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Abstract

Semantic Scene Completion (SSC) aims to simultane-
ously predict the volumetric occupancy and semantic cat-
egory of a 3D scene. It helps intelligent devices to under-
stand and interact with the surrounding scenes. Due to the
high-memory requirement, current methods only produce
low-resolution completion predictions, and generally lose
the object details. Furthermore, they also ignore the multi-
scale spatial contexts, which play a vital role for the 3D
inference. To address these issues, in this work we propose
a novel deep learning framework, named Cascaded Context
Pyramid Network (CCPNet), to jointly infer the occupancy
and semantic labels of a volumetric 3D scene from a single
depth image. The proposed CCPNet improves the labeling
coherence with a cascaded context pyramid. Meanwhile,
based on the low-level features, it progressively restores the
fine-structures of objects with Guided Residual Refinement
(GRR) modules. Our proposed framework has three out-
standing advantages: (1) it explicitly models the 3D spatial
context for performance improvement; (2) full-resolution
3D volumes are produced with structure-preserving details;
(3) light-weight models with low-memory requirements are
captured with a good extensibility. Extensive experiments
demonstrate that in spite of taking a single-view depth map,
our proposed framework can generate high-quality SSC re-
sults, and outperforms state-of-the-art approaches on both
the synthetic SUNCG and real NYU datasets.

1. Introduction
Human can perceive the real-world through 3D views

with partial observations. For example, one can capture the
geometry of rigid objects by only seeing the corresponding
2D images. Thus, understanding and reconstructing a 3D
scene from its partial observations is a valuable technique
for many computer vision and robotic applications, such as
object localization, visual reasoning and indoor navigation.
As an encouraging direction, Semantic Scene Completion
(SSC) has draw more and more attentions in recent years.
It aims to simultaneously predict the volumetric occupancy
∗Prof. Lu is the corresponding author. Email: lhchuan@dlut.edu.cn.

and semantic category of a 3D scene. Given a single depth
image, several outstanding works [32, 10, 36] have been
proposed for single-view SSC. By designing 3D Convolu-
tional Neural Networks (CNNs), these methods can auto-
matically predict the semantic labels or complete 3D shapes
of the objects in the scene. However, it is not a trivial task
to utilize 3D CNNs for the SSC task. Vanilla 3D CNNs are
locked in the cubic growth of computational and memory
requirements with the increase of voxel resolution. Thus,
current methods inevitably limit the resolution of predic-
tions and the depth of 3D CNNs, which leads to wrong la-
bels and missing shape details in the completion results.

To achieve better SSC results, several works [8, 5, 23,
20] introduce the 2D semantic segmentation as an auxiliary,
which takes an additional RGB image and applies complex
2D CNNs for semantic enhancement. These methods can
fully exploit the high-resolution input, however, they ignore
the 3D context information of the scene. Thus, only based
on the 2D input image, they may not infer the invisible ob-
ject parts of the complex scene. Recently, Song et al. [32]
show that global 3D context helps the prediction of SSC.
However, the 3D CNN used in their work simply adopts the
dilated convolutions [34], and concatenates the multi-stage
features for predictions. It only considers the global seman-
tics, which result in low-resolution predictions, and lose the
scene details. In this work, we find that both local geomet-
ric details and multi-scale 3D contexts of the scene play a
vital role in the SSC task. The local geometric details help
the SSC system to identify the fine-structured objects. The
multi-scale 3D contexts can enhance the spatial coherence
and infer the occluded objects from the scene layout. How-
ever, designing a framework that can efficiently integrate
both characteristics is still a challenging task.

To address above problems, we propose a novel deep
learning framework, named Cascaded Context Pyramid
Network (CCPNet), for single depth image based SSC. The
proposed CCPNet effectively learns both local geometry de-
tails and multi-scale 3D contexts from the training dataset.
For semantic confusing objects, the CCPNet improves the
prediction coherence with an effective self-cascaded con-
text pyramid. The self-cascaded pyramid helps the model
to reduce the semantic gap of different contexts and cap-
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ture the hierarchical dependencies among the objects and
scenes [24]. In addition, we introduce a Guided Residual
Refinement (GRR) module to progressively restore the fine-
structures of complex objects. The GRR corrects the latent
fitting using low-level features, and avoids the high com-
putational cost and memory consumption of the 3D CNN.
With this module, the CCPNet can output full-resolution
completion results and show much better accuracy than
vanilla 3D networks. Experimental results demonstrate that
our approach outperforms other state-of-the-art methods on
both synthetic and real datasets. With only a single depth
map, our method generates high-quality SSC results with
much better accuracy and faster inference.

In summary, our contributions are three folds:

• We propose a novel cascaded context pyramid network
(CCPNet) for efficient 3D semantic scene completion.
The CCPNet automatically integrates both local geo-
metric details and multi-scale 3D contexts of the scene
in a self-cascaded manner.

• We also propose an efficient guided residual refine-
ment (GRR) module for restoring fine-structures of ob-
jects and full-resolution predictions. The GRR pro-
gressively refines the objects with low-level features
and light-weight residual connections, improving both
computational efficiency and completion accuracy.

• Extensive experiments on public synthetic and real
benchmarks demonstrate that our proposed approach
achieves superior performance over other state-of-the-
art methods.

2. Related Work

In this section, we briefly review related work on ana-
lyzing and completing a 3D scene from depth images. For
more details, we refer the readers to [17] for a survey of
deep learning based 3D data processing.

Semantic Scene Analysis. In recent years, many deep
learning based methods have been proposed for semantic
scene analysis with a depth image or RGB-D image pair.
In general, 2D image-based methods [26, 12, 33] treat the
depth image as additional information, and adopt complex
2D CNNs for semantic scene analysis tasks, e.g., salient
object detection, semantic segmentation and scene comple-
tion. Meanwhile, several works [13, 11, 1] extract deep fea-
tures from the depth image and the RGB image separately,
then fuse them for multi-mode complementarity. Although
effective, 2D image-based methods ignore the spatial oc-
cupancy of objects, and can not fully exploit the depth in-
formation. While 3D volume-based methods usually con-
vert the depth image into a volumetric representation, and
exploit rich handcrafted 3D features [27, 30] or learned

3D CNNs [31] for detecting 3D objects. Although exist-
ing methods can detect and segment visible 3D objects and
scenes, they cannot infer the objects that are totally oc-
cluded. Instead, our method can predict the semantic labels
and 3D shapes for both visible and invisible objects.

3D Scene Completion. Semantic scene completion is a
fundamental task in understanding 3D scenes. To achieve
this goal, Zheng et al. [41] first complete the occluded
objects with a set of pre-defined rules, and then refine
the completion results by physical reasoning. Geiger and
Wang [6] propose a high-order graphical model to jointly
reason about the layout, objects and superpixels in the scene
image. Their model leverages detailed 3D geometry of
scenes, and explicitly enforces occlusion and visibility con-
straints. Then, Firman et al. [4] utilize the random forest
to infer the occluded 3D object shapes from a single depth
image. These methods are based on handcrafted features,
and perform semantic scene segmentation and completion
in two separate steps. Recently, Song et al. [32] propose the
Semantic Scene Completion Network (SSCNet) to simul-
taneously predict the semantic labels and volumetric occu-
pancy of the 3D objects from a single depth image. Al-
though this method unifies the semantic segmentation and
voxel completion, the expensive 3D CNN limits the input
resolution and network depth. Thus the SSCNet only pro-
duces low-resolution predictions and generally lacks of ob-
ject details. By combining the 2D CNN and 3D CNN, Guo
and Tong [10] propose the View-Volume Network (VVNet)
to efficiently reduce the computation cost and enhance the
network depth. Garbade et al. [5] propose a two-stream ap-
proach that jointly leverages the depth and semantic infor-
mation. They first construct an incomplete 3D semantic ten-
sor for the inferred 2D semantic information, and then adopt
a vanilla 3D CNN to infer the complete 3D semantic tensor.
Liu et al. [23] propose a task-disentangled framework to se-
quentially carry out the 2D semantic segmentation, 2D-3D
re-projection and 3D semantic scene completion. However,
their multi-stage method may cause the error accumulation,
producing mislabeling completion results. Similarly, Li et
al. [20] introduce a Dimensional Decomposition Residual
Network (DDRNet) for the 3D SSC task. Based on the fac-
torized and dilated convolutions [2], they utilize the multi-
scale feature fusion mechanism for depth and color images.

Although effective, current methods only consider the
global semantics, which usually result in low-resolution
predictions and lose the scene details. Different from pre-
vious works, we propose to integrate both local geomet-
ric details and multi-scale 3D contexts of the scene for the
SSC task. To reduce the semantic gaps of multi-scale 3D
contexts, we propose a self-cascaded context aggregation
method to generate coherent labeling results. Meanwhile,
the local geometric details are also incorporated to identify
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Figure 1. Illustration of our Cascaded Context Pyramid Network (CCPNet). Taking a single-view depth map as input, the CCPNet predicts
the occupancy and object labels for each voxel in the view frustum. With light-weight operations, the CCPNet can produce full-resolution
3D completion results. The convolution parameters are shown as (number of filters, kernel size, stride, dilation, number of subvolumes).

the fine-structured objects in a coarse-to-fine manner. We
note that the proposed modules are general-purpose for 3D
CNNs. Thus, they can be easily applied to other 3D tasks.

3. Cascaded Context Pyramid Network
Fig. 1 illustrates the overall architecture of our CCPNet.

Given a single-view depth map of a 3D scene, the goal of
our CCPNet is to map the voxels in the view frustum to
one of the semantic labels C = [c0, c1, ..., cN+1], where N
is number of semantic categories and c0 stands for empty
voxels. Our CCPNet is a self-cascaded pyramid structure
to successively aggregate multi-scale 3D contexts and local
geometry details for full-resolution scene completions. It
consists of three key components, i.e., 3D Dilated Convo-
lution Encoder (DCE), Cascaded Context Pyramid (CCP),
and Guided Residual Refinement (GRR). Functionally, the
DCE adopts multiple dilated convolutions with separated
kernels to extract 3D feature representations from single-
view depth images. Then, the CCP performs the sequential
global-to-local context aggregation to improve the labeling
coherence. After the context aggregation, the GRR is in-
troduced to refine the target objects using low-level features
learned by the shallow layers. In the following subsections,
we will describe these components in detail.

3.1. 3D Dilated Convolution Encoder

Input Tensor Generation. For the input of our front-
end 3D DCE, we follow previous works [32, 5, 10] and ro-
tate the 3D scene to align with the gravity and room orien-
tation based on the Manhattan assumption. We consider the

absolute dimensions of the 3D space with 4.8 m horizon-
tally, 2.88 m vertically, and 4.8 m in depth. Each 3D scene
is encoded into a flipped Truncated Signed Distance Func-
tion (fTSDF) [32] with grid size 0.02 m, truncation value
0.24 m, resulting in a 240×144×240 tensor as the network
input. Our method produces the completion result with the
same resolution as input. However, due to the fully convo-
lutional structure and the light-weight network design, our
method certainly can take larger depth images as input, even
full-resolution depth maps (e.g., 427×561 from depth sen-
sors). During the model training, we render depth maps
from virtual viewpoints of 3D scenes and voxelize the full
3D scenes with object labels as ground truth.

Encoder Structure. Processing 3D data needs large
memories and huge computations. To reduce the memory-
requirement, we propose a light-weight encoder to extract
the 3D feature representations of scenes, as shown in Fig. 1.
As demonstrated in dense labeling tasks [40, 39, 2, 37],
large contexts can provide valuable information for under-
standing the scenes. For the 3D scenes and depth images,
spatial context is more useful due to the lack of high fre-
quency signals. To effectively learn spatial contextual in-
formation, we make sure our encoder has a big enough re-
ceptive field. A direct method is using the 3D dilated con-
volution proposed in [34, 32], which can exponentially ex-
pand the receptive field without a loss of resolution or cover-
age. However, the computation of 3D dilated convolutions
is rather huge, because we need to perform convolutions
with large volumes. To address this problem, we propose
the 3D dilated convolutions with separated kernels. More
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Figure 2. Comparison of (a) Vanilla 3D convolution [18], (b) 3D
dilated convolution [32] and (c) Our proposed method.

specifically, we first separate the input tensor into several
subvolumes, then apply the 3D dilated kernels to each sub-
volume for the convolutions. The reasons are two-fold. On
the one hand, our method can reduce the model parameters
and computations, and inherit all characteristics of dilated
convolutions. On the other hand, our method considers the
characteristic of depth profiles, in which the depth values
are continuous only in neighbour regions. Fig. 2 shows the
differences of vanilla 3D convolution [18], 3D dilated con-
volution [32] and our proposed method. To build our 3D
DCE, we stack the proposed 3D dilated convolution several
times with 3D pooling. Besides, to avoid the extreme sepa-
ration, we reduce the number of subvolumes along with the
network depth. The detailed parameters are shown in Fig. 1.

3.2. Cascaded Context Pyramid

For scene completion, different objects have very differ-
ent physical 3D sizes and visual orientations. This implies
that the model needs to capture information at different con-
texts in order to recognize objects reliably. Besides, for
confusing manmade objects in indoor scenes, obtaining co-
herent labeling results is not easily accessible, because they
are of high intra-class variance and low inter-class variance.
Therefore, it is insufficient to use only the single-scale and
global information of the target objects [32, 24]. We need
to introduce multi-scale context information, which charac-
terizes the underlying dependencies between an object and
its surroundings. However, it is very hard to retain the hier-
archical dependencies in contexts of different scales, using
common fusion strategies (e.g., direct stack [2, 40]). To ad-
dress this issue, we propose a novel self-cascaded context
pyramid architecture, as shown in Fig. 3 (a). Different from
previous methods, our method sequentially aggregates the
global-to-local contexts while well retains the hierarchical
dependencies, i.e., the underlying inclusion and location re-
lationship among the objects and scenes in different scales.

Architecture Details. To build the context pyramid, we
perform 3D dilated convolutions on the last pooling layer
of the 3D DCE to capture multi-scale contexts. By setting
varied dilation rates (30, 24, 18, 12, 6 and 1 in the exper-
iments) and feature reduction layers, a series of 3D fea-
ture maps with global-to-local contexts are generated. The
large-scale context contains more semantics and wider vi-
sual cues, while the small-scale context retains object ge-
ometry details. Meanwhile, the obtained feature maps with

3D DCE

Context1

Context2
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Context3

…

Aggregated 

Context

3D DCE

Context1

Context2

ContextN

Context3

…

(a) (b)

Aggregated 

Context

Figure 3. Comparison of different multi-scale context aggrega-
tion methods. (a) Our self-cascaded context aggregation approach,
which reduces the semantic gaps of different scales. (b) Existing
parallel concatenations, such as PSPNet [40], Deeplab variants [2].
“Context” denotes the dilated convolution for context extraction.

multi-scale contexts can be aligned automatically due to
their equal resolution. To well retain the hierarchical de-
pendencies of multi-scale contexts, we sequentially aggre-
gate them in a self-cascaded pyramid manner. Formally, it
can be described as:

Xsa =

{
f(· · · f(f(X1 ⊕X2)⊕X3)⊕ · · · ⊕Xn),

d1 > d2 > d3 > · · · > dn.
(1)

where Xn denotes the n-scale context, Xsa is the final ag-
gregated context and dn is the dilation rate for extracting
the context Xn. ⊕ denotes the element-wise summation. f
denotes the Basic Residual Block (BRB) [16], as shown in
Fig. 4 (a). In our proposed method, we first aggregate the
large-scale context with big dilation rates, then the context
with small dilation rates. This aggregation rule is consistent
with the human visual mechanism, i.e., large-scale context
could play a guiding role in integrating small-scale context.

We also notice that there are other outstanding structures
for multi-scale contexts, such as PPM [40] and ASPP [2], as
shown in Fig. 3 (b). In order to aggregate information with
different contexts, they add a layer that parallelly concate-
nates the feature maps with different receptive fields:

Xpa =

{
g([X1, X2, X3, · · · , Xn]),

d1 > d2 > d3 > · · · > dn.
(2)

where g denotes the aggregation function, which usually is
an 1 × 1 × 1 convolutional layer. [· · · ] is the concatena-
tion operation in channel-wise. However, our proposed self-
cascaded pyramid architecture has several advantages: 1)
Our self-cascaded strategy enhances the hierarchical depen-
dencies in different context scales. Thus, it is more effective
than the parallel strategies such as PSPNet [40], DeepLab
variants [2], which directly fuse the multi-scale contexts
with large semantic gaps; 2) Our method introduces more
complicated nonlinear operations (Equ. 1), thus it has a
stronger capacity to model the relationship of different con-
texts than simple convolution operations. 3) By adopting
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Figure 4. The used residual modules in our CCPNet. (a) The Ba-
sic Residual Block (BRB) [16]. (b) The proposed Guided Residual
Block (GRB). In the GRB, we add a tangent function-based con-
nection to amplify the fused features.

the summation, the sequential aggregation significantly re-
duces the parameters and computations. Experiments also
verify the effectiveness of our proposed method.

3.3. Guided Residual Refinement

Besides semantic confusing categories, fine-structured
objects also increase the difficulty for accurate labeling in
3D scenes. However, current methods usually produce low-
resolution predictions, thus it is very hard to retain the fine-
grained details of objects. To address this problem, we
propose to reuse low-level features with the Guided Resid-
ual Refinement (GRR), as shown in the bottom of Fig. 1.
Specifically, the rich low-level features are progressively
reintroduced into the prediction stream by guided residual
connections. As a result, the coarse feature maps can be
refined and the low-level details can be restored for full-
resolution predictions. The used Guided Residual Block
(GRB) is shown in Fig. 4 (b), which can be formulated as:

X̂ = X ⊕G, (3)

Xrf = ReLu(X̂ ⊕ X̂Tanh(X̂)⊕ h(X̂)) (4)

= ReLu(X̂(I ⊕ Tanh(X̂))⊕ h(X̂)) (5)

= ReLu(X̂G ⊕ h(X̂)). (6)

where X is the input semantic context feature and G is the
guidance feature coming from a shallower layer. ⊕ de-
notes the element-wise summation and h is the standard
non-linear transform in residual blocks. Xrf is the refined
feature map. ReLu(·) and Tanh(·) are the rectified linear
unit and hyperbolic tangent activation, respectively. To re-
store finer details with the shallower layer, we first integrate
the input feature and the guidance (Equ. 3), then we intro-
duce an auxiliary connection to the BRB [16]. More specif-
ically, we use the hyperbolic tangent activation to amplify
the integrated features (resulting in X̂G), as shown in Fig. 4
(b) and Equ. 4-6. It is very beneficial to fuse low-level fea-
tures by the guided refinement strategy. On the one hand,

the feature maps of X and G represent different semantics
at varied levels. Thus, due to their inherent semantic gaps,
directly stacking all these features [14, 28, 3] may not be an
efficient strategy. In the proposed method, the influence of
semantic gaps is alleviated when a residual iteration strategy
is adopted [7]. On the other hand, the feature amplification
connection enhances the effect of low-level details and gra-
dient propagations, which helps the effectively end-to-end
training. There also exist effective refinement strategies for
detail enhancement [25, 22, 38]. However, they are very dif-
ferent from ours. First, our strategy focuses on amplifying
low-level features considering the 3D data properties, e.g.,
high computation and memory requirements. In contrast,
previous methods introduce complex refinement modules,
which are hardly executable for the 3D data. Besides, we
only choose specific shallow layers for the refinement, as
shown in the bottom of Fig. 1. Other methods incorporate
all the hierarchical layers that inevitably contain boundary
noises [25, 22]. To build our model, several GRB modules
are elaborately embedded in the prediction part, which can
greatly prevent the fitting residual from accumulating. As a
result, the proposed CCPNet effectively works in a coarse-
to-fine labeling manner for full-resolution predictions.

3.4. Network Training

Given the training dataset (i.e., the paired depth images
and ground truth volumetric labels of 3D scenes), our pro-
posed CCPNet can be trained in an end-to-end manner. We
adopt the voxel-wise softmax loss function [32] for the net-
work training. The loss can be expressed as:

L(p, y) =
∑
i,j,k

wijkLsm(pijk, yijk), (7)

where Lsm is the softmax cross-entropy loss, yijk is the
ground truth label, pijk is the predicted probability of the
voxel at coordinates (i, j, k). The weight wijk ∈ {0, 1} is
used to balance the loss between different semantic cate-
gories. Due to the sparsity of 3D data, the ratio of empty vs.
occupied voxels is extremely imbalanced. To address this
problem, we follow [32] and randomly sample the training
voxels with a 2:1 ratio to ensure that each mini-batch has a
balanced set of empty and occupied examples.

4. Experiments
4.1. Experimental Settings

Datasets. The synthetic SUNCG dataset [31] consists
of 45622 indoor scenes. Technically, the depth images and
semantic scene volumes can be acquired by setting different
camera orientations. Following previous useful works [32,
5, 10], we adopt the same training/test split for our network
training and evaluation. More specifically, the training set
contains about 150K depth images and the corresponding



scene completion semantic scene completion
Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet [32] 76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
VVNet [10] 90.8 91.7 84.0 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
DCRF [36] – – – 95.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8

ESSCNet [35] 92.6 90.4 84.5 96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5
SATNet [23] 80.7 96.5 78.5 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3

Ours 98.2 96.8 91.4 99.2 89.3 76.2 63.3 58.2 86.1 82.6 65.6 53.2 76.8 65.2 74.2
Table 1. The performances of different scene completion methods on the SUNCG dataset. The best results are in bold.
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Figure 3: Semantic scene completion results generated by different methods for SUNCG and NYU datasets.
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Figure 3. Qualitative results on NYUCAD. From left to right: Input RGB-D image, ground truth, results obtained by our approach, and
results obtained by SSCNet [34]. Overall, our completed semantic 3D scenes are less cluttered and show a higher voxel class accuracy
compared to SSCNet. Refer to Section 4.4 for the detailed analysis.

Figure 5. Completion results with different methods on the SUNCG dataset. From the left to right: (a) Input Depth; (b) fTSDF Surface; (c)
Ground Truth; (d) SSCNet [32]; (e) VVNet [10]; (f) ESSCNet [35]; (g) Ours. It can be observed that, our results constantly contain more
accurate and detailed structures compared to the baselines. The figure is best viewed in color with 200% zooming-in.

ground truth volumes. The test set consists of totally 470
pairs sampled from 170 non-overlap scenes.

The real NYU dataset [29] includes 1449 depth images
captured by the Kinect depth sensor. The depth images are
partitioned into 795 for training and 654 for test. Following
previous works, we adopt the ground truth completion and
segmentation from [9]. Some labeled volumes and their cor-
responding depth images are not well aligned in the NYU
dataset. Thus, we also use the NYU CAD dataset [4], in
which the depth map is rendered from the label volume. The
NYU dataset is challenging due to the unavoidably mea-
surement errors in the depth images collected by Kinect. As
in [32, 10, 23], we also pre-train the network on the SUNCG
dataset before fine-tuning it on the NYU dataset.

Evaluation Metrics. We mainly follow [32] and report
the precision, recall, and Intersection over Union (IoU) of
the compared methods. The IoU measures the overlapped
ratio between intersection and union of the positive predic-
tion volume and the ground truth volume. In this work, two
tasks are considered: Scene Completion (SC) and Seman-
tic Scene Completion (SSC). For the SC task, we treat all
voxels as binary predictions, i.e., occupied or non-occupied.
The ground truth volume includes all the occluded voxels
in the view frustum. For the SSC task, we report the IoU of
each class, and average them to get the mean IoU.

Training Protocol. We implement our CCPNet in the
modified Caffe toolbox [19] for 3D data processing. We
perform experiments on a quad-core PC with an Intel i4790
CPU and one NVIDIA TITAN X GPU (12G memory).
For the CCPNet, we initialize the weights by the “msra”
method [15]. During the training, we use the standard SGD
method with a batch size 4, momentum 0.9 and weight de-
cay 0.0005. We set the base learning rate to 0.01. For the
SUNCG dataset, we train the CCPNet with 200K iterations
and change the learning rate to 0.001 after 150K iterations.
To reduce the performance bias, we evaluate the results at
every 5K steps after 180K iterations, and average them as
the final results. For both the NYU Kinect and NYU CAD
datasets, we follow previous works [32, 10, 5, 35, 23], and
fine-tune the CPPNet pre-trained from the SUNCG dataset
with 10K iterations. After that, we test the models at every
2K iterations and pick the best one as the final result.

4.2. Experimental Results

4.2.1 Comparison on the SUNCG dataset.

For the SUNCG dataset, we compare our proposed CCPNet
with SSCNet [32], VVNet [10], DCRF [36], ESSCNet [35]
and SATNet [23] for both SC and SSC tasks. As shown in
Tab. 1, our approach achieves the best performance in both
SC and SSC tasks. Compared to the SSCNet, the overall



scene completion semantic scene completion
Methods Trained on prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Lin et al. [21] NYU 58.5 49.9 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0
Geiger and Wang [6] NYU 65.7 58.0 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet [32] NYU 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
SSCNet [32] SUNCG 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26.0 13.6 6.1 9.4 7.4 20.2
SSCNet [32] NYU+SUNCG 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
CSSCNet [8] NYU+SUNCG 62.5 82.3 54.3 – – – – – – – – – – – 27.5
VVNet [10] NYU+SUNCG 69.8 83.1 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
DCRF [36] NYU – – – 18.1 92.6 27.1 10.8 18.8 54.3 47.9 17.1 15.1 34.7 13.0 31.8

TS3D,V2 [5] NYU 65.7 87.9 60.4 8.9 94.0 26.4 16.1 14.2 53.5 45.8 16.4 13.0 32.9 12.7 30.4
TS3D,V3+ [5] NYU 64.9 88.8 60.2 8.2 94.1 26.4 19.2 17.2 55.5 48.4 16.4 22.0 34.0 17.1 32.6
ESSCNet [35] NYU 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7
SATNet [23] NYU+SUNCG 67.3 85.8 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
DDRNet [20] NYU 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

Ours NYU 74.2 90.8 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
Ours NYU+SUNCG 78.8 94.3 67.1 25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3

Table 2. The performances of different scene completion methods on the NYU Kinect dataset. The best results are in bold.

scene completion semantic scene completion
Methods Trained on prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Zheng et al. [41] NYU 60.1 46.7 34.6 – – – – – – – – – – – –
Firman et al. [4] NYU 66.5 69.7 50.8 – – – – – – – – – – – –

SSCNet [32] NYU 75.0 92.3 70.3 – – – – – – – – – – – –
SSCNet [32] NYU+SUNCG 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0
VVNet [10] NYU+SUNCG 86.4 92.0 80.3 – – – – – – – – – – – –
DCRF [36] NYU – – – 35.5 92.6 52.4 10.7 40.0 60.0 62.5 34.0 9.4 49.2 26.5 43.0

TS3D,V2 [5] NYU 81.2 93.6 76.9 33.9 93.4 47.0 26.4 27.9 61.7 51.7 27.6 27.3 44.4 21.8 42.1
TS3D,V3+ [5] NYU 80.2 94.4 76.5 34.4 93.6 47.7 31.8 32.2 65.2 54.2 30.7 32.5 50.1 30.7 45.7
DDRNet [20] NYU 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

Ours NYU 91.3 92.6 82.4 56.2 94.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2
Ours NYU+SUNCG 93.4 91.2 85.1 58.1 95.1 60.5 36.8 47.2 69.3 67.7 39.8 37.6 55.4 37.6 55.0

Table 3. The performances of different scene completion methods on the NYU CAD dataset. The best results are in bold.

IoUs of our CCPNet significantly increase about 18% and
28% for SC and SSC tasks, respectively. In spite of taking
a single depth map, our approach gets higher IoUs than the
RGB-D based SATNet (Ours 91.4% vs. SATNet 78.5%).
Our approach also perform better than the previous best ES-
SCNet with a considerable margin. Tab. 1 also lists the IoU
for each object category. Our approach also achieves the
highest IoUs in each category. Thus, the quantitative results
demonstrate that our approach is superior in 3D SSC. Fig. 5
illustrates the qualitative results on the SUNCG dataset. Al-
though previous methods works well for many scenes, they
usually fail in the objects which have complex structures
and confusing semantics (the first and second rows). In
contrast, our method leverages the low-level features and
multi-scale contexts to overcome these difficulties.

4.2.2 Comparison on the NYU dataset.

For the NYU dataset, we compare our CCPNet with other
outstanding methods. Tab. 2 and Tab. 3 illustrate the per-
formances on the NYU Kinect and NYU CAD datasets,
respectively. From the results, we can see that our CCP-
Net also achieves the best performance. For the SC task, it
outperforms the SSCNet (8.4% on NYU Kinect and 12.1%
on NYU CAD) when only the NYU dataset is used as the
training data. Meanwhile, even the SSCNet uses the addi-
tional SUNCG training dataset, our CCPNet still achieves
a substantial improvement (7% on NYU Kinect and 9.2%
on NYU CAD). We observe that the SSCNet achieves a

rather high recall but a low precision for the SC task. Our
model pre-trained with the SUNCG dataset achieves better
performances, and outperforms previous best methods, i.e.,
VVNet and SATNet, with a large margin.

For the SSC task, our approach achieves 41.3% on NYU
Kinect and 55.0% on NYU CAD, and outperforms the SS-
CNet [32] by 10.8% and 15%, respectively. With the same
training data, our approach constantly performs better than
existing best methods with a considerable margin. Tab. 2
and Tab. 3 also include the results of each category. In
general, our method tends to predict more occluded voxels
than previous methods, such as window, chair and furni-
ture. Fig. 6 shows the qualitative results in which cluttered
scene completions can be observed. Our method performs
substantially better than other approaches.

4.2.3 Efficiency Analysis

Current methods usually depend on expensive 3D CNNs
and feature concatenations, while our CCPNet utilizes a
light-weight 3D dilated encoder and a self-cascaded pyra-
mid. Thus, it significantly reduces memory requirement and
computational cost for inference. Tab. 4 lists the param-
eters and computations of different methods. Our CCPNet
achieves much better accuracy, and significantly reduces the
model parameters, and speeds up for inference.
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Figure 3: Semantic scene completion results generated by different methods for SUNCG and NYU datasets.
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Figure 3. Qualitative results on NYUCAD. From left to right: Input RGB-D image, ground truth, results obtained by our approach, and
results obtained by SSCNet [34]. Overall, our completed semantic 3D scenes are less cluttered and show a higher voxel class accuracy
compared to SSCNet. Refer to Section 4.4 for the detailed analysis.

Figure 6. Completion results with different methods on the NYU dataset. From the left to right: (a) Input Depth; (b) fTSDF Surface; (c)
Ground Truth; (d) SSCNet [32]; (e) DDRNet [20]; (f) VVNet [10]; (g) Ours. The figure is best viewed in color with 200% zooming-in.

Methods Params/k FLOPs/G Speed/ms SC-IoU SSC-IoU
SSCNet [32] 930 163.8 578 55.1 24.7
VVNet [10] 685 119.2 74 61.1 32.9

ESSCNet [35] 160 22.0 121 56.2 26.7
SATNet [23] 1200 187.5 1300 60.6 34.4
DDRNet [20] 195 27.2 658 61.0 30.4

Ours 89 11.8 57 67.1 41.3
Table 4. Comparison of efficiency with different methods.

Methods SC-IoU SSC-IoU Params/k FLOPs/G
SSCNet [32] 73.5 46.4 930 163.8

SSCNet [32]+SK 76.8 52.5 532 100.3
Table 5. Quantitative results on separated convolution kernels.

4.3. Ablation Studies

To verify the effect of our proposed modules, we also
perform ablation experiments on the SUNCG dataset.

Separated Convolution Kernels. Based on the SSC-
Net [32], we replace the 3D dilated convolutions of SSCNet
with our proposed separated kernels. For simplification, we
set the number of subvolumes to 4. Tab. 5 shows the quanti-
tative performances. For SC and SSC tasks, our method has
fewer parameters and computations, while provides 3.3%
and 6.1% IoU improvements compared to the SSCNet.

Cascaded Context Pyramid. To verify the effect of our
CCP, we replace the CCP with the outstanding PPM [40]
and ASPP [2] modules, and keep other modules unchanged.
The first three rows of Tab. 6 show the quantitative results.
With the PPM and ASPP, the IoUs of the CCPNet decrease
4.1% and 2.3% for the SC task, respectively. For the SSC
task, it has a similar trend, which proves that our CCP is
more effective. Note that the PPM and ASPP need more
memories and parameters for the context aggregation.

Guided Residual Refinement. To evaluate the effect of
our GRR, we compare the performances with different re-
finements. As shown in the 4-th row of Tab. 6, with the
BRBs, the CCPNet shows worse results, decreasing 8.1%
and 8.4% for SC and SSC, respectively. However, when
introducing the guidance (the 5-th row), the model shows
significant improvements for both SC and SSC tasks. Only

Methods SC-IoU SSC-IoU Params/k FLOPs/G
CCPNet 91.4 74.2 89 11.8

CCPNet (CCP→ PPM) 87.3 71.6 120 87.2
CCPNet (CCP→ ASPP) 89.1 72.3 145 140.2
CCPNet (GRB→BRB) 83.3 65.8 89 9.2

CCPNet (GRB w/o Ampli) 88.7 73.6 89 11.5
CCPNet (GRB w/o Guidance) 84.3 67.4 89 11.2

CCPNet-Quarter 86.5 69.1 76 6.5
CCPNet-Half 88.4 73.1 81 10.4

Table 6. Ablation results of components on the SUNCG dataset.

with the feature amplification (the 6-th row), we observe a
considerable improvement compared to the BRBs. A pos-
sible reason is that it is not enough for the detail recovery
when only amplifying on the 3D context information. How-
ever, with the whole GRB, our approach shows best results.

Full-Resolution Prediction. To evaluate the benefits of
full-resolutions, we also re-implement our approach with
the quarter and half resolution. To achieve this goal, we re-
move the corresponding layers after the deconvolution op-
erations in Fig. 1. The last two rows of Tab. 6 show the
performances. From the results, we can see that the low-
resolution-based model shows worse performances. The
main reason is that it cannot preserve the geometric details.
However, our model still performs better than most state-of-
the-art methods. This further demonstrates the effectiveness
of our proposed modules. With full-resolution outputs, our
model can fully exploit the geometric details, improving the
IoUs by 4.9% and 5.1% respectively.

5. Conclusion
In this work, we propose a novel deep learning frame-

work, named CCPNet, for full-resolution 3D SSC. The
CCPNet is a self-cascaded pyramid structure to succes-
sively aggregate multi-scale 3D contexts and local geometry
details. Extensive experiments on both synthetic and real
benchmarks demonstrate that our CCPNet significantly im-
proves the semantic completion accuracy, reduces the com-
putational cost, and offers high-quality completion results
with full-resolution. In the future work, we will explore
color information for semantic and boundary enhancement.
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[3] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger. 3d u-net: learning dense volumetric seg-
mentation from sparse annotation. In MICCAI, pages 424–
432, 2016. 5

[4] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow.
Structured prediction of unobserved voxels from a single
depth image. In CVPR, pages 5431–5440, 2016. 2, 6, 7

[5] M. Garbade, J. Sawatzky, A. Richard, and J. Gall. Two
stream 3d semantic scene completion. arXiv:1804.03550,
2018. 1, 2, 3, 5, 6, 7

[6] A. Geiger and C. Wang. Joint 3d object and layout inference
from a single rgb-d image. In GCPR, pages 183–195, 2015.
2, 7

[7] K. Greff, R. K. Srivastava, and J. Schmidhuber. Highway
and residual networks learn unrolled iterative estimation.
arXiv:1612.07771, 2016. 5

[8] A. B. S. Guedes, T. E. de Campos, and A. Hilton. Semantic
scene completion combining colour and depth: preliminary
experiments. In ICCV Workshop, pages –, 2017. 1, 7

[9] R. Guo, C. Zou, and D. Hoiem. Predicting complete 3d mod-
els of indoor scenes. arXiv:1504.02437, 2015. 6

[10] Y.-X. Guo and X. Tong. View-volume network for seman-
tic scene completion from a single depth image. In IJCAI,
pages –, 2018. 1, 2, 3, 5, 6, 7, 8
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