sequential formulation, not merely from Transformer.

3.3. Semantic Layout Restoration

Having predicted BACS sequence from its input SF se-
quence, the alignment is first verified by checking brick ac-
tion types for each word sequentially. If aligned, the BACS



sequence corresponds to both the input SF and node se-
quences. The predicted brick actions are then successively
executed to form the restored layout.

Note that with the subsidiary node sequence, it is suffi-
cient to derive which bounding boxes in the restored lay-
out should be merged to one as given in scene graph. If
the bounding boxes to be merged have identical predicted
class index, the merged bounding box is computed simply
as their mean value. Otherwise, it picks the one with me-
dian bounding box area. In fact, the predicted class indices
for these bounding boxes are rarely distinct. More careful
merging strategy is left for future investigation.

3.4. Implementation Details

Semantic Layout Encoding: The maximum side length
of a quantized layout is set at 40. Larger values lead to
more BACS vocabularies, making seq-to-seq model harder
to generalize. Smaller values, however, result in imprecise
bounding box localization and scaling. The chosen value is
a trade-off. The aspect ratio of semantic layout is also uni-
formly quantized. The quantization interval and minimum
value are 0.05 and 0.5, respectively.
Data Augmentation: If a scene-graph corresponding lay-
out is valid, its subgraph counterpart, containing a subset of
the relationships, is still acceptable. We augment a scene
graph to more pairs of sequences in the two modality by
applying this property. The concatenation order of relation-
ships in the pairs of sequences is arbitrary, leading to an-
other freedom for augmentation. To balance training data,
each scene graph is augmented to at most 50 correspon-
dences. To limit the maximum length for both sequences,
we only preserve at most 9 relationships in a scene graph.
Training: We set hyper-parameters exactly as the Trans-
former work [21], except the warm-up steps is set at 8000.
We use the Transformer implementation by OpenNMT [12]
for our purpose. We train on a single Tesla P100 GPU for
one million iterations (2 days) under batch size of 1024.
Inference: We use beam search with beam size of 4 and
length penalty α = 0.6 [22]. The inference time is about
132ms on a single Tesla P100 GPU.

4. SLEU Metric
Our goal is to design an automatic metric to directly

quantify the success of semantic layout prediction from
scene graph. The premise behind automatic evaluation is:
the closer a prediction is to human-prepared references, the
better it is. Thus, the problem becomes: how to design a
metric that can measure the similarity between a predicted
layout against a set of references.

4.1. Notation

Let L = {〈r〉k}k∈[1,K] denote a layout with K relation-
ships, where 〈r〉k = (sk,ok) represents a visual relation-

ship. sk and ok respectively denote visual subject and ob-
ject, where sk =

[
c
[s]
k ,b

[s]
k

]
and ok =

[
c
[o]
k ,b

[o]
k

]
. ck de-

notes the class index. bk = [xk, yk, wk, hk] dictates the
bounding box.

Our objective is to evaluate how close a predicted layout
L̂ is to a collection of reference layouts {Lj}j∈[1,M ]. (̂·)
represents predicted values later on.

4.2. Metric Design

SLEU is devised inspired by BLEU [15] in machine
translation. The cornerstone for BLEU is n-gram that refers
to a contiguous sequence of n items from a text. Here,
the item is word. Evaluating only n-grams for machine
translation is justified under the Markov assumption that the
appearance probability for the current word is merely de-
termined by its previous (n− 1) words, independent from
the nth one. The n-gram concept is generalized for SLEU,
where the item is relationship, instead of word. By analogy
to BLEU, evaluating n-grams in a semantic layout assumes
the placement for a visual relationship depends only on a
maximum of (n− 1) other relationships.

SLEU evaluates a semantic layout from two perspec-
tives: intra-relationship adequacy as unigram accuracy; and
inter-relationship fidelity as n-gram accuracy. These accu-
racies are finally combined to a single-number metric.

4.2.1 Unigram Accuracy

Algorithm 1 Unigram accuracy against a single reference

Input: A predicted layout L̂ and a reference L
Output: Unigram accuracy p1

1: function f1(L̂,L):
2: set c = 0 . c: count of matches
3: for each 〈r〉k in L do . K iterations
4: if ĉ[s]k = c[s]k and ĉ[o]k = c[o]k then
5: compute t̃k =

[
x
[s]
k − x̂

[s]
k , y

[s]
k − ŷ

[s]
k

]
6: b̂

[s]
k ← b̂

[s]
k ⊕ t̃k

7: b̂
[o]
k ← b̂

[o]
k ⊕ t̃k

8: compute J [s]
k = IoU

(
b̂
[s]
k ,b

[s]
k

)
9: compute J [o]

k = IoU
(
b̂
[o]
k ,b

[o]
k

)
10: if J [o]

k ≥ TIoU and J [s]
k ≥ TIoU then

11: c← c+ 1
12: end if
13: end if
14: end for
15: return p1 = c/K
16: end function

The unigram accuracy p1 quantifies matching of indi-
vidual relationships in a predicted layout to a reference, as



shown in Algorithm 1. It simply compares the pairs of vi-
sual relationships and counts the number of matches. p1
is then the count of the matched-pair divided by the total
number of relationships.

To compare a pair of visual relationships, one first needs
to compute a shift vector t̃k that aligns the center of b̂

[s]
k

to b
[s]
k . Then b̂

[s]
k and b̂

[o]
k are center-shifted by this vector,

where⊕ denotes this operation. The two Jaccard Indices for
the two pairs of bounding boxes are then computed. These
Jaccard Indices, each for visual subject and object, give rise
to the binary decision of matching through thresholding by
TIoU that allows some tolerances spatially.

4.2.2 n-gram Accuracy

Algorithm 2 n-gram accuracy against a single reference

Input: A predicted layout L̂ and a reference L
Output: n-gram accuracy pn

1: function fn(L̂,L):
2: set c = 0 . c: count of matches
3: compute Pn(K)
4: for each Pn in Pn do . |Pn| iterations
5: compute t̃q
6: set f = 1 . f : flag of match
7: for each 〈r〉i in Pn do . n iterations
8: b̂

[s]
i ← b̂

[s]
i ⊕ t̃q

9: compute J [s]
i = IoU

(
b̂
[s]
i ,b

[s]
i

)
10: if J [s]

i < TIoU or ĉ[s]i 6= c
[s]
i then

11: f = 0
12: break
13: end if
14: end for
15: if f = 1 then
16: c← c+ 1
17: end if
18: end for
19: return pn = c/|Pn|
20: end function

The n-gram accuracy pn (n ∈ [2, N ]) quantifies simi-
larity of spatial distributions with n visual relationships be-
tween the predicted and reference layout, as elaborated in
Algorithm 2. Pn(K) = {Pn} denotes a collection that con-
sists of all n-relationship subsets of L. | · | represents the
cardinality of a set. To compute pn, it first compares each
pair of the n-relationship subsets and counts the number of
matches. pn is then the matched proportion of these pairs
of n-relationship subsets.

To measure similarity between a pair of n-relationship
subsets, we only use their n visual subjects. This is because
the relative distribution from a visual object to its subject

has been encoded in unigram accuracy. To compare two
spatial distributions, each with n visual subjects, a shift vec-
tor t̃q is first computed to align the centroids of {b̂[s]

i }i∈[1,n]

and {b[s]
i }i∈[1,n]. All elements in {b̂[s]

i }i∈[1,n] are then
center-shifted by t̃q . If all the shifted bounding boxes pass
the Jaccard-Index thresholding and class-alignment check,
this pair of n-relationship subsets is considered match.

4.2.3 SLEU Score

SLEU combines unigram and n-gram accuracies as a
single-number indicator. For a predicted layout and a ref-
erence, the unigram and n-gram accuracies are separately
computed. Similar to the observation by BLEU, n-gram ac-
curacy decays roughly exponentially with n. Hence, SLEU
adopts the same averaging scheme: a weighted average of
logarithm accuracies.

SLEU can also measure similarity between a prediction
and multiple references. One first needs to compare a pre-
diction with each reference, obtaining a combined accuracy
each. Then, the highest value, corresponding to the closest
reference to the prediction, is simply designated as SLEU.

SLEU is formally defined as

SLEU = max
j∈[1,M ]

(
e
∑N

n=1 wnln(pj
n)
)
, (1)

where N = 3 and wn = 1/N as uniform weights. N = 3 is
chosen experimentally to make SLEU more distinguishable
since larger n leads to negligible small n-gram accuracies.

SLEU ranges from 0 to 1. Few prediction can attain a
score of 1 unless it is very similar to one of the references.
Involving more reasonable reference layouts corresponding
to a scene graph leads to a higher value of SLEU. Thus, one
must be cautious to the number of reference during making
comparisons on evaluations. The quality of SLEU can be
enhanced by adding the quantity of reference.

4.2.4 Mean-SLEU Metric

One may still wonder the SLEU capability to measure
the prediction performance, especially when only one lay-
out is available in the reference corpus. The design of SLEU
strictly follows the idea from the well-known BLEU. We
just extend the concept from 1D to 2D, which can lead to
the binary decision of visual relationship matching and al-
low some tolerances spatially. Therefore, SLEU is largely
justified from its similarity to BLEU.

From the work of BLEU [15], using a single-reference
test corpus for evaluation is valid if the corpus size is large
and the reference translations are not all from the same
translator. In our case, the corpus size is maintained at least
several thousands and all the samples are crowd-sourced.
Hence, the mean-SLEU over a large set can be justifiable for
evaluation, though its correlation with human judgement is
still desirable for future investigation.



(a) SLEU = 0.87 (b) SLEU = 0.63 (c) SLEU = 0.58 (d) SLEU = 0.45 (e) SLEU = 0.31 (f) SLEU = 0.00

Figure 2: Examples of predicted layouts from Seq-SG2SL on the test set of Visual Genome: the first row is the input scene
graph; the second row is the predicted layout; the third row is a reference layout overlaid on its corresponding image.

5. Experiments

5.1. Dataset

We experiment on the VG dataset [13]. VG comprises
108, 077 images, each contains a scene graph and a corre-
sponding layout. To facilitate later comparison with [10],
the dataset is organized exactly following its public imple-
mentation. We use the same dataset division: 80% training,
10% validation, and 10% test. We use object and relation-
ship classes occurring at least 2000 and 500 times respec-
tively in the training set, leaving 178 object and 45 relation-
ship types. We discard tiny bounding boxes with side length
shorter than 32 pixels. We preserve images with between 3
to 30 objects and at least one relationship. This leaves us
with 62, 565 training, 5, 498 validation, and 5, 096 test im-
ages with an average of ten objects and five relationships per
image. Different from [10], we limit the maximum number
of relationships in a scene graph to 9 to adapt for our Seq-
SG2SL setting. Here, for a scene graph with more relation-
ships, we simply keep the first 9 while discard the rest.

5.2. Qualitative Results

This experiment aims to visualize results from Seq-
SG2SL and rationalize SLEU intuitively. Figure 2 demon-
strates these results from test set and their SLEU scores
under TIoU = 0.5. Qualitatively, Seq-SG2SL is capable
to predict a semantic layout from a scene graph containing

multiple interactive objects.
We analyze by examples from Figure 2 to intuitively un-

derstand how SLEU can distinguish a good prediction from
a bad one. A high SLEU score greater than 0.8, such as
(a), definitely indicates a good prediction since the pre-
dicted layout is sufficiently close to one of the references.
For those with medium SLEU scores between 0.4 to 0.8,
as shown in (b)-(d), most predictions are still comparable
to a reference. Objects with smaller bounding boxes may
appear at apparently irregular positions, such as the chair in
(d), whereas larger ones are more likely to be reasonable.
For cases with low SLEU scores smaller than 0.4, as shown
in (e) and (f), the predictions are basically different from the
reference. A low SLEU score either suggests a bad predic-
tion or a reasonable prediction that far deviates from any of
the given references. Provided more references, SLEU can
be more representable, just as the rationale of BLEU.

5.3. Quantitative Comparison

This experiment compares Seq-SG2SL with a baseline
approach [10]. The pretrained model of the baseline is
applied to generate layouts for benchmarking. Our Seq-
SG2SL model is trained on exactly the same set as the base-
line. Mean-SLEU is employed for evaluation on both the
training and test set. Each sample in the two sets consists of
a single reference layout corresponding to a scene graph.

Table 2 shows the comparison of mean-SLEU scores un-
der various TIoU thresholds between the two approaches on



Figure 3: Comparison of mean n-grams accuracies under different TIoU thresholds between our Seq-SG2SL and the baseline
approach on the two sets. The top and bottom figure respectively show results on the training and test set.

IoU0.0 IoU0.25 IoU0.5 IoU0.75

Baseline-train 1.0000 0.1209 0.0217 0.0036
Ours-train 1.0000 0.5012 0.4174 0.3942

Baseline-test 1.0000 0.1163 0.0205 0.0020
Ours-test 0.9998 0.1665 0.0344 0.0039

Table 2: Comparison of mean-SLEU scores under different
TIoU thresholds between the baseline and our Seq-SG2SL
approach on the training and test set.

the training and test set. The larger values, indicating bet-
ter performances, are highlighted. As demonstrated, Seq-
SG2SL outperforms the baseline by a significant margin on
the training set. Note that evaluations on the training set
are not trivial but offer insight for model expressiveness.
By analogy with machine translation, we cannot expect a
trained model to produce exactly the same output as a given
reference, even on the training set, since the same input in-
herently results in several different reasonable outputs. But
for training, the closer, the better. Therefore, Seq-SG2SL
has shown its advantage in model expressiveness over the
baseline. This advantage originates from our sequential for-
mulation in avoiding combinatorial explosion. On the test
set, Seq-SG2SL still has higher scores than the baseline,
suggesting its better generalization capability, except that
the score under TIoU = 0.0 is slightly worse. This score
only considers the matching of object classes with no eval-
uation on the spatial distribution of bounding boxes in the
layout. This score from Seq-SG2SL is also very close to

1, showing its capability in predicting the correct object
classes. In rare cases, the predicted BACS sequence cannot
find perfect alignment with the input SF sequence, resulting
in such negligible gap.

Figure 3 demonstrates the mean n-grams accuracies for
further analyses, where (a) and (b) respectively show com-
parisons on the training and test set. As shown, Seq-SG2SL
outperforms the baseline in each metric. However, the per-
formance gap during training and testing for Seq-SG2SL
is phenomenal, which can be explained from two perspec-
tives. First, only a single reference is given for each scene
graph during both training and testing. During training, the
model is guided to memorize these particular references and
turns out to balance performances on all samples. More su-
pervision implies a higher chance the prediction is closer
to its reference. That explains why n-gram with larger n
has better accuracy on the training set. During testing, how-
ever, a given single reference may differ significantly from
that during training, resulting in an underestimated score.
Thus, adding more references for each test sample is one
way to mitigate this training-inference gap. Second, this
discrepancy also originates from exposure bias for seq-to-
seq problem. We refer readers to [17] for more detailed
explanations. Recent work [25] may be incorporated in the
future to bridge this training-inference gap.

5.4. Ablation Experiments

5.4.1 Relative vs. Absolute Position Encoding

Seq-SG2SL applies relative position encoding. This rel-
ativity aims to represent the visual predicate in a relation-



IoU0.0 IoU0.25 IoU0.5 IoU0.75

Abs-train 1.0000 0.3760 0.2698 0.2387
Ours-train 1.0000 0.5012 0.4174 0.3942

Abs-test 0.9996 0.1591 0.0334 0.0038
Ours-test 0.9998 0.1665 0.0344 0.0039

Table 3: Comparison of mean-SLEU scores under different
TIoU thresholds between encoding methods using absolute
and relative position on the training and test set.

IoU0.0 IoU0.25 IoU0.5 IoU0.75

LSTM-train 1.0000 0.4134 0.3822 0.3719
Ours-train 1.0000 0.5012 0.4174 0.3942
LSTM-test 0.9984 0.1012 0.0222 0.0031
Ours-test 0.9998 0.1665 0.0344 0.0039

Table 4: Comparison of mean-SLEU scores under different
TIoU thresholds between our Transformer-based model and
an LSTM-based model on the training and test set.

ship. This experiment aims to clarify the significance to use
relative position encoding. We compare the results with that
from absolute position encoding where locations of visual
subject and object are represented in absolute coordinates
without considering the visual incarnation of predicate. The
two models are trained following exactly the same way ex-
cept the position encoding method. Table 3 shows the re-
sults of this comparison. As demonstrated, relative position
encoding is much better, suggesting that the training for vi-
sual predicate in a relationship is key for good performance.

5.4.2 Network Architecture

This experiment compares results from our Transformer-
based model and a 4-layer LSTM-based model with atten-
tion mechanism as shown in Table 4. The two models are
trained on exactly the same set. As expected, the LSTM-
based model performs slightly worse than our Transformer-
based model in each metric. However, its performance on
the training set is still far better than the non-sequential
baseline (See Table 2). Therefore, the advantage of model
expressiveness mainly comes from our Seq-SG2SL frame-
work in avoiding combinatorial explosion, not only origi-
nates from the superiority of the Transformer architecture.

5.4.3 Greedy vs. Beam Search

This experiment compares results from greedy search
and beam search. Table 5 shows the top-4 results from
beam search in addition to the greedy decoding baseline.
As shown, on the training set, the best mean-SLEU score

Greedy Top-1 Top-2 Top-3 Top-4
train 0.3958 0.4174 0.3531 0.3396 0.3357
test 0.0335 0.0344 0.0325 0.0343 0.0367

Table 5: Comparison among results from greedy search and
beam search using mean-SLEU score under TIoU = 0.5
from Seq-SG2SL on the training and test set.

is in accordance with the top-1 choice from beam search,
which justifies the use of the top-1 prediction. The top-2 to
top-4 scores appear almost the same but distinctively lower
than the top-1 score. These results may enrich the diversity
of semantic layout predictions, though they are more likely
to be unreasonable. The score of the top-1 prediction from
beam search is higher than that from greedy search as ex-
pected, showing the advantage to use beam search. On the
test set, however, all scores are generally low and resem-
ble each other. The single-reference test corpus may not be
sufficient to conclude with these minor discrepancies.

6. Conclusions And Future Works
This paper has presented Seq-SG2SL, a conceptually

simple, flexible and general framework for inferring se-
mantic layout from scene graph through seq-to-seq learn-
ing. Seq-SG2SL outperforms a non-sequential state-of-the-
art approach by a significant margin, especially in the as-
pect of model expressiveness. This advantage mainly orig-
inates from our sequential formulation in avoiding combi-
natorial explosion. Relative position encoding to represent
visual predicate in a relationship is also key for good perfor-
mance. Beam search during inference can further enhance
the quality of prediction compared with greedy search. The
top-1 result from beam search is the best layout prediction.
SLEU, an automatic metric to directly evaluate semantic
layout prediction from scene graph, has been devised in a
similar fashion to BLEU. The rationale of SLEU and the
justification of using mean-SLEU metric over a large set for
evaluation have been discussed.

Direct future works are twofold: first, as for SLEU,
its quality can be further enhanced by adding more refer-
ences. Human evaluations on SLEU may also be of interest.
More evaluation metrics on similar tasks, such as text-to-
layout synthesis, may be derived by adopting our n-gram
analogy regarding relationship as unigram; second, as for
Seq-SG2SL, alternative BACS designs may be investigated,
such as altering the parameterization of bounding box simi-
lar to CenterNet [6]. Additive layout generation may also be
investigated due to the sequential nature of our framework.
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