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Abstract

Open set domain adaptation aims to diminish the do-

main shift across domains, with partially shared classes.

There exist unknown target samples out of the knowledge

of source domain. Compared to the close set setting, how

to separate the unknown (unshared) class from the known

(shared) ones plays a key role. Whereas, previous meth-

ods did not emphasize the semantic structure of the open

set data, which may introduce bias into the domain align-

ment and confuse the classifier around the decision bound-

ary. In this paper, we exploit the semantic structure of

open set data from two aspects: 1) Semantic Categorical

Alignment, which aims to achieve good separability of tar-

get known classes by categorically aligning the centroid

of target with the source. 2) Semantic Contrastive Map-

ping, which aims to push the unknown class away from

the decision boundary. Empirically, we demonstrate that

our method performs favourably against the state-of-the-art

methods on representative benchmarks, e.g. Digit datasets

and Office-31 datasets.

1. Introduction

Recent days have witnessed the advancement in many

computer vision tasks [19, 37, 38, 13, 29, 21, 14, 43]. The

success achieved can be largely attributed to the sufficient

amount of labeled in-domain data. However, it is common

that test data comes from a different distribution against the

training data. Such so-called domain shift may degenerate

the model performance heavily. Domain adaptation deals

with this issue by diminishing the discrepancy across two

domains. The widely considered close set setting assumes

that both domains share the same set of underlying cate-

gories. However, in practice, it is common that some un-

shared (unknown) classes exist in the target. The methods
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Figure 1. Visualization of data distribution with the proposed

method. Left: Data before the adaptation with the existence of

domain shift and unknown samples. Middle: Neighbors from the

same class are pulled closer, while samples from unknown class

are pushed away. Right: With the proposed method, representa-

tions become more discriminative. Samples from target domain

can be better aligned within the corresponding neighborhood or

distracted away from the known classes.

developed for close set domain adaptation may not be triv-

ially transferred to such open set setting.

In this paper, we focus on the open set visual domain

adaptation which aims to deal with the domain shift and

the identification of unknown objects simultaneously, in the

absence of target domain labels. Compared to the close set

domain adaptation, how to separate the unknown class from

the known ones plays a key role. Up to now, the open set

recognition still remains as a pending issue. First raised by

Busto et al. [27], they proposed to deal with open-set do-

main adaptation as an assignment task. [1] separated the

unknown according to whether the sample can be recon-

structed with the shared feature or not. While the above

methods use part of labeled data from uninteresting classes

as unknown samples, it is not possible to represent all the

unknown categories in the wild. Another setting has been

raised by Saito et al. [34] where unknown samples only ex-

ist in the target domain, which is closer to a realistic sce-

nario. Saito et al. regarded the unknown samples as a

separate class together with an adversarial loss to distin-

guish them. It is worth noting that the existence of un-

known samples hinders the alignment across domain. In
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the meanwhile, the disalignment inter-class across domain

also makes it harder to distinguish the unknown samples.

Considering the aforementioned problem, we take the

semantic structure of open set data into account to make

the unknown class more separable and thus improve the

model’s predictive ability on target domain data. Specifi-

cally, we focus on enlarging two kinds of margins: 1) the

margin across the known classes and 2) the margin between

the unknown samples and the known classes. For the first

one, we aim to make the known classes more separable and

for the second one, we expect to push the unknown class

away from the decision boundary. As shown in Fig. 1, dur-

ing training, samples coming from different domains but

within the same class (e.g. the blue circle and the red circle)

“attract” each other. For each domain, the margin between

different known classes (e.g. the blue circle and the blue

star) are enlarged. Moreover, the samples within unknown

class (e.g. the irregular polygons) are “distracted” from the

samples from known classes.

We propose using semantic categorical alignment (SCA)

and semantic contrastive mapping (SCM) to achieve our

goal. For semantic categorical alignment, due to the ab-

sence of target annotations, we indirectly promote the sep-

arability across target known classes by categorically align-

ing their centers with those in the source domain. For the

source domain, although to an extent, the separability across

known classes can be achieved through imposing the cross-

entropy loss on the labeled data, we explicitly model and

enhance such separability with the contrastive-center loss

[28]. Empirically we demonstrate that our method leads to

more discriminative features and benefit the semantic align-

ment across domains.

Although the semantic categorical alignment helps make

the decision boundary aligned across two domains, there

may still exists confusing data of unknown class lying near

the decision boundary. Thus we propose using semantic

contrastive mapping to push the unknown class away from

the boundary. In detail, we design the contrastive loss to

make the margin between the unknown and known class

larger than that between known classes.

As the target labels are not available, we use the predic-

tions of the network at each iteration as the hypothesis of

target labels to perform the semantic categorical alignment

and the semantic contrastive mapping. We start our training

from the source trained model to give a good initialization

of target label hypothesis. Although the hypothesis of tar-

get labels may not be accurate, SCA and SCM in itself are

robust to such noisy labels. Empirically we find that the es-

timated SCA/SCM loss works as a good proxy to improve

the model’s performance on the target domain data.

In a nutshell, our contributions can be summarized as

• We propose using semantic categorical alignment to

achieve good separability of target known classes and

semantic contrastive mapping to push the unknown

class away from the decision boundary. Both benefits

the adaptation performance noticeably.

• Our method performs favourably against the-state-of-

the-art methods on two representative benchmarks,

i.e. on Digits dataset, it achieves 84.3% accuracy on

the average, 1.9% higher than the state-of-the-art; on

Office-31 dataset, we achieve 89.7% with AlexNet and

89.1% with VGG.

2. Related work

Domain adaptation for visual recognition aims to bridge

the knowledge gap between across different domains. Ap-

proaches for open set recognition attempt to figure out the

unknown samples while identifying samples from known

classes. In a real scenario, data not only come from diverse

domains but also varies in a wide range of categories. This

paper focuses on dealing with the overlap of these two prob-

lems.

Many methods [22, 23, 8, 39, 2, 36, 17, 42, 24] have

been proposed for unsupervised domain adaptation (UDA),

including the deep network. These work bring signifi-

cant results focusing on the closed set in the following

aspects. Distribution-based learning. Many approaches

aim to learn features invariant to domain with a distance

metric [22, 23, 40], e.g., KL-divergence, Maximum Mean

Discrepancy (MMD), Wasserstein distance, but they ne-

glected the alignment of conditional distribution. The

categorical information is exploited to align domains at

a fine-grained level together with the pseudo-label. The

marginal distribution and conditional distribution can also

be jointly aligned with a combined MMD proposed by [31].

[35, 12, 32, 33] pay attention to the discriminative prop-

erty of the representation. This paper is also related to

work [16, 10, 3, 25, 5, 6, 41] considering the categorical

semantic compactness and separability as the same time.

Task-oriented learning. Approaches [39, 2, 7] tend to align

the domain discrepancy in an adversarial style. Ganin et

al. [7] proposed to learn domain-invariant feature by using

an adversarial loss which reverses the gradients during the

back-propagation. Bousmalis et al. [2] enabled the network

to separate the generated features into domain-specific sub-

space and domain-invariant subspace.

The aforementioned methods tackle with domain adap-

tation in the closed-set scenario. Inspired by recent work

in open-set recognition, the problem of Open Set Domain

Adaptation (OSDA) is raised by Busto et al. [27]. With sev-

eral classes trained as unknown samples, Busto et al. pro-

posed to solve this problem by learning a mapping across

domains with an assignment problem of the target samples.

As is aforementioned, it is not possible to cover all the un-

known samples with selected categories. Another setting
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Figure 2. Framework of the proposed method. There are three modules: Adversarial Domain Adaptation (ADA), Semantic Categorical

Alignment (SCA) and Semantic Contrastive Mapping (SCM). SCA aims to learn discriminative representation and align samples from

the same category across domains. SCM attempts to distract unknown samples away from all the known categories. All the modules are

trained simultaneously and work together to better categorize each known class and unknown class.

where the unknown class does not exist in the source do-

main is raised by Saito et al. [34]. Regarding unknown as

a different class, they enable the network to align feature

between known classes and reject the unknown samples at

the same time. [1] tried to separate unknown samples from

known class by disentangling the representation into pri-

vate and shared parts. They proved that the samples from

the known classes can be reconstructed with shared features

while the unknown samples can not.

Our method also regards the unknown samples as an

“unknown” class. What is different, our method devotes

to solve the open-set domain adaptation by enhancing the

discriminative property of representation, aligning similar

samples in the target with source domain while pushing the

unknown samples away from all the known classes.

3. Method

3.1. Overall Architecture

The crucial problems of open set domain adaptation con-

sist in two aspects, i.e., align the target known samples with

the known samples in the source domain, and separate un-

known samples in target from the target known samples. To

solve these two problems, we design the following mod-

ules. 1) Adversarial Domain Adaptation (ADA). Based

on a cross-entropy loss, ADA aims to initially align sam-

ples in the target with source known samples or classify

them as unknown. 2) Semantic Categorical Alignment

(SCA). This module consists of two parts. First, based on a

contrastive-center loss, aims to compact the representation

of samples from the same class. Second, based on a cen-

ter loss across domains, tries to align the distribution of the

same class between source and target. 3) Semantic Con-

trastive Mapping (SCM). With a contrastive loss, SCM

aims to encourage the known samples in the target to move

closer to the corresponding centroid in source. While it also

attempts to keep the unknown samples away from all the

known classes.

The overall framework of our method is illustrated in

Fig 2. It consists of an encoder E, a generator G and a dis-

criminator D. The image encoder E is a pretrained CNN

network to extract semantic features which may involve the

domain variance. The feature generator G is composed of

a stack of fully-connected (FC) layers. It aims to transform

the image representation into a task-oriented feature space.

The discriminator D classifies each sample with the gener-

ated representation into a category.

3.2. Adversarial Domain Adaptation

Suppose {Xs, Ys} is a set of labeled images sampled

from the source domain, in which each image xs is paired

with a label ys. Another set of images Xt derives from the

target domain. Different from Xs, each image xt in Xt is

unlabelled and may come from unknown classes. The goal

of open set domain adaptation is to classify the input im-

age xt into N + 1 classes, where N denotes the number

of known classes. All samples from unknown classes are

expected to be assigned to the unknown class N + 1.

We leverage an adversarial training method to initially

align samples in the target with source known samples or

reject them as the unknown. Specifically, the discriminator

D is trained to separate the source domain and the target
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domain. However, the feature generator G tries to minimize

the difference between the source and the target. When an

expert D fails to figure out which domain the sample comes

from, the G learns the domain-invariant representation.

We use the cross-entropy loss together with the softmax

function for the known source samples classification,

Lcls(xs, ys) = − log(p(y = ys|xs)),

= − log(D ◦G(xs))ys
).

(1)

Following [34], in an attempt to make a boundary for an

unknown sample, we utilize a binary cross entropy loss,

Ladv(xt) =−
1

2
log(p(y = N + 1|xt))

−
1

2
log(1− p(y = N + 1|xt)).

(2)

By the gradient reverse layer [7], we can flip the sign of

the gradient during backward, which allows us to update the

parameters of G and D simultaneously. Then, the objective

of the ADA module can be formulated as

LADA =min
G

(Lcls(xs, ys)− Ladv(xt))+

min
D

(Lcls(xs, ys) + Ladv(xt)).
(3)

The ADA module only initially aligns samples in the tar-

get with source known samples and learns a rough boundary

between the known and the unknown.

3.3. Semantic Categorical Alignment

We try to address the issues existing in ADA by further

exploring the semantic structure of open-set data. To sepa-

rate the unknown class from the known in the target domain,

we should 1) make each known class more concentrate and

the alignment between the source and the target more accu-

rate and 2) push the unknown class away from the decision

boundary. In this section, we aim to solve the first problem.

We introduce the Semantic Categorical Alignment (SCA),

which aims to compact the representation of known classes

and distinguish each known class from others. There are

two steps in SCA. First, the contrastive-center loss[28] is

adopted to enhance the discriminative property of gener-

ated features of source samples. Second, each centroid of

known classes from target will be aligned with the corre-

sponding centroid of class in source domain. In this way,

representations of source samples will finally become more

discriminative, meanwhile, the known target centroids will

be aligned more accurate.

To compact the source samples that belong to the same class

in the feature space, we apply the following contrastive-

center loss to the source samples,

Lcct =
1

2

m
∑

i=1

‖xi
s − c

yi
s

s ‖22

(
∑N

j=1,j 6=yi
s
‖xi

s − cjs‖22) + δ
, (4)

where m denotes the number of samples in a mini-batch

during training procedure, xi
s denotes the i-th training sam-

ple from the source domain. c
yi
s

s denotes the centroid of

class yis in the source domain. δ is a constant used for pre-

venting zero-denominator. In our experiments, δ = 1 is set

to be 10−6 by default.

To align the two centroids of a known class between the

source and target, we try to minimize the distance between

the pair of centroids dist(cks , c
k
t ) =

∥

∥cks − ckt
∥

∥

2
, where cks

and ckt represent the centroids of class k from the source and

target domain, respectively.

Due to the randomness and deviation in each mini-batch,

we align the global centroids (calculated from all samples)

instead of the local centroids (calculated from a mini-batch).

However, it is not easy to directly obtain the global cen-

troids. We propose to partially update them with the local

centroids at every iteration, according to their cosine simi-

larities to the centroids in the source domain. Specifically,

we first compute the initial global centroids based on the

prediction of the pretrained model as follows,

ck(0) =
1

nk

nk

∑

j=0

G(xk
i ), (5)

where nk denotes the number of samples with label as k.

The pretrained model is trained on the source domain within

the supervised classification paradigm. For the target sam-

ples, we use the results of prediction as pseudo labels. In

each iteration, we compute a set of local centroids ak(I) us-

ing the mini-batch samples, where I denotes the iteration.

We compute the local centroids as the average of all samples

in each iteration. Then, the source centroid cks and target

centroid ckt are updated with re-weighting as follows,

ρs = ρ(aks(I), c
k
s(I−1)),

cks(I) ← ρsa
k
s(I) + (1− ρs)c

k
s(I−1),

(6)

ρt = ρ(akt(I), c
k
s(I−1)),

ckt(I) ← ρta
k
t(I) + (1− ρt)c

k
t(I−1),

(7)

where ρ(·, ·) is defined as ρ(xi, xj) = (
xi·xj

‖xi‖×‖xj‖
+ 1)/2.

Finally, the categorical center alignment loss is formulated

as follows,

Lcca =

N
∑

k=1

dist(cks(I), c
k
t(I)). (8)

The benefits of SCA are intuitive: 1) The contrastive

center loss, i.e., Eq. (4), enhances the compactness of the

representations which also enlarges the margin inter-class.

2) The categorical center alignment loss, Eq. (8), guaran-

tees that the centroids of the same class are aligned between
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the source domain and the target domain. 3) The dynamic

update together ensures that the SCA aligns the global

and up-to-date categorical distributions. Furthermore, the

reweighting technique weakens the incorrect pseudo-labels

and therefore can alleviate the accumulated error of the

pseudo-labels.

3.4. Semantic Contrastive Mapping

SCA aligns the centroids of the same class between the

source domain and the target domain. For the non-centroid

samples in the target domain, we employ a contrastive loss

function to encourage the known samples to move closer to

their centroids and enforce the unknown samples to stay far

away from all the centroids of known classes. By this way,

we can align the non-centroid samples in the target domain.

We refer to this process as the Semantic Contrastive Map-

ping (SCM).

Since the pseudo labels of target samples are not to-

tally correct, we select reliable samples whose classifica-

tion probabilities are over a threshold. We set the threshold

to 1
N+1 in our method. SCM aims to reduce the distance be-

tween the reliable known samples and their centroids, while

enlarge the distance between the reliable unknown samples

and all centroids.

Lcon(xt;G) = (1− z)Dk(x
k
t , c

k
s)−

z

N

N
∑

k=1

Du(x
k
t , c

k
s),

(9)

where z is equal to 0 if xt is predicted as class ∈ 1, 2, ..., N ,

otherwise, z equals to 1. Dk denotes the distance between

target known samples and the corresponding source cen-

troid. Du denotes the distance between target unknown

samples and all the source known classes. Inspired by the

energy-base model in [11], functions are designed as fol-

lows,

Dk(x
k
t , c

k
s) = (1− ρ)ωdist(xk

t , c
k
s)

2, (10)

Du(x
N+1
t , cks) = −ρ

ω(max{0,Mk − dist(xN+1
t , cks)})

2,
(11)

where ρ denotes the cosine similarity. To ensure an efficient

and accurate measurement of the distances, we also use a

hyper-parameter ω to re-weight distances calculated in the

loss. Mk is a categorical adaptive margin to measure the

radius of neighborhood of class k, defined as follows,

Mk =
1

N

N
∑

j=1,j 6=k

dist(cjt , c
k
s). (12)

3.5. Objective

In the proposed method, considering the intra-class com-

pactness and inter-class separability, we design the two

modules SCA and SCM based on the adversarial learning

Algorithm 1 Exploit the Margin of Open Set, e denotes the

training step, I denotes the iteration times.

Require: Labeled samples batches Xs = {(xsi , ysi)}
ns

i=1

from source domain, unlabeled samples batches Xt =
{xtj}

nt

j=1 from target domain. Bs
i and Bt

i denote the

ith mini-batch data in the training set.

Ensure: Parameters in the network θG, θD
1: 1st Stage

2: Pretrain G and D based on {Xs, Ys}, update θG, θD
3: 2nd Stage

4: e = 0
5: while not converge do

6: Calculate the current global centroids ck
s(e) and ck

t(e)

7: for I = 1 to max iter do

8: Update ck
s(e) and ck

t(e) by using Eq. 6 and Eq. 7

9: Calculate pair distance between ck
s(e) and ck

t(e)

10: Select reliable target samples X̂t(I)

11: Calculate pair distance between ck
s(e), X̂t(I)

12: Train modelm with Bs
i , B

t
i by optimizing loss in

Eq. 13, update θG, θD
13: e = e+ 1
14: end for

15: end while

in ADA. Formally, the final objective is defined in Eq. 13.

Ltotal = LADA + LSCA + LSCM

= Lcls + Ladv + λsLcct + λcLcca + λtLcon.
(13)

In each iteration, the network updates the class centroids

and network parameters simultaneously. The overall algo-

rithm is shown in Algorithm 1. SCA attempts to enlarge the

margins between known classes in source and categorically

align the centroids across domain. SCM attempts to align

all the known target samples to its source neighborhoods,

while keeping the distance between unknown samples and

the centroids of known classes around an adaptively deter-

mined margin. With SCA, the discriminator in ADA is ac-

cess to more discriminative representation and well-aligned

semantic features. On the other side, SCM aids to distin-

guish the unknown samples from the other known classes.

4. Experiments

4.1. Setup

In this section, we evaluate the proposed method on the

open set domain adaptation task using two benchmarks, i.e.,

Digit datasets and Office-31 [30]. Considering the setting

where unknown samples only exist in the target domain. We

compare the performance of our method OSDA+BP [34]

and other baselines including: Open-set SVM (OSVM) [15]

and other methods combined with OSVM, e.g., Maximum
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SVHN-MNIST USPS-MNIST MNIST-USPS Average

Method OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK

OSVM 54.3 63.1 37.4 10.5 43.1 32.3 63.5 97.5 79.8 77.9 84.2 89.0 59.1 57.7 61.7 65.7

MMD+OSVM 55.9 64.7 39.1 12.2 62.8 58.9 69.5 82.1 80.0 79.8 81.3 81.0 68.0 68.8 66.3 58.4

BP+OSVM 62.9 75.3 39.2 0.7 84.4 92.4 72.9 0.9 33.8 40.5 21.4 44.3 60.4 69.4 44.5 15.3

OSDA+BP[34] 63.0 59.1 71.0 82.3 92.3 91.2 94.4 97.6 92.1 94.9 88.1 78.0 82.4 81.7 84.5 85.9

Ours w/o SCA 65.6 61.6 73.9 85.4 93.6 95.4 87.9 82.8 86.5 86.1 88.1 88.5 81.9 81.0 83.3 85.6

Ours w/o SCM 65.5 61.0 74.8 87.8 92.5 93.8 87.1 81.1 84.6 84.0 86.0 87.7 80.9 79.6 82.6 85.5

Ours 68.6 65.5 75.3 84.3 93.1 95.2 92.8 91.7 91.3 92.0 90.7 87.8 84.3 84.2 86.3 87.9

Table 1. Accuracy (%) of experiments on Digit dataset.

Figure 3. A comparison between the existing method and the proposed method. First row: visualization of features of the state-of-the-art

method OSDA+BP[34] . Second row: visualization of features generated by our method. The left two column show features of source

and target in SVHN → MNIST, the right two columns are features of source and target in MNIST → USPS. The color red in the target

represents the unknown class.

Mean Discrepancy(MMD) [9], BP [7], ATI-λ [27]. OSVM

classifies test samples into unknown class with a thresh-

old of probability when the predicted probability is lower

than the threshold for other classes. OSVM also requires

no unknown samples in the source domain during training.

MMD+OSVM is a combination method with OSVM and

MMD-based method for network in [22]. MMD is discrep-

ancy measure metric used to match the distribution across

domains. BP+OSVM combines OSVM with a domain clas-

sifier, BP [7], which is a representative of adversarial learn-

ing applied in unsupervised domain adaptation.

Digits We begin by exploring three Digit datasets, i.e.

SVHN [26], MNIST [20] and USPS [20]. SVHN contains

colored digit images of size 32 × 32, where more than one

digit may appear in a single image. MNIST includes 28 ×
28 grey digit images and USPS consists of 16 × 16 grey

digit images. We conduct 3 common adaptation scenarios

including SVHN to MNIST, USPS to MNIST and MNIST

to USPS.

Office-31 [30] is a standard benchmark for domain adap-

tation. There exist three distinct domains: Amazon (A) with

2817 images from the merchants, Webcam (W) with 795

images of low resolution and DSLR (D) with 498 images

of high resolution. Each domain shares 31 categories with

the others. We examine the full transfer scenarios in our

experiments.

Implementation For Digit datasets, we employ the same

architecture with [34]. For Office-31, we employ two

representative CNN architectures, AlexNet [19] and VG-

GNet [37], to extract the visual features. For both the gen-

erator and classifier, we use one-layer FC followed with

Leaky-RELU and Batch-Normalization. For Office-31, we

initialize the feature extractor from the ImageNet [4] pre-

trained model For both datasets, we first train our model

with labeled source domain data. All networks are trained

by Adam [18] optimizer with weight decay 10−6. The ini-

tial learning rates for Digit and Office-31 datasets is 2×10−4

and 10−3 respectively. Learning rate decreases following a

cosine ramp-down schedule. We set the hyper-parameters

λs = 0.02, λc = 0.005, and λt = 10−4 in all the exper-

iments. Following [27], we report the accuracy averaged

over the classes in the OS and OS*. The average accuracy

of all classes including the unknown one is denoted as OS.

Accuracy measures only on the known classes of the target

domain is denoted as OS*. All the results reported are the

accuracy averaged over three independent running.
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Adaptation Scenario

A-D A-W D-A D-W W-A W-D AVG

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

Method w/o unknown classes in source domain (AlexNet)

OSVM 59.6 59.1 57.1 55.0 14.3 5.9 44.1 39.3 13.0 4.5 62.5 59.2 40.6 37.1

MMD + OSVM 47.8 44.3 41.5 36.2 9.9 0.9 34.4 28.4 11.5 2.7 62.0 58.5 34.5 28.5

BP+OSVM 40.8 35.6 31.0 24.3 10.4 1.5 33.6 27.3 11.5 2.7 49.7 44.8 29.5 22.7

ATI-λ[27] + OSVM 72.0 - 65.3 - 66.4 - 82.2 - 71.6 - 92.7 - 75.0 -

OSDA+BP[34] 76.6 76.4 70.1 69.1 62.5 62.3 94.4 94.6 82.3 82.2 96.8 96.9 80.4 80.2

Ours w/o SCA 87.8 89.0 85.6 87.1 74.2 73.8 97.2 98.1 74.9 73.9 98.5 99.0 86.5 87.0

Ours w/o SCM 89.8 91.2 88.0 90.6 77.8 77.9 97.6 98.6 75.1 75.0 98.0 99.3 87.7 88.8

Ours 91.0 92.7 89.5 89.6 81.8 83.0 97.8 98.8 78.7 81.4 98.5 99.7 89.7 90.7

Method w/o unknown classes in source domain (VGGNet)

OSVM 82.1 83.9 75.9 75.8 38.0 33.1 57.8 54.4 54.5 50.7 83.6 83.3 65.3 63.5

MMD + OSVM 84.4 85.8 75.6 75.7 41.3 35.9 61.9 58.7 50.1 45.6 84.3 83.4 66.3 64.2

BP+OSVM 83.1 84.7 76.3 76.1 41.6 36.5 61.1 57.7 53.7 49.9 82.9 82.0 66.4 64.5

OSDA+BP[34] 85.8 85.8 76.9 76.6 89.4 91.5 96.0 96.6 83.4 83.1 97.1 97.3 88.0 88.5

Ours 90.1 92.0 86.4 87.7 81.6 88.4 97.9 99.8 80.3 82.6 98.2 99.3 89.1 91.6

Table 2. Accuracy (%) of each method on scores of OS and OS*. A, D and W correspond to Amazon, DSLR and Webcam respectively.

The ablation versions of our method w/o SCA and w/o SCM are also reported.

4.2. Results on Digit Dataset

In the three Digit datasets, numbers 0∼4 are chosen as

known classes. Samples from the known classes make up

the source samples. In the target samples, numbers 5∼9

are regarded as one unknown class. Besides the scores of

OS and OS*, we also report the total accuracy for samples

in target and the accuracy of unknown class, which are de-

noted as ALL and UNK, respectively.

As shown in Table 1, our method produces competi-

tive results compared to other methods. Results of our

method outperform the other methods in SVHN→MNIST,

MNIST → USPS and the average scores. It is shown

that our method is better at recognizing the unknown

samples(5∼9) while maintaining the performance of iden-

tifying the known classes. For SVHN → MNIST, the se-

mantic gap between them is large, as there may exist sev-

eral digits in the images of SVHN. Thus the accuracies of

SVHN → MNIST are lower than the other two scenarios.

Our method outperforms existing methods on the average

scores. For instance, our approach achieves 87.9% in the

average score of unknown class. This is 2.0% higher than

OSDA+BP [34]. Learned features obtained by the trained

model of the three scenarios are visualized in Fig 3. We

observe that the distribution of unknown samples is more

decentralized in SVHN→ MNIST because of the large di-

vergence of the two domains. Compared with OSDA+BP

[34], the proposed method could better centralize samples

of the same known class and distinguish unknown samples

from known ones.

4.3. Results on Office31 Dataset

We compare our method with other works on Office-31

dataset following [27]. There are 31 classes in this dataset,

and the first 10 classes in alphabetical order are selected

as known classes. In [34], 21-31 classes are selected as

unknown samples in the target domain, which only exist in

the target domain. We evaluate the experiment on all the 6

scenario tasks: A → D, A → W, D → A, D → W, W →
A, W → D. The improvement on some hard transfer tasks

is encouraging to prove the effectiveness and value of the

proposed method.

Results of Office-31 are shown in Table 2. With fea-

tures extracted with AlexNet, our method significantly out-

performs the state-of-the-art methods except W → A. Our

approach achieves 89.7% in OS score based on AlexNet,

overpassing the state-of-the-art by 2%. For OS*, our ap-

proach improves the results of state-of-the-art from 80.2%

to 90.7%. Based on VGG, our method reaches 89.1% on

OS score and 91.6 on OS* score, outperforming the state-

of-the-art method by 1.1% and 3.1%, respectively. Espe-

cially, under the harder scenarios of A→ D, A→W, D→
A, our method brings large improvement.

4.4. Ablation Study

For a straightforward understanding of the proposed

method, we further evaluate each module via ablation ex-

periments on Digit datasets. We alternately remove the SCA

and SCM from our model. Results are reported in Table 1

above our final results. A decrease in performance is ob-

served when removing SCA or SCM. Particularly, when the

discriminative learning (w/o SCA) or contrastive learning

(w/o SCM) is ablated, the accuracy of OS* or UNK or both

of them will decrease significantly. We reconfirm the ef-

fect of each module based on AlexNet in the experiments of

Office-31. Results in Table 2 also indicate the importance

of learning the discriminative representation and contrastive
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（a） （b） （c） （d）

Figure 4. (a): A comparison between static margin and our adaptive margin. (b): A comparison of the behavior of our method with

different re-weight ω in the contrastive loss. (c): Distances between centroid of class “backpack” labeled “0” in the target with centroids

of class 0∼5 in source . (d): Performance of the proposed method under different ratios of unknown samples.

mapping simultaneously. It indicates that the two modules

take effect jointly. The discriminative representation helps

to push away the unknown samples while the distraction

of unknown samples assists the alignment of known cate-

gories.

Effect of adaptive margin. As the margin is designed for

the contrastive loss as an adaptive one, we also observe the

behavior of the model with static margin on A → D. We

choose constant value of margin ms ∈ {10, 20, 30, ..., 100}
for comparison. When ms is equal to 0, the contrastive term

in the objective is only to align all the target samples pre-

dicted as known with the corresponding centroid in source.

When ms is assigned with a large value, the model tends to

penalize all the target samples predicted as unknown sam-

ples with large loss. According to results in Fig. 4(a), the ac-

curacies of OS and OS* are trending downward when using

a constant margin. The accuracy of UNK raises when the

margin is 20 and 60. To further investigate the changes of

distances between categories during the training of model,

we visualize the centroid of known class “Backpack” in the

target with the centroids of known classes in the source do-

main. The “Backpack” is labeled as 0. Results are shown in

Fig. 4(c). With the training of model, the distance between

the centroids of class 0 in the source and target domains

is declining. This indicates that the distribution between

the source and target domains are aligned for class 0. In

the meanwhile, distances between centroids of target class

0 and the other classes in source domain improve with the

increase of training epoch. In spite of the reduce of discrep-

ancy between the two domains, the distances with the other

classes in source are increasing. This demonstrates that it

is improper to use a static margin to measure the energy for

pulling apart unknown samples. With the alignment across

domain and the separation between different class, the ra-

dius of the neighborhood of each class would change. This

also explains the reason why the adaptive margin produces

higher scores than the static margin.

Effect of re-weighting the contrastive loss. There

is another hyper-parameter ω which re-weights the dis-

tances in Lcon. We conduct experiments with ω ∈
{0, 0.1, 0.5, 1, 1.5, 2}. As shown in Fig. 4(b), our approach

achieves the best results when ω is equal to 0.5. This pa-

rameter smooths the weight of calculated with cosine sim-

ilarity. When ω is 0, the re-weighting term is equal to 1,

which means the contrastive loss is calculated without the

re-weighting. It also reveals that the effectiveness of the

re-weighting term could help the model to better measure

the distances between unknown samples and centroids in

source.

Effect of the ratio of unknown samples. In this section,

we aim to investigate the robustness of our method under

different ratios of unknown samples in the target data. In

Fig. 4(d), we compare our results with method BP+OSVM

and OSDA+BP under ratio ∈ (0, 1). Unknown samples are

randomly sampled according to the ratio. It can be seen

that the accuracy of our model fluctuates little and is always

above the baseline methods, which implies the robustness

of our method.

5. Conclusion

In this paper, we focus on the open set domain adaptation

setting where only source domain annotations are available

and the unknown class exists in the target. To better iden-

tify the unknown and meanwhile diminish the domain shift,

we take the semantic margin of open set data into account

through semantic categorical alignment and semantic con-

trastive mapping, aiming to make the known classes more

separable and push the unknown class away from the de-

cision boundary, respectively. Empirically, we demonstrate

that our method is comparable to or even better than the

state-of-the-art methods on representative open set bench-

marks, i.e. Digits and Office-31. The effectiveness of each

component of our method is also verified. Our method im-

plies that explicitly taking the semantic margin of open set

data into account is beneficial. And it is promising to make

more exploration in this direction in the future.
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