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Abstract

This paper introduces a novel feature detector based only
on information embedded inside a CNN trained on stan-
dard tasks (e.g. classification). While previous works al-
ready show that the features of a trained CNN are suit-
able descriptors, we show here how to extract the feature
locations from the network to build a detector. This in-
formation is computed from the gradient of the feature
map with respect to the input image. This provides a
saliency map with local maxima on relevant keypoint lo-
cations. Contrary to recent CNN-based detectors, this
method requires neither supervised training nor finetun-
ing. We evaluate how repeatable and how ‘matchable’ the
detected keypoints are with the repeatability and match-
ing scores. Matchability is measured with a simple de-
scriptor introduced for the sake of the evaluation. This
novel detector reaches similar performances on the stan-
dard evaluation HPatches dataset, as well as comparable
robustness against illumination and viewpoint changes on
Webcam and photo-tourism images. These results show
that a CNN trained on a standard task embeds feature lo-
cation information that is as relevant as when the CNN is
specifically trained for feature detection.

1 Introduction

Feature extraction, description and matching is a recur-
rent problem in vision tasks such as Structure from Mo-
tion (SfM), visual SLAM, scene recognition and image
retrieval. The extraction consists in detecting image key-
points, then the matching pairs the nearest keypoints
based on their descriptor distance. Even though hand-
crafted solutions, such as SIFT [21], prove to be suc-
cessful, recent breakthroughs on local feature detection
and description rely on supervised deep-learning meth-
ods [12} 28 144]]. They detect keypoints on saliency maps
learned by a Convolutional Neural Network (CNN), then
compute descriptors using another CNN or a separate
branch of it. They all require strong supervision and
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Figure 1: (1-6) Embedded Detector: Given a CNN trained
on a standard vision task (classification), we backpropa-
gate the feature map back to the image space to compute
a saliency map. It is thresholded to keep only the most in-
formative signal and keypoints are the local maxima. (7-
8): simple-descriptor.

complex training procedures: [44] requires ground-truth
matching keypoints to initiate the training, [28] needs the
ground-truth camera pose and depth maps of the images,
[12] circumvents the need for ground-truth data by using
synthetic one but requires a heavy domain adaptation to
transfer the training to realistic images. All these methods
require a significant learning effort. In this paper, we show
that a trained network already embeds enough information
to build State-of-the-Art (SoA) detector and descriptor.
The proposed method for local feature detection needs
only a CNN trained on standard task, such as ImageNet
[1L1]] classification, and no further training. The detec-
tor, dubbed ELF, relies on the features learned by such a
CNN and extract their locations from the feature map gra-
dients. Previous work already highlights that trained CNN
features are relevant descriptors [13]] and recent works
[16, 115, 134] specifically train CNN to produce features suit-
able for keypoint description. However, no existing ap-



proach uses a pre-trained CNN for feature detection.

ELF computes the gradient of a trained CNN feature
map with respect to w.x.t the image: this outputs a saliency
map with local maxima on keypoint positions. Trained
detectors learn this saliency map with a CNN whereas we
extract it with gradient computations. This approach is
inspired by [35] which observes that the gradient of clas-
sification scores w.r.t the image is similar to the image
saliency map. ELF differs in that it takes the gradient of
feature maps and not the classification score contrary to
existing work exploiting CNN gradients [33} 137, 38| 40].
These previous works aim at visualising the learning sig-
nal for classification specifically whereas ELF extracts
the feature locations. The extracted saliency map is then
thresholded to keep only the most relevant locations and
standard Non-Maxima Suppression (NMS) extracts the fi-
nal keypoints (Figure [2).

Figure 2: Saliency maps thresholding to keep only the
most informative location. Top: original image. (Left-
Right: Webcam [43]], HPatches [5], COCOJ[20]]) Middle:
blurred saliency maps. Bottom: saliency map after thresh-
old. (Better seen on a computer.)

ELF relies only on six parameters: 2x2 Gaussian blur
parameters for the automatic threshold level estimation
and for the saliency map denoising; and two parameters
for the (NMS) window and the border to ignore. Detec-
tion only requires one forward and one backward passes
and takes ~0.2s per image on a simple Quadro M2200,
which makes it suitable for real-time applications.

ELF is compared to individual detectors with standard
repeatability [26]] but results show that this metric is not
discriminative enough. Most of the existing detectors can
extract keypoints repeated across images with similar re-
peatability scores. Also, this metric does not express how
‘useful’ the detected keypoints are: if we sample all pix-
els as keypoints, we reach 100% of rep. but the matching
may not be perfect if many areas look alike. Therefore,

the detected keypoints are also evaluated on how ‘match-
able’ they are with the matching score [26l]. This metric
requires to describe the keypoints so we define a simple
descriptor: it is based on the interpolation of a CNN fea-
ture map on the detected keypoints, as in [12]]. This avoids
biasing the performance by choosing an existing compet-
itive descriptor. Experiments show that even this simple
descriptor reaches competitive results which comforts the
observation of [13]], on the relevance of CNN features as
descriptors. More details are provided section 4.1.

ELF is tested on five architectures: three classification
networks trained on ImageNet classification: AlexNet,
VGG and Xception [9} 18 136]], as well as SuperPoint [[12]
and LF-Net [28] descriptor networks. Although outside
the scope of this paper, this comparison provides prelim-
inary results of the influence of the network architecture,
task and training data on ELF’s performance. Metrics are
computed on HPatches [5] for generic performances. We
derive two auxiliary datasets from HPatches to study scale
and rotation robustness. Light and 3D viewpoint robust-
ness analysis are run on the Strecha, Webcam and datasets
[39] [43]. These extensive experiments show that ELF is
on par with other sparse detectors, which suggests that the
feature representation and location information learnt by
a CNN to complete a vision task is as relevant as when the
CNN is specifically trained for feature detection. We addi-
tionally test ELF’s robustness on 3D reconstruction from
images in the context of the CVPR 2019 Image Match-
ing challenge [1]]. Once again, ELF is on par with other
sparse methods even though denser methods, e.g. [12],
are more appropriate for such a task. Our contributions
are the following:

e We show that a CNN trained on a standard vision
task embeds feature location in the feature gradients.
This information is as relevant for feature detection
as when a CNN is specifically trained for it.

e We define a systematic method for local feature de-
tection. Extensive experiments show that ELF is on
par with other SoA deep trained detectors. They
also update the previous result from [[13]]: self-taught
CNN features provide SoA descriptors in spite of re-
cent improvements in CNN descriptors [10].

e We release the python-based evaluation code to ease
future comparison together with ELF code{ﬂ The in-
troduced robustness datasets are also made public ]

2 Related work

Early methods rely on hand-crafted detection and descrip-
tion : SIFT [21]] detects 3D spatial-scale keypoints on dif-
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ference of gaussians and describes them with a 3D His-
togram Of Gradients (HOG). SURF [7]] uses image inte-
gral to speed up the previous detection and uses a sum
of Haar wavelet responses for description. KAZE [4]
extends the previous multi-scale approach by detecting
features in non-linear scale spaces instead of the classic
Gaussian ones. ORB [30] combines the FAST [29] de-
tection, the BRIEF [8]] description, and improves them to
make the pipeline scale and rotation invariant. MSER-
based detector hand-crafts desired invariance properties
for keypoints, and designs a fast algorithm to detect
them [23]. Even though these hand-crafted methods have
proven to be successful and to reach state-of-the-art per-
formance for some applications, recent research focus on
learning-based methods.

One of the first learned detector is TILDE [43]], trained
under drastic changes of light and weather on the We-
bcam dataset. They use supervision to learn saliency
maps which maxima are keypoint locations. Ground-truth
saliency maps are generated with ‘good keypoints’: they
use SIFT and filter out keypoints that are not repeated in
more than 100 images. One drawback of this method is
the need for supervision that relies on another detector.
However, there is no universal explicit definition of what a
good keypoint is. This lack of specification inspires Quad-
Networks [31]] to adopt an unsupervised approach: they
train a neural network to rank keypoints according to their
robustness to random hand-crafted transformations. They
keep the top/bottom quantile of the ranking as keypoints.
ELF is similar in that it does not requires supervision but
differs in that it does not need to further train the CNN.

Other learned detectors are trained within full detec-
tion/description pipelines such as LIFT [44], SuperPoint
[12] and LF-Net [28]. LIFT contribution lies in their orig-
inal training method of three CNNs. The detector CNN
learns a saliency map where the most salient points are
keypoints. They then crop patches around these key-
points, compute their orientations and descriptors with
two other CNNs. They first train the descriptor with
patches around ground-truth matching points with con-
trastive loss, then the orientation CNN together with the
descriptor and finally with the detector. One drawback of
this method is the need for ground-truth matching key-
points to initiate the training. In [12], the problem is
avoided by pre-training the detector on a synthetic ge-
ometric dataset made of polygons on which they detect
mostly corners. The detector is then finetuned during
the descriptor training on image pairs from COCO [20]
with synthetic homographies and the correspondence con-
trastive loss introduced in [10]]. LF-Net relies on another
type of supervision: it uses ground-truth camera poses and
image depth maps that are easier to compute with laser or
standard SfM than ground-truth matching keypoints. Its
training pipeline builds over LIFT and employs the pro-

jective camera model to project detected keypoints from
one image to the other. These keypoint pairs form the
ground-truth matching points to train the network. ELF
differs in that the CNN model is already trained on a stan-
dard task. It then extracts the relevant information embed-
ded inside the network for local feature detection, which
requires no training nor supervision.

The detection method of this paper is mainly inspired
from the initial observation in [35]]: given a CNN trained
for classification, the gradient of a class score w.r:¢ the im-
age is the saliency map of the class object in the input
image. A line of works aims at visualizing the CNN rep-
resentation by inverting it into the image space through
optimization [14} 22]]. Our work differs in that we back-
propagate the feature map itself and not a feature loss.
Following works use these saliency maps to better un-
derstand the CNN training process and justify the CNN
outputs. Efforts mostly focus on the gradient definitions
[37, 38| 140, 46]]. They differ in the way they handle
the backpropagation of the non-linear units such as Relu.
Grad-CAM [33] introduces a variant where they fuse sev-
eral gradients of the classification score w.r.¢ feature maps
and not the image space. Instead, ELF computes the gra-
dient of the feature map, and not a classification score,
w.r.t the image. Also we run simple backpropagation
which differs in the non-linearity handling: all the sig-
nal is backpropagated no matter whether the feature maps
or the gradients are positive or not. Finally, as far as we
know, this is the first work to exploit the localisation in-
formation present in these gradients for feature detection.

The simple descriptor introduced for the sake of the
matchability evaluation is taken from UCN [10]. Given
a feature map and the keypoints to describe, it interpo-
lates the feature map on the keypoints location. Using
a trained CNN for feature description is one of the early
applications of CNN [13]. Later, research has taken on
specifically training the CNN to generate features suit-
able for keypoint matching either with patch-based ap-
proaches, among which [[15 24} 34} |45]], or image-based
approaches [[10, 41]. We choose the description method
from UCN [10], also used by SuperPoint, for its com-
plexity is only O(1) compared to patch-based approaches
that are O(N)) with N the number of keypoints. We favor
UCN to InLoc [41] as it is simpler to compute. The moti-
vation here is only to get a simple descriptor easy to inte-
grate with all detectors for fair comparison of the detector
matching performances. So we overlook the description
performance.

3 Method

This section defines ELF, a detection method valid for any
trained CNN. Keypoints are local maxima of a saliency



map computed as the feature gradient w.r.t the image. We
use the data adaptive Kapur method [[17] to automatically
threshold the saliency map and keep only the most salient
locations, then run NMS for local maxima detection.

Figure 3: (Bigger version Figure[I3]) Saliency maps com-
puted from the feature map gradient 'TFl(x) . aa—lil ’ En-

hanced image contrast for better visualisation. Top row:
gradients of VGG pooly and pools show a loss of reso-
lution from pooly to poolz. Bottom: (pool;)ic(1 2,5 of
VGG on Webcam, HPatches and Coco images. Low level
saliency maps activate accurately whereas higher saliency
maps are blurred.

3.1 Feature Specific Saliency

We generate a saliency map that activates on the most in-
formative image region for a specific CNN feature level [.
Let I be a vector image of dimension D; = H; - Wy - CJ.
Let F! be a vectorized feature map of dimension Dp =
H; - W, - C;. The saliency map S*, of dimension Dy, is
SYI) = |'F'(X) - VF!|, with V;F' a Dp x D matrix.
The saliency activates on the image regions that con-
tribute the most to the feature representation F''(I). The
term V;F' explicits the correlation between the feature
space of F! and the image space in general. The multi-
plication by F'(I) applies the correlation to the features
FY(T) specifically and generate a visualisation in image
space S'(I). From a geometrical point of view, this oper-
ation can be seen as the projection V;F' of a feature sig-
nal F'(I) into the image space. From a signal processing
approach, F'(I) is an input signal filtered through VF!
into the image space. If C; > 1, S! is converted into a
grayscale image by averaging it across channels.

3.2 Feature Map Selection

We provide visual guidelines to choose the feature level [
so that F'! still holds high resolution localisation informa-
tion while providing a useful high-level representation.

CNN operations such as convolution and pooling in-
crease the receptive field of feature maps while reducing
their spatial dimensions. This means that F has less spa-
tial resolution than F!'~! and the backpropagated signal
S' ends up more spread than S'~!. This is similar to
when an image is too enlarged and it can be observed
in Figure 3] which shows the gradients of the VGG fea-
ture maps. On the top row, pooly’s gradient (left) better
captures the location details of the dome whereas pools’s
gradient (right) is more spread. On the bottom rows, the
images lose their resolution as we go higher in the net-
work. Another consequence of this resolution loss is that
small features are not embedded in F' if [ is too high.
This would reduce the space of potential keypoint to only
large features which would hinder the method. This ob-
servation motivates us to favor low-level feature maps for
feature detection. We chose the final ! by taking the
highest [ which provides accurate localisation. This is vi-
sually observable by sparse high intensity signal contrary
to the blurry aspect of higher layers.

3.3 Automatic Data-Adaptive Thresholding

The threshold is automatic and adapts to the saliency map
distribution to keep only the most informative regions.
Figure 2] shows saliency maps before and after threshold-
ing using Kapur’s method [17], which we briefly recall
below. It chooses the threshold to maximize the infor-
mation between the image background and foreground
the pixel distribution below and above the thresh-
old. This method is especially relevant in this case as it
aims at maintaining as much information on the distribu-
tion above the threshold as possible. This distribution de-
scribes the set of local maxima among which we choose
our keypoints. More formally, for an image I of N pix-
els with n sorted gray levels and (f;)ic, the correspond-
ing histogram, p; = fﬁ is the empirical probability of a
pixel to hold the value f;. Let s € n be a threshold level
and A, B the empirical background and foreground distri-
butions. The level s is chosen to maximize the informa-
tion between A and B and the threshold value is set to f,:

A= ( £ ) and B = (pi’) . For better
2icsPi) ics 2is=sPt)is
results, we blur the image with a Gaussian of parameters

(tthr, Othr) before computing the threshold level.

Once the threshold is set, we denoise the image with a
second Gaussian blur of parameters (inoise, Onoise) and
run standard NMS (the same as for SuperPoint) where we
iteratively select decreasing global maxima while ensur-
ing that their nearest neighbor distance is higher than the

ie.




window wnms € N. Also we ignore the bays € N pixels
around the image border.

3.4 Simple descriptor

As mentioned in the introduction, the repeatability score
does not discriminate among detectors anymore. So they
are also evaluated on how ‘matchable’ their detected key-
points are with the matching score. To do so, the ELF
detector is completed with a simple descriptor inspired by
SuperPoint’s descriptor. The use of this simple descrip-
tor over existing competitive ones avoids unfairly boost-
ing ELF’s perfomance. Inspired by SuperPoint, we in-
terpolate a CNN feature map on the detected keypoints.
Although simple, experiments show that this simple de-
scriptor completes ELF into a competitive feature detec-
tion/description method.

The feature map used for description may be different
from the one for detection. High-level feature maps have
wider receptive field hence take higher context into ac-
count for the description of a pixel location. This leads
to more informative descriptors which motivates us to fa-
vor higher level maps. However we are also constrained
by the loss of resolution previously described: if the fea-
ture map level is too high, the interpolation of the descrip-
tors generate vector too similar to each other. For exam-
ple, the VGG pooly layer produces more discriminative
descriptors than pools even though pools embeds infor-
mation more relevant for classification. Empirically we
observe that there exists a layer level I’ above which the
description performance stops increasing before decreas-
ing. This is measured through the matching score metric
introduced in [26]. The final choice of the feature map is
done by testing some layers I’ > [ and select the lowest
feature map before the descriptor performance stagnates.

The compared detectors are evaluated with both their
original descriptor and this simple one. We detail the mo-
tivation behind this choice: detectors may be biased to
sample keypoints that their respective descriptor can de-
scribe ‘well” [44]. So it is fair to compute the matching
score with the original detector/descriptor pairs. How-
ever, a detector can sample ‘useless points’ (e.g. sky pix-
els for 3d reconstructions) that its descriptor can charac-
terise ‘well’. In this case, the descriptor ‘hides’ the detec-
tor default. This motivates the integration of a common
independent descriptor with all detectors to evaluate them.
Both approaches are run since each is as fair as the other.

4 Experiments

This section describes the evaluation metrics and datasets
as well as the method’s tuning. Our method is compared
to detectors with available public code: the fully hand-

crafted SIFT [21]], SURF [7]], ORB [30], KAZE [4], the
learning-based LIFT [44], SuperPoint [12], LF-Net [28]],
the individual detectors TILDE [43]], MSER [23]].

4.1

We follow the standard validation guidelines [26] that
evaluates the detection performance with repeatability
(rep). It measures the percentage of keypoints common to
both images. We also compute the matching score (ms) as
an additional defector metric. It captures the percentage
of keypoint pairs that are nearest neighbours in both im-
age space and descriptor space i.e. the ratio of keypoints
correctly matched. For fair completeness, the mathemat-
ical definitions of the metrics are provided in Appendix
and their implementation in the soon-to-be released code.

A way to reach perfect rep is to sample all the pixels
or sample them with a frequency higher than the distance
threshold €y, of the metric. One way to prevent the first
flaw is to limit the number of keypoints but it does not
counter the second. Since detectors are always used to-
gether with descriptors, another way to think the detector
evaluation is: ’a good keypoint is one that can be discrim-
inatively described and matched’. One could think that
such a metric can be corrupted by the descriptor. But we
ensure that a detector flaw cannot be hidden by a very
performing descriptor with two guidelines. One experi-
ment must evaluate all detector with one fixed descriptor
(the simple one defined in 3.4). Second, ms can never be
higher than rep so a detector with a poor rep leads to a
poor ms.

Here the number of detected keypoints is limited to 500
for all methods. As done in [12, 28], we replace the over-
lap score in [26] to compute correspondences with the 5-
pixel distance threshold. Following [44], we also mod-
ify the matching score definition of [26]] to run a greedy
bipartite-graph matching on all descriptors and not just
the descriptor pairs for which the distance is below an ar-
bitrary threshold. We do so to be able to compare all state-
of-the-art methods even when their descriptor dimension
and range vary significantly. (More details in Appendix.)

Metrics

4.2 Datasets

All images are resized to the 480x 640 pixels and the im-
age pair transformations are rectified accordingly.

General performances. The HPatches dataset [S]
gathers a subset of standard evaluation images such as
DTU and OxfordAffine [2} 25]: it provides a total of 696
images, 6 images for 116 scenes and the corresponding
homographies between the images of a same scene. For
57 of these scenes, the main changes are photogrammetric
and the remaining 59 show significant geometric deforma-
tions due to viewpoint changes on planar scenes.



Figure 4: Left-Right: HPatches: planar viewpoint. Web-
cam: light. HPatches: rotation. HPatches: scale. Strecha:
3D viewpoint.

Illumination Robustness. The Webcam dataset
gathers static outdoor scenes with drastic natural light
changes contrary to HPatches which mostly holds artifi-
cial light changes in indoor scenes.

Rotation and Scale Robustness. We derive two
datasets from HPatches. For each of the 116 scenes, we
keep the first image and rotate it with angles from 0° to
210° with an interval of 40°. Four zoomed-in version
of the image are generated with scales [1.25,1.5,1.75, 2].
We release these two datasets together with their ground
truth homographies for future comparisons.

3D Viewpoint Robustness. We use three Strecha
scenes [39]] with increasing viewpoint changes: Fountain,
Castle entry, Herzjesu-P8. The viewpoint changes pro-
posed by HPatches are limited to planar scenes which
does not reflect the complexity of 3D structures. Since
the ground-truth depths are not available anymore, we
use COLMAP 3D reconstruction to obtain ground-
truth scaleless depth. We release the obtained depth maps
and camera poses together with the evaluation code. ELF
robustness is additionally tested in the CVPR19 Image
Matching Challenge (see results sections).

4.3 Baselines

We describe the rationale behind the evaluation. The
tests run on a QuadroM?2200 with Tensorflow 1.4, Cudas,
Cudnn6 and Opencv3.4. We use the OpenCV implemen-
tation of SIFT, SURF, ORB, KAZE, MSER with the de-
fault parameters and the author’s code for TILDE, LIFT,
SuperPoint, LF-Net with the provided models and param-
eters. When comparing detectors in the feature matching
pipeline, we measure their matching score with both their
original descriptor and ELF simple descriptor. For MSER
and TILDE, we use the VGG simple descriptor.
Architecture influence. ELF is tested on five net-
works: three classification ones trained on ImageNet
(AlexNet, VGG, Xception [9] [36]) as well as the
trained SuperPoint’s and LF-Net’s descriptor ones. We
call each variant with the network’s names prefixed with

ELF as in saliency. The paper compares the influence
of 1) architecture for a fixed task (ELF-AlexNet [18] vs.
ELF-VGG [36] v.s. ELF-Xception [9])), ii) the task (ELF-
VGG vs. ELF-SuperPoint (SP) descriptor), iii) the train-
ing dataset (ELF-LFNet on phototourism vs. ELF-SP on
MS-COCO). This study is being refined with more inde-
pendent comparisons of tasks, datasets and architectures
soon available in a journal extension.

We use the author’s code and pre-trained models
which we convert to Tensorflow except for LF-
Net. We search the blurring parameters (fithr, Othr)s
(Mnoises Tnoise) in the range [3,21]% and the NMS pa-
rameters (wx s, bvars) in [4, 13]%

Individual components comparison. Individual de-
tectors are compared with the matchability of their de-
tection and the description of the simple VGG-pool3 de-
scriptor. This way, the m.s. only depends on the detec-
tion performance since the description is fixed for all de-
tectors. The comparison between ELF and recent deep
methods raises the question of whether triplet-like losses
are relevant to train CNN descriptors. Indeed, these losses
constrain the CNN features directly so that matching key-
points are near each other in descriptor space. Simpler
loss, such as cross-entropy for classification, only the con-
strain the CNN output on the task while leaving the repre-
sentation up to the CNN.

ELF-VGG detector is also integrated with existing de-
scriptors. This evaluates how useful the CNN self-learned
feature localisation compares with the hand-crafted and
the learned ones.

Gradient Baseline. Visually, the feature gradient map
is reminiscent of the image gradients computed with the
Sobel or Laplacian operators. We run two variants of our
pipeline where we replace the feature gradient with them.
This aims at showing whether CNN feature gradients em-
bed more information than image intensity gradients.

5 Results

Experiments show that ELF compares with the state-
of-the-art on HPatches and demonstrates similar robust-
ness properties with recent learned methods. It generates
saliency maps visually akin to a Laplacian on very struc-
tured images (HPatches) but proves to be more robust on
outdoor scenes with natural conditions (Webcam). When
integrated with existing feature descriptors, ELF boosts
the matching score. Even integrating ELF simple descrip-
tor improves it with the exception of SuperPoint for which
results are equivalent. This sheds new light on the repre-
sentations learnt by CNNs and suggests that deep descrip-
tion methods may underexploit the information embed-
ded in their trained networks. Another suggestion may
be that the current metrics are not relevant anymore for



deep learning methods. Indeed, all can detect repeatable
keypoints with more or less the same performances. Even
though the matchability of the points (m.s) is a bit more
discriminative, neither express how ‘useful’ the kp are for
the end-goal task. One way to do so is to evaluate an end-
goal task (e.g. Structure-from-Motion). However, for the
evaluation to be rigorous all the other steps should be fixed
for all papers. Recently, the Image Matching CVPR19
workshop proposed such an evaluation but is not fully au-
tomatic yet. These results also challenge whether current
descriptor-training loss are a strong enough signal to con-
strain CNN features better than a simple cross-entropy.
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Figure 5: Top-Down: HPatches-Webcam. Left-Right: re-
peatability, matching score.

The tabular version of the following results is provided
in Appendix. The graph results are better seen with color
on a computer screen. Unless mentioned otherwise, we
compute repeatability for each detector, and the match-
ing score of detectors with their respective descriptors,
when they have one. We use ELF-VGG-pool, descrip-
tor for TILDE, MSER, ELF-VGG, ELF-SuperPoint, and
ELF-LFNet. We use AlexNet and Xception feature maps
to build their respective simple descriptors. The meta-
parameters for each variants are provided in Appendix.

General performances. Figure [5] (top) shows that the
rep variance is low across detectors whereas ms is more
discriminative, hence the validation method (Section 4.1).
On HPatches, SuperPoint (SP) reaches the best rep-ms
[68.6, 57.1] closely followed by ELF (e.g. ELF-VGG:
[63.8, 51.8]) and TILDE [66.0, 46.7]. In general, we ob-
serve that learning-based methods all outperform hand-
crafted ones. Still, LF-Net and LIFT curiously underper-
form on HPatches: one reason may be that the data they
are trained on differs too much from this one. LIFT is
trained on outdoor images only and LF-Net on either in-

door or outdoor datasets, whereas HPatches is made of a
mix of them. We compute metrics for both LF-Net models
and report the highest one (indoor). Even though LF-Net
and LIFT fall behind the top learned methods, they still
outperform hand-crafted ones which suggests that their
framework learn feature specific information that hand-
crafted methods can not capture. This supports the recent
direction towards trained detectors and descriptors.

Light Robustness Again, ms is a better discriminant on
Webcam than rep (Figure [5] bottom). ELF-VGG reaches
top rep-ms [53.2, 43.7] closely followed by TILDE [52.5,
34.7] which was the state-of-the-art detector.

Overall, there is a performance degradation (~20%)
from HPatches to Webcam. HPatches holds images
with standard features such as corners that state-of-the-
art methods are made to recognise either by definition or
by supervision. There are less such features in the We-
bcam dataset because of the natural lighting that blurs
them. Also there are strong intensity variations that these
models do not handle well. One reason may be that the
learning-based methods never saw such lighting varia-
tions in their training set. But this assumption is rejected
as we observe that even SuperPoint, which is trained on
Coco images, outperforms LIFT and LF-Net, which are
trained on outdoor images. Another justification can be
that what matters the most is the pixel distribution the net-
work is trained on, rather than the image content. The top
methods are classifier-based ELF and SuperPoint: the first
ones are trained on the huge Imagenet dataset and benefit
from heavy data augmentation. SuperPoint also employs
a considerable data strategy to train their network. Thus
these networks may cover a much wider pixel distribution
which would explain their robustness to pixel distribution
changes such as light modifications.

Architecture influence ELF is tested on three classifi-
cation networks as well as the descriptor networks of Su-
perPoint and LF-Net (Figure[5] bars under ‘ELF’).

For a fixed training task (classification) on a fixed
dataset (ImageNet), VGG, AlexNet and Xception are
compared. As could be expected, the network architec-
ture has a critical impact on the detection and ELF-VGG
outperforms the other variants. The rep gap can be ex-
plained by the fact that AlexNet is made of wider convo-
lutions than VGG, which induces a higher loss of resolu-
tion when computing the gradient. As for ms, the higher
representation space of VGG may help building more in-
formative features which are a stronger signal to back-
propagate. This could also justify why ELF-VGG out-
performs ELF-Xception that has less parameters. An-
other explanation is that ELF-Xception’s gradient maps
seem smoother. Salient locations are then less emphasized
which makes the keypoint detection harder. One could
hint at the depth-wise convolution to explain this visual
aspect but we could not find an experimental way to verify



it. Surprisingly, ELF-LFNet outperforms the original LF-
Net on both HPatches and Webcam and ELF-SuperPoint
variant reaches similar results as the original.
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Figure 6: HPatches scale. Left-Right: rep, ms.

Scale Robustness. ELF-VGG is compared with state-
of-the art detectors and their respective descriptors (Fig-
ure [6). Repeatability is mostly stable for all methods:
SIFT and SuperPoint are the most invariant whereas ELF
follows the same variations as LIFT and LF-Net. Once
again, ms better assesses the detectors performance: Su-
perPoint is the most robust to scale changes, followed by
LIFT and SIFT. ELF and LF-Net lose 50% of their match-
ing score with the increasing scale. It is surprising to ob-
serve that LIFT is more scale-robust than LF-Net when
the latter’s global performance is higher. A reasonable ex-
planation is that LIFT detects keypoints at 21 scales of the
same image whereas LF-Net only runs its detector CNN
on 5 scales. Nonetheless, ELF outperforms LF-Net with-
out manual multi-scale processing.
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Figure 7: HPatches rotation. Left-Right: rep, ms.

Rotation Robustness. Even though rep shows little
variations (Figure , all learned methods’ ms crash while
only SIFT survives the rotation changes. This can be ex-
plained by the explicit rotation estimation step of SIFT.
However LIFT and LF-Net also run such a computation.
This suggests that either SIFT’s hand-crafted orientation
estimation is more accurate or that HOG are more rota-
tion invariant than learned features. LF-Net still performs
better than LIFT: this may be because it learns the key-
point orientation on the keypoint features representation
rather than the keypoint pixels as done in LIFT. Not sur-
prisingly, ELF simple descriptor is not rotation invariant
as the convolutions that make the CNN are not. This also
explains why SuperPoint also crashes in a similar manner.

These results suggest that the orientation learning step in
LIFT and LF-Net is needed but its robustness could be
improved.

Figure 8: Robustness analysis: 3D viewpoint.

3D Viewpoint Robustness. While SIFT shows a clear
advantage of pure-rotation robustness, it displays simi-
lar degradation as other methods on realistic rotation-and-
translation on 3D structures. Figure[§|shows that all meth-
ods degrade uniformly. One could assume that this small
data sample is not representative enough to run such ro-
bustness analysis. However, we think that these results
rather suggest that all methods have the same robustness
to 3D viewpoint changes. Even though previous analyses
allows to rank the different feature matching pipelines,
each has advantages over others on certain situations:
ELF or SuperPoint on general homography matches, or
SIFT on rotation robustness. This is why this paper only
aims at showing ELF reaches the same performances and
shares similar properties to existing methods as there is
no generic ranking criteria. The recent evaluation run by
the CVPR19 Image Matching Challenge [1] supports the
previous conclusions.
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Figure 9: Left-Middle-Right bars: original method, inte-
gration of ELF detection, integration of ELF description.

Individual components performance. First, all meth-
ods’ descriptor are replaced with the simple ELF-VGG-
pools one. We then compute their new ms and com-
pare it to ELF-VGG on HPatches and Webcam (Figure
[} stripes). The description is based on pools instead of
pooly here for it produces better results for the other meth-
ods while preserving ours. ELF reaches higher ms [51.3]
for all methods except for SuperPoint [53.7] for which
it is comparable. This shows that ELF is as relevant, if
not more, than previous hand-crafted or learned detectors.
This naturally leads to the question: 'What kind of key-



points does ELF detect ?° There is currently no answer
to this question as it is complex to explicitly characterize
properties of the pixel areas around keypoints. Hence the
open question 'What makes a good keypoint ?’ mentioned
at the beginning of the paper. Still, we observe that ELF
activates mostly on high intensity gradient areas although
not all of them. One explanation is that as the CNN is
trained on the vision task, it learns to ignore image regions
useless for the task. This results in killing the gradient sig-
nals in areas that may be unsuited for matching.

Another surprising observation regards CNN descrip-
tors: SuperPoint (SP) keypoints are described with the
SP descriptor in one hand and the simple ELF-VGG one
in the other hand. Comparing the two resulting match-
ing scores is one way to compare the SP and ELF de-
scriptors. Results show that both approaches lead to sim-
ilar ms. This result is surprising because SP specifically
trains a description CNN so that its feature map is suit-
able for keypoint description [10]. In VGG training, there
is no explicit constraints on the features from the cross-
entropy loss. Still, both feature maps reach similar nu-
merical description performance. This raises the question
of whether contrastive-like losses, which input are CNN
features, can better constrain the CNN representation than
simpler losses, such as cross-entropy, which inputs are
classification logits. This also shows that there is more
to CNNs than only the task they are trained on: they em-
bed information that can prove useful for unrelated tasks.
Although the simple descriptor was defined for evaluation
purposes, these results demonstrate that it can be used as
a description baseline for feature extraction.

The integration of ELF detection with other methods’
descriptor (Figure[9} circle) boosts the ms. [44]] previously
suggested that there may be a correlation between the de-
tector and the descriptor within a same method, i.e. the
LIFT descriptor is trained to describe only the keypoints
output by its detector. However, these results show that
ELF can easily be integrated into existing pipelines and
even boost their performances.
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Figure 10: Gradient baseline.

Gradient Baseline The saliency map used in ELF is
replaced with simple Sobel or Laplacian gradient maps.
The rest of the detection pipeline stays the same and we
compute their performance (Figure [I0] Left). They are

completed with simple ELF descriptors from the VGG,
AlexNet and Xception networks. These new hybrids are
then compared to their respective ELF variant (Right).
Results show that these simpler gradients can detect sys-
tematic keypoints with comparable rep on very structured
images such as HPatches. However, the ELF detector bet-
ter overcomes light changes (Webcam). On HPatches,
the Laplacian-variant reaches similar ms as ELF-VGG (55
vs 56) and outperforms ELF-AlexNet and ELF-Xception.
These scores can be explained with the images structure:
for heavy textured images, high intensity gradient loca-
tions are relevant enough keypoints. However, on Web-
cam, all ELF detectors outperform Laplacian and Sobel
with a factor of 100%. This shows that ELF is more ro-
bust than Laplacian and Sobel operators. Also, feature
gradient is a sparse signal which is better suited for lo-
cal maxima detection than the much smoother Laplacian

operator (Figure[TT).

Figure 11: Feature gradient (right) provides a sparser sig-
nal than Laplacian (middle) which is more selective of
salient areas.

Qualitative results Green lines show putative matches
based only on nearest neighbour matching of descriptors.
More qualitative results are available in the video El

Figure 12: Green lines show putative matches of the sim-
ple descriptor before RANSAC-based homography esti-
mation.

CVPR19 Image Matching Challenge [1] This chal-
lenge evaluates detection/description methods on two
standard tasks: 1) wide stereo matching and 2) structure
from motion from small image sets. The matching score
evaluates the first task, and the camera pose estimation
is used for both tasks. Both applications are evaluated on
the photo-tourism image collections of popular landmarks
[16,42]. More details on the metrics definition are avail-
able on the challenge website [1]].

Wide stereo matching: Task 1 matches image pairs
across wide baselines. It is evaluated with the keypoints

3https://youtu.be/oxbG5162yDs


https://youtu.be/oxbG5162yDs

ms and the relative camera pose estimation between two
images. The evaluators run COLMAP to reconstruct
dense ‘ground-truth’ depth which they use to translate
keypoints from one image to another and compute the
matching score. They use the RANSAC inliers to estimate
the camera pose and measure performance with the “an-
gular difference between the estimated and ground-truth
vectors for both rotation and translation. To reduce this to
one value, they use a variable threshold to determine each
pose as correct or not, then compute the area under the
curve up to the angular threshold. This value is thus the
mean average precision up to x, or mAPx. They consider
5, 10, 15, 20, and 25 degrees” [[L]. Submissions can con-
tain up to 8000 keypoints and we submitted entries to the
sparse category i.e. methods with up to 512 keypoints.
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Figure 13: Wide stereo matching. Left: matching score
(%) of sparse methods (up to 512 keypoints) on photo-
tourism. Right: Evolution of mAP of camera pose for
increasing tolerance threshold (degrees).

Figure [T3] (left) shows the ms (%) of the submitted
sparse methods. It compares ELF-VGG detection with
DELF [27] and SuperPoint, where ELF is completed with
either the simple descriptor from pool3 or pool4, and
SIFT. The variant are dubbed respectively ELF-256, ELF-
512 and ELF-SIFT. This allows us to sketch a simple com-
parison of descriptor performances between the simple
descriptor and standard SIFT.

As previously observed on HPatches and Webcam, ELF
and SuperPoint reach similar scores on Photo-Tourism.
ELF-performance slightly increases from 25% to 26.4%
when switching descriptors from VGG-pool3 to VGG-
pool4. One explanation is that the feature space size is
doubled from the first to the second. This would allow the
pool4 descriptors to be more discriminative. However, the
1.4% gain may not be worth the additional memory use.
Overall, the results show that ELF can compare with the
SoA on this additional dataset that exhibits more illumina-
tion and viewpoint changes than HPatches and Webcam.

This observation is reinforced by the camera pose eval-
uation (Figure [I3|right). SuperPoint shows as slight ad-
vantage over others that increases from 1% to 5% across
the error tolerance threshold whereas ELF-256 exhibits a
minor under-performance. Still, these results show ELF
compares with SoA performance even though it is not
trained explicitly for detection/description.
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Figure 14: SfM from small subsets. Evolution of mAP of
camera pose for increasing tolerance threshold.

Structure-from-Motion from small subsets. Task 2 “pro-
poses to to build SfM reconstructions from small (3, 5, 10,
25) subsets of images and use the poses obtained from the
entire (much larger) set as ground truth” [[1].

Figure [I4] shows that SuperPoint reaches performance
twice as big as the next best method ELF-SIFT. This sug-
gests that when few images are available, SuperPoint per-
forms better than other approaches. One explanation is
that even in ’sparse-mode’, i.e. when the number of key-
points is restricted up to 512, SuperPoint samples points
more densely than the others (~383 v.s. ~210 for the oth-
ers). Thus, SuperPoint provides more keypoints to trian-
gulate i.e. more 2D-3D correspondences to use when esti-
mating the camera pose. This suggests that high keypoint
density is a crucial characteristic of the detection method
for Structure-from-Motion. In this regard, ELF still has
room for improvement compared to SuperPoint.

6 Conclusion

We have introduced ELF, a novel method to extract fea-
ture locations from pre-trained CNNs, with no further
training. Extensive experiments show that it performs
as well as state-of-the art detectors. It can easily be in-
tegrated into existing matching pipelines and proves to
boost their matching performances. Even when com-
pleted with a simple feature-map-based descriptor, it turns
into a competitive feature matching pipeline. These re-
sults shed new light on the information embedded inside
trained CNNs. This work also raises questions on the
descriptor training of deep-learning approaches: whether
their losses actually constrain the CNN to learn better fea-
tures than the ones it would learn on its own to complete a
vision task. Preliminary results show that the CNN archi-
tecture, the training task and the dataset have substantial
impact on the detector performances. A further analysis
of these correlations is the object of a future work.
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A Metrics definition

We explicit the repeatability and matching score defini-
tions introduced in [26] and our adaptations using the fol-
lowing notations: let (I',I?), be a pair of images and
KP' = (kp})j<n, the set of N; keypoints in image T;.
Both metrics are in the range [0, 1] but we express them
as percentages for better expressibility.

Repeatability Repeatability measures the percentage of
keypoints common to both images. We first warp KP' to
I2 and note KP1% the result. A naive definition of re-
peatability is to count the number of pairs (kp''*, kp?) €
KPY x KP? such that [|[kpb® — kp?|la < e, with €
a distance threshold. As pointed by [43], this definition
overestimates the detection performance for two reasons:
a keypoint close to several projections can be counted sev-
eral times. Moreover, with a large enough number of key-
points, even simple random sampling can achieve high re-
peatability as the density of the keypoints becomes high.

We instead use the definition implemented in VL-
Bench [19]: we define a weighted graph (V, E) where the
edges are all the possible keypoint pairs between P
and K'P? and the weights are the euclidean distance be-
tween keypoints.

V = (kp"" € KPY) U (kp* € KP?)

E = (kp"", kp?, [lkp"" — kp®|l2) € KP x KP?
6]

We run a greedy bipartite matching on the graph and

count the matches with a distance less than €,. With M
be the resulting set of matches:

M
min(|IC791\7 UC’P2|)

We set the distance threshold € = 5 as is done in LIFT
[44] and LF-Net [28]].

repeatability = (2)

Matching score The matching score definition intro-
duced in [26] captures the percentage of keypoint pairs
that are nearest neighbours both in image space and in
descriptor space, and for which these two distances are
below their respective threshold €y, and €4. Let M be de-
fined as in the previous paragraph and M be the analog
of M when the graph weights are descriptor distances in-
stead of keypoint euclidean distances. We delete all the
pairs with a distance above the thresholds € and ¢4 in M
and M 4 respectively. We then count the number of pairs
which are both nearest neigbours in image space and de-
scriptor space i.e. the intersection of M and M :

MnN My
min ([P, |KP?|)

3)

matching score =

One drawback of this definition is that there is no
unique descriptor distance threshold ¢, valid for all meth-
ods. For example, the SIFT descriptor as computed by
OpenCV is a [0, 255]*2® vector for better computational
precision, the SuperPoint descriptor is a [0, 1]2% vector
and the ORB descriptor is a 32 bytes binary vector. Not
only the vectors are not defined over the same normed
space but their range vary significantly. To avoid intro-
ducing human bias by setting a descriptor distance thresh-
old ¢4 for each method, we choose to set ¢, = oo and
compute the matching score as in [26]. This means that
we consider any descriptor match valid as long as they
match corresponding keypoints even when the descriptor
distance is high.

B Tabular results

Repeatability | Matching Score
(5] [43] (5] (43]

ELF-VGG 63.81 53.23 | 51.84 43.73
ELF-AlexNet 51.30 38.54 | 3521 3192
ELF-Xception 48.06 49.84 | 29.81 3548
ELF-SuperPoint | 59.7 4629 | 4432  18.11
ELF-LFNet 60.1 4190 | 44.56 3343
LF-Net 61.16 48.27 | 34.19 18.10
SuperPoint 68.57 46.35 | 57.11 3244
LIFT 54.66 4221 | 3402 17.83
SURF 5451 3393 | 26.10 10.13
SIFT 51.19 28.25 | 24.58 8.30
ORB 53.44 31.56 | 14.76 1.28
KAZE 56.88 41.04 | 29.81 13.88
TILDE 65.96 52.53 | 46.71  34.67
MSER 47.82 5223 | 21.08 6.14

Table 1: Generic performances on HPatches [5]. Robust-
ness to light (Webcam [43])). (Fig. 5).

LFE-Net | SuperPoint | LIFT | SIFT | SURF | ORB

Bl 34.19 57.11 34.02 | 24.58 | 26.10 | 14.76
44.19 53.71 3948 | 27.03 | 34.97 | 20.04

& 18.10 32.44 17.83 | 10.13 8.30 1.28
30.71 34.60 26.84 | 13.21 | 2143 | 1391
Table 2: Individual component performance (Fig. O}

stripes). Matching score for the integration of the VGG
pools simple-descriptor with other’s detection.  Top:
Original description. Bottom: Integration of simple-
descriptor. HPatches: [5]. Webcam: [43]
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LF-Net | SuperPoint | LIFT | SIFT | SURF | ORB
34.19 57.11 34.02 | 24.58 | 26.10 | 14.76
Bl 30.16 | 5444 | 4248 | 50.63 | 30.91 | 36.96 Nets Dencise | Threshol P | simpledesc
5.5 , poo! Ppoo!
oy | 1810°[ 324411783 [ 10.03 | 830 | 128 et o) &5 ool hoold
26.70 39.55 30.82 36.83 19.14 6.60 Xception 9,9) 5.4) block2-conv1 block4-pool
SuperPoint (7,2) (17,6) convla VGG-pool3
LF-Net (5,5) 5,4) block2-conv VGG-pool3

Table 3: Individual component performance (Fig. O}
circle). Matching score for the integration of ELF-VGG Table 6: Robustness to light on Webcam (Fig. ).
(on pools) with other’s descriptor. Top: Original detec-
tion. Bottom: Integration of ELF. HPatches: [5]. Web-

cam: [43]]
Repeatability | Matching Score (Tes T Denoe [ T | 7 | spieens |
ets €Nno1se resho: siumple-desc
(5] (43] (1] (43] [ VGG | (2 [ (176 [ pool2 | 50014 |
Sobel-VGG 56.99 3374 | 42.11  20.99
Lapl.-VGG 6545 3374 | 55.25 2279
VGG 6381 5323 | 51.84 4373 Table 7: Robustness to scale on HPatches (Fig. [6).
Sobel-AlexNet | 56.44 33.74 | 30.57 15.42
Lapl.-AlexNet | 65.93 33.74 | 40.92 1542
AlexNet 51.30 38.54 | 3521 31.92
Sobel-Xception | 56.44 33.74 | 34.14  16.86 :
Lapl.-Xception | 65.93 33.74 | 42.52 16.86 Nets | Denoise | Threshold | F__ | simple-desc
Xception 48.06 49.84 | 29.81  35.48 M el ped

) ] Table 8: Robustness to rotation on HPatches (Fig. [7).
Table 4: Gradient baseline on HPatches [5] and Webcam

[43] (Fig. [10]).

C ELF Meta Parameters

l Nets [ Denoise [ Threshold [ FT [ simple-desc ]
This section specifies the meta parameters values for (VGG [ 62 [ (76 [pool2 | pookd |
the ELF variants. For all methods, (wyars, bnas) =
(10, 10). Table 9: Robustness to 3D viewpoint on Strecha (Fig. [g).
L4 Denoise: (/J'noiseao-noise)'
e Threshold: (uinr, Othr)-
l_ . . .
e [: the feature map which gradient is used for detec- [Nets | Denoise | Threshold | F7_ [ simple-desc |
tion. [ VGG | G5 [ (55 [ pool2 | pool3 |

e simple-des: the feature map used for simple-
description. Unless mentioned otherwise, the feature Table 10: Individual component analysis (Fig. [0)
map is taken from the same network as the detection
feature map F'.

Nets Denoise | Threshold F! simple-desc .

VGG (5.5) (&) pool2 poold Nets Denoise | Threshold F" simple-desc
Alexnet (5.,5) 5.4 pooll pool2 VGG (5.5) (54 pool2 pool4
Xception 9.3) G4 block2-convl | block4-pool Sobel ©.9) (54 - pool4
SuperPoint 7.2) 17.6) convia VGG-pool3 Laplacian 9.9 64 - pool4
LE-Net (5.5) G4 block2-BN | VGG-pool3

Table 11: Gradient baseline on HPatches and Webcam
Table 5: Generic performances on HPatches (Fig. E]) (Fig. _

(BN: Batch Norm)
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Figure 15: Enlargement of Figure Saliency maps computed from the feature map gradient ‘TFl(x) . 88—FIL . En-

hanced image contrast for better visualisation. Top row: gradients of VGG pools and pools show a loss of resolution
from pools to pools. Bottom: (pOOli)iE[l,Zg,] of VGG on Webcam, HPatches and Coco images. Low level saliency
maps activate accurately whereas higher saliency maps are blurred.
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