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Abstract

Representing 3D shape is a fundamental problem in arti-
ficial intelligence, which has numerous applications within
computer vision and graphics. One avenue that has recently
begun to be explored is the use of latent representations of
generative models. However, it remains an open problem
to learn a generative model of shape that is interpretable
and easily manipulated, particularly in the absence of su-
pervised labels. In this paper, we propose an unsupervised
approach to partitioning the latent space of a variational
autoencoder for 3D point clouds in a natural way, using
only geometric information. Our method makes use of tools
from spectral differential geometry to separate intrinsic and
extrinsic shape information, and then considers several hi-
erarchical disentanglement penalties for dividing the latent
space in this manner, including a novel one that penalizes
the Jacobian of the latent representation of the decoded out-
put with respect to the latent encoding. We show that the
resulting representation exhibits intuitive and interpretable
behavior, enabling tasks such as pose transfer and pose-
aware shape retrieval that cannot easily be performed by
models with an entangled representation.

1. Introduction
Fitting and manipulating 3D shape (e.g., for inferring 3D

structure from images or efficiently computing animations)
are core problems in computer vision and graphics. Un-
fortunately, designing an appropriate representation of 3D
object shape is a non-trivial, and, often, task-dependent is-
sue.

One way to approach this problem is to use deep gen-
erative models, such as generative adversarial networks
(GANs) [19] or variational autoencoders (VAEs) [54, 34].
These methods are not only capable of generating novel ex-
amples of data points, but also produce a latent space that
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Figure 1. Factoring pose and intrinsic shape within a disentangled
latent space offers fine-grained control when generating shapes us-
ing a generative model. Top: decoded shapes with constant latent
extrinsic group and randomly sampled latent intrinsics. Bottom:
decoded shapes with fixed latent intrinsic group and random ex-
trinsics. Colors denote depth (i.e., distance from the camera).

provides a compressed, continuous vector representation of
the data, allowing efficient manipulation. Rather than per-
forming explicit physical calculations, for example, one can
imagine performing approximate “intuitive” physics by pre-
dicting movements in the latent space instead.

However, a natural representation for 3D objects is likely
to be highly structured, with different variables controlling
separate aspects of an object. In general, this notion of dis-
entanglement [7] is a major tenet of representation learning,
that closely aligns with human reasoning, and is supported
by neuroscientific findings [5, 27, 25]. Given the utility of
disentangled representations, a natural question is whether
we can structure the latent space in a purely unsupervised
manner. In the context of 3D shapes, this is equivalent
to asking how one can factor the representation into inter-
pretable components using geometric information alone.

We take two main steps in this direction. First, we lever-
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age methods from spectral differential geometry, defining
a notion of intrinsic shape based on the Laplace-Beltrami
operator (LBO) spectrum. This provides a fully unsuper-
vised descriptor of shape that can be computed from the
geometry alone and is invariant to isometric pose changes.
Furthermore, unlike semantic labels, the spectrum is con-
tinuous, catering to the intuition that “shape” should be a
smoothly deformable object property. It also automatically
divorces the intrinsic or “core” shape representation from
rigid or isometric (e.g., articulated) transforms, which we
call extrinsic shape. Second, we build on a two-level ar-
chitecture for generative point cloud models [1] and ex-
amine several approaches to hierarchical latent disentangle-
ment. In addition to a previously used information-theoretic
penalty based on total correlation, we describe a hierarchi-
cal flavor of a covariance-based technique, and propose a
novel penalty term, based on the Jacobian between latent
variables. Together, these methods allow us to learn a fac-
tored representation of 3D shape using only geometric in-
formation in an unsupervised manner. This representation
can then be applied to several tasks, including non-rigid
pose manipulation (as in Figure 1) and pose-aware shape
retrieval, in addition to generative sampling of new shapes.

2. Related Work

2.1. Latent Disentanglement in Generative Models

A number of techniques for disentangling VAEs have
recently arisen, often based on the distributional proper-
ties of the latent prior. One such method is the β-VAE
[26, 10], in which one can enforce greater disentanglement
at the cost of poorer reconstruction quality. As a result, re-
searchers have proposed several information-theoretic ap-
proaches that utilize a penalty on the total correlation (TC),
a multivariate generalization of the mutual information [61].
Minimizing TC corresponds to minimizing the information
shared among variables, making it a powerful disentangle-
ment technique [18, 11, 32]. Yet, such methods do not
consider groups of latent variables, and do not control the
strength of disentanglement between versus within groups.
Since geometric shape properties in our model cannot be de-
scribed with a single variable, our intrinsic-extrinsic factor-
ization requires hierarchical disentanglement. Fortunately,
a multi-level decomposition of the ELBO can be used to
obtain a hierarchical TC penalty [15].

Other examples of disentanglement algorithms include
information-theoretic methods in GANs [12], latent whiten-
ing [23], covariance penalization [35], and Bayesian hyper-
priors [2]. A number of techniques also utilize known
groupings or discrete labels of the data [28, 8, 55, 22]. In
contrast, our work does not have access to discrete group-
ings (given the continuity of the spectrum), requires a hier-
archical structuring, and utilizes no domain knowledge out-

side of the geometry itself. We therefore consider three ap-
proaches to hierarchical disentanglement: (i) a TC penalty;
(ii) a decomposed covariance loss; and (iii) shrinking the
Jacobian between latent groups.

2.2. Deep Generative Models of 3D Point Clouds

Point clouds represent a practical alternative to voxel
and mesh representations for 3D shape. Although they do
not model the complex connectivity information of meshes,
point clouds can still capture high resolution details at lower
computational cost than voxel-based methods. One other
benefit is that much real-world data in computer vision is
captured as point sets, which has resulted in considerable
effort on learning from point cloud data. However, compli-
cations arise from the set-valued nature of each datum [52].
PointNet [50] handles that by using a series of 1D con-
volutions and affine transforms, followed by pooling and
fully-connected layers. Many approaches have tried to in-
tegrate neighborhood information into this encoder (e.g.,
[51, 24, 62, 3]), but this remains an open problem.

Several generative models of point clouds exist: Nash
and Williams [45] utilize a VAE on data of 3D part segmen-
tations and associated normals, whereas Achlioptas et al. [1]
use a GAN. Li et al. [38] adopt a hierarchical sampling ap-
proach with a more general GAN loss, while Valsesia et
al. [59] utilize a graph convolutional method with a GAN
loss. In comparison to these methods, we focus on unsuper-
vised geometric disentanglement of the latent representa-
tion, allowing us to factor pose and intrinsic shape, and use
it for downstream tasks. We also do not require additional
information, such as part segmentations. Compared to stan-
dard GANs, the use of a VAE permits natural probabilistic
approaches to hierarchical disentanglement, as well as the
presence of an encoder, which is necessary for latent repre-
sentation manipulations and tasks such as retrieval. In this
sense, our work is orthogonal to GAN-based representation
learning, and both techniques may be mutually applicable
as joint VAE-GAN models advance (e.g., [42, 64]).

Two recent related works utilize meshes for deformation-
aware 3D generative modelling. Tan et al. [56] utilize la-
tent manipulation to perform a variety of tasks, but does
not explicitly separate pose and shape. Gao et al. [17] fix
two domains per model, making intrinsic shape variation
and comparing latent vectors difficult. Both works are lim-
ited by the need for identical connectivity. In contrast, we
can smoothly explore latent shape and pose independently,
without labels or correspondence. We further note that our
disentanglement framework is modality-agnostic to the ex-
tent that only the AE details need change.

In this work, we utilize point cloud data to learn a latent
representation of 3D shape, capable of encoding, decoding,
and novel sampling. Using PointNet as the encoder, we de-
fine a VAE on the latent space of a deterministic autoen-
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Figure 2. A schematic overview of the combined two-level ar-
chitecture used as the generative model. A point cloud P is first
encoded into (R,X) by a deterministic AE based on PointNet, R
being the quaternion representing the rotation of the shape, and X
the compressed representation of the input shape. (R,X) is then
further compressed into a latent representation z = (zR, zE , zI)
of a VAE. The hierarchical latent variable z has disentangled sub-
groups in red (representing rotation, extrinsics, and intrinsics, re-
spectively). The intrinsic latent subgroup zI is used to predict
the LBO spectrum λ̂. Both the extrinsic zE and intrinsic zI are
utilized to compute the shape X̂ in the AE’s latent space. The
latent rotation zR is used to predict the quaternion R̂. Finally,
the decoded representation (R̂, X̂) is used to reconstruct the orig-
inal point cloud P̂ . The deterministic AE mappings are shown as
dashed lines; VAE mappings are represented by solid lines.

coder, similar to [1]. Our main goal is to investigate how
unsupervised geometric disentanglement using spectral in-
formation can be used to structure the latent space of shape
in a more interpretable and potentially more useful manner.

3. Point Cloud Autoencoder

Similar to prior work [1], we utilize a two-level archi-
tecture, where the VAE is learned on the latent space of
an AE. This architecture is shown in Figure 2. Through-
out this work, we use the following notation: P denotes
a point cloud, (R,X) is the latent AE representation, and
P̂ is the reconstructed point cloud. Although rotation is a
strictly extrinsic transformation, we separate them because
(1) rotation is intuitively different than other forms of non-
rigid extrinsic pose (e.g., articulation), (2) having separate
control over rotations is commonly desirable in applications
(e.g., [31, 16]), and (3) our quaternion-based factorization
provides a straightforward way to do so.

3.1. Point Cloud Losses

Following previous work on point cloud AEs [1, 39, 14],
we utilize a form of the Chamfer distance as our main mea-
sure of similarity. We define the max-average function

Mα(`1, `2) = αmax{`1, `2}+ (1− α)(`1 + `2)/2, (1)

where α is a hyper-parameter that controls the relative
weight of the two values. It is useful to weight the larger
of the two terms higher, so that the network does not focus

on only one term [63]. We then use the point cloud loss

LC = MαC

 1

|P |
∑
p∈P

d̂(p),
1

|P̂ |

∑
p̂∈P̂

d(p̂)

 , (2)

where d(p̂) = minp∈P ||p− p̂||22 and d̂(p) = minp̂∈P̂ ||p−
p̂||22. In an effort to reduce outliers, we add a second term,
as a form of approximate Hausdorff loss:

LH = MαH

(
max
p∈P

d(p̂),max
p̂∈P̂

d̂(p)

)
. (3)

The final reconstruction loss is therefore LR = rCLC +
rHLH for constants rC , rH .

3.2. Quaternionic Rotation Representation

We make use of quaternions to represent rotation in the
AE model. The unit quaternions form a double cover of the
rotation group SO(3) [29]; hence, any vector R ∈ R4 can
be converted to a rotation via normalization. We can then
differentiably convert any such quaternion R to a rotation
matrix RM . To take the topology of SO(3) into account,
we use the distance metric [29] LQ = 1 − |q · q̃| between
unit quaternions q and q̃.

3.3. Autoencoder Model

The encoding function fE(P ) = (R,X) maps a point
cloud P to a vector (R,X) ∈ RDA , which is partitioned
into a quaternion R (representing the rotation) and a vector
X , which is a compressed representation of the shape. The
mapping is performed by a PointNet model [50], followed
by fully connected (FC) layers. The decoding function
works by rotating the decoded shape vector: fD(R,X) =

gD(X)RM = P̂ , where gD was implemented via FC layers
and RM is the matrix form of R. The loss function for the
autoencoder is the reconstruction loss LR.

Note that the input can be a point cloud of arbitrary size,
but the output is of fixed size, and is determined by the fi-
nal network layer (though alternative architectures could be
dropped in to avoid this limitation [38, 20]). Our data aug-
mentation scheme during training consists of random rota-
tions of the data about the height axis, and using randomly
sampled points from the shape as input (see Section 5). For
architectural details, see Supplementary Material.

4. Geometrically Disentangled VAE
Our generative model, the geometrically disentangled

VAE (GDVAE), is defined on top of the latent space of the
AE; in other words, it encodes and decodes between its own
latent space (denoted z) and that of the AE (i.e., (R,X)).
The latent space of the VAE is represented by a vector that is
hierarchically decomposed into sub-parts, z = (zR, zE , zI),



representing the rotational, extrinsic, and intrinsic compo-
nents, respectively. In addition to reconstruction loss, we
define the following loss terms: (1) a probabilistic loss that
matches the latent encoder distribution to the prior p(z),
(2) a spectral loss, which trains a network to map zI to a
spectrum λ, and (3) a disentanglement loss that penalizes
the sharing of information between zI and zE in the latent
space. Note that the first (1) and third (3) terms are based
on the Hierarchically Factorized VAE (HFVAE) defined by
Esmaeili et al. [15], but the third term also includes a covari-
ance penalty motivated by the Disentangled Inferred Prior
VAE (DIP-VAE) [35] and another penalty based on the Ja-
cobian between latent subgroups. In the next sections, we
discuss each term in more detail.

4.1. Latent Disentanglement Penalties

To disentangle intrinsic and extrinsic geometry in the la-
tent space, we consider three different hierarchical penal-
ties. In this section, we define the latent space z to consist
of |G| subgroups, i.e., z = (z1, . . . , z|G|), with each subset
zi being a vector-valued variable of length gi. We wish to
disentangle each subgroup from all the others. In this work,
z = (zR, zE , zI) and |G| = 3.

Hierarchically Factorized Variational Autoencoder.
Recent work by Esmaeili et al. [15] showed that
the prior-matching term of the VAE objective (i.e.,
DKL [qφ(z|x) || p(z)]) can be hierarchically decomposed as

LHF = β1Pintra + β2 PKL + β3 I[x; z] + β4 TC(z), (4)

where TC(z) is the inter-group TC, I[x; z] is the mu-
tual information between the data and its latent repre-
sentation, and Pintra and PKL are the intra-group TC and
dimension-wise KL-divergence, respectively, given by the
following formulas: Pintra =

∑
g TC(zg) and PKL =∑

g,dDKL[qφ(zg,d) || p(zg,d)].
As far as disentanglement is concerned, the main term

enforcing inter-group independence (via the TC) is the one
weighted by β4. However, note that the other terms are es-
sential for matching the latent distribution to the prior p(z),
which allows generative sampling from the network. We
use the implementation in ProbTorch [44].

Hierarchical Covariance Penalty. A straightforward
measure of statistical dependence is covariance. While this
is only a measure of the linear dependence between vari-
ables, unlike the information-theoretic penalty considered
above, vanishing covariance is still necessary for disentan-
glement. Hence, we consider a covariance-based penalty
to enforce independence between variable groups. This is
motivated by Kumar et al. [35], who discuss how disentan-
glement can be better controlled by introducing a penalty

X

µE

µI

zE

zI

X̂

µ̂E

µ̂I

Figure 3. Diagram of the pairwise Jacobian norm penalty com-
putation within a VAE. The red and blue dashed paths show the
computation graph paths utilized to compute the Jacobians.

that moment-matches the inferred prior qφ(z) to the la-
tent prior p(z). We perform a simple alteration to make
this penalty hierarchical. Specifically, let Ĉ denote the es-
timated covariance matrix over the batch and recall that
qφ(z|x) = N (z|µφ(x),Σφ(x)). Finally, denote µg as the
part of µφ(x) corresponding to group g (i.e., parameteriz-
ing the approximate posterior over zg) and define

LCOV = γI
∑
g 6=g̃

∑
i,j

∣∣∣Ĉ(µg, µg̃)ij

∣∣∣ (5)

as a penalty on inter-group covariance, where the first sum
is taken over all non-identical pairings. We ignore the ad-
ditional moment-matching penalties on the diagonal and
intra-group covariance from [35], since they are not related
to intrinsic-extrinsic disentanglement and a prior-matching
term is already present within LHF.

Pairwise Jacobian Norm Penalty. Finally, we follow the
intuition that changing the value of one latent group should
not affect the expected value of any other group. We de-
rive a loss term for this by considering how the variables
change if the decoded shape is re-encoded into the latent
space. This approach to geometric disentanglement is vi-
sualized in Figure 3. Unlike the TC and covariance-based
penalties, this does not disentangle zR from zE and zI .

Formally, we consider the Jacobian of a latent group with
respect to another. The norm of this Jacobian can be viewed
as a measure of how much one latent group can affect an-
other group, through the decoder. This measure is

LJ = max
g 6=g̃

∣∣∣∣∣∣∣∣∂µ̂g∂µg̃

∣∣∣∣∣∣∣∣2
F

, (6)

where X̂ is the decoded shape, µ̂g represents group g from
µφ(X̂), and we take the maximum over pairs of groups.

4.2. Spectral Loss

Mathematically, the intrinsic differential geometry of a
shape can be viewed as those properties dependent only on
the metric tensor, i.e., independent of the embedding of the
shape [13]. Such properties depend only on geodesic dis-
tances on the shape rather than how the shape sits in the



ambient 3D space. The Laplace-Beltrami operator (LBO)
is a popular way of capturing intrinsic shape. Its spectrum
λ can be formally described by viewing a shape as a 2D
Riemannian manifold (M, g) embedded in 3D, with point
clouds being viewed as random samplings from this surface.

Given the spectrum λ of a shape, we wish to compute a
loss with respect to a predicted spectrum λ̂, treating each as
a vector with Nλ elements. The LBO spectrum has a very
specific structure, with λi ≥ 0 ∀ i and λj ≥ λk ∀ j > k.
Analogous to frequency-space signal processing, larger el-
ements of λ correspond to “higher frequency” properties of
the shape itself: i.e., finer geometric details, as opposed to
coarse overall shape. This analogy can be formalized by
the “manifold harmonic transform”, a direct generalization
of the Fourier transform to non-Euclidean domains based
on the LBO [58]. Due to this structure, a naive vector
space loss function on λ (e.g., L2) will over-weight learn-
ing the higher frequency elements of the spectrum. We sug-
gest that the lower portions of λ not be down-weighted, as
they are less susceptible to noise and convey larger-scale,
“low-frequency” global information about the shape, which
is more useful for coarser shape reconstruction.

Given this, we design a loss function that avoids over-
weighting the higher frequency end of the spectrum:

LS(λ, λ̂) =
1

Nλ

Nλ∑
i=1

|λi − λ̂i|
i

, (7)

where the use of the L1 norm and the linearly increasing
element-wise weight of i decrease the disproportionate ef-
fect of the larger magnitudes at the higher end of the spec-
trum. The use of linear weights is theoretically motivated
by Weyl’s law (e.g., [53]), which asserts that spectrum ele-
ments increase approximately linearly, for large i.

4.3. VAE Model

Essentially, the latent space is divided into three parts,
for rotational, extrinsic, and intrinsic geometry, denoted zR,
zE , and zI , respectively. We note that, while rotation is
fundamentally extrinsic, we can take advantage of the AE’s
decomposed representation to define zR on the AE latent
space over R, and use zE and zI for X . The encoder model
can be written as (zE , zI) = µφ(X) + Σφ(X)ξ, where ξ ∼
N (0, I), while the decoder is written X̂ = hD(zE , zI). A
separate encoder-decoder pair is used for R. The spectrum
is predicted from the latent intrinsics alone: λ̂ = fS(zI).

The reconstruction loss, used to compute the log-
likelihood, is given by the combination of the quaternion
metric and a Euclidean loss between the vector representa-
tion of the (compressed) shape and its reconstruction:

LV =
1

D
||X − X̂||22 + wQLQ, (8)

Figure 4. Reconstructions of random samples, passed through
both the AE and VAE. For each pair, the left shape is the input
and the right shape is the reconstruction. Colors denote depth (i.e.,
distance from the camera). Rows: MNIST, Dyna, SMAL, SMPL.

where LQ is the metric over quaternion rotations and D =
dim(X). We now define the overall VAE loss:

L = ηLV + LHF + LCOV + wJLJ + ζLS . (9)

The VAE needs to be able to (1) autoencode shapes, (2)
sample novel shapes, and (3) disentangle latent groups. The
first term of L encourages (1), while the second term en-
ables (2); the last four terms of L contribute to task (3).

5. Experiments
For our experiments, we consider four datasets of

meshes: shapes computed from the MNIST dataset [37], the
MPI Dyna dataset of human shapes [49], a dataset of ani-
mal shapes from the Skinned Multi-Animal Linear model
(SMAL) [65], and a dataset of human shapes from the
Skinned Multi-Person Linear model (SMPL) [40] via the
SURREAL dataset [60]. For each, we generate point clouds
of size NT via area-weighted sampling.

For SMAL and SMPL we generate data from 3D mod-
els using a modified version of the approach in Groueix et
al. [20]. During training, the input of the network is a uni-
formly random subset of NS points from the original point
cloud. We defer to the Supplemental Material for details
concerning dataset processing and generation.

We compute the LBO spectra directly from the triangu-
lar meshes using the cotangent weights formulation [43], as
it provides a more reliable result than algorithms utilizing
point clouds (e.g., [6]). We thus obtain a spectrum λ as a
Nλ−dimensional vector, associated with each shape. We
note that our algorithm requires only a point cloud as input
data (or a Gaussian random vector, if generating samples).
LBO spectra are utilized only at training time, while trian-
gle meshes are used only for training set generation. Hence,
our method remains applicable to pure point cloud data.

5.1. Generative Shape Modeling

Ideally, our model should be able to disentangle intrinsic
and extrinsic geometry without losing its capacity to (1) re-



Figure 5. Samples drawn from the latent space of the VAE by
decoding z ∼ N (0, I) with zR = 0. Colors denote depth (i.e.,
distance from the camera). Rows: MNIST, Dyna, SMAL, SMPL.

zR zE zI zRE zRI zEI z S
0.32 0.47 0.60 0.64 0.68 0.88 0.88 0.98

Table 1. Accuracies of a linear classifier on various segments of the
latent space from the MNIST test set. We denote zRE = (zR, zE),
zRI = (zR, zI), zEI = (zE , zI), and S = (R,X).

construct point clouds and (2) generate random shape sam-
ples. We show qualitative reconstruction results in Figure 4.
Considering the latent dimensionalities (|zE |, |zI | are 5, 5;
10, 10; 8, 5; and 12, 5, for MNIST, Dyna, SMAL, and
SMPL, respectively), it is clear that the model is capable
of decoding from significant compression. However, thin
or protruding areas (e.g., hands or legs) have a lower point
density (a known problem with the Chamfer distance [1]).

We also consider the capacity of the model to generate
novel shapes from randomly sampled latent z values, as
shown in Figure 5. We can see a diversity of shapes and
poses; however, not all samples belong to the data distri-
bution (e.g., invalid MNIST samples, or extra protrusions
from human shapes). VAEs are known to generate blurry
images [57, 36]; in our case, “blurring” implies a perturba-
tion in the latent space, rather than in the 3D point positions,
explaining the unintuitive artifacts in Figures 4 and 5.

A standard evaluation method in generative modeling is
testing the usefulness of the representation in downstream
tasks (e.g., [1]). This is also useful for illustrating the role
of the latent disentanglement. As such, we utilize our en-
codings for classification on MNIST, recalling that our rep-
resentation was learned without access to the labels. To do
so, we train a linear support vector classifier (from scikit-
learn [47], with default parameters and no data augmenta-
tion) on the parts of the latent space defined by the GDVAE
(see Table 1). Comparing the drop from S = (R,X) to z
shows the effect of compression and KL regularization; we
can also see that zR is the least useful component, but that
it still performs better than chance, suggesting a correlation
between digit identity and the orientation encoded by the
network. In the Supplemental Material, we include confu-
sion matrices showing that mistakes on zI or (zR, zI) are
similar to those incurred when using λ directly.

Lastly, our AE naturally disentangles rigid pose (rota-
tion) and the rest of the representation. Ideally, the net-
work would not learn disparate X representations for a sin-
gle shape under rotation; rather, it should map them to the
same shape representation, with a different accompanying
quaternion. This would allow rigid pose normalization via
derotations: for instance, rigid alignment of shapes could
be done by matching zR, which could be useful for pose
normalizing 3D data. We found that the model is robust to
small rotations, but it often learns separate representations
under larger rotations (see Supplemental Material). In some
cases, this may be unavoidable (e.g., for MNIST, 9 and 6 are
often indistinguishable after a 180° rotation).

5.2. Disentangled Latent Shape Manipulation

We provide a qualitative examination of the properties
of the geometrically disentangled latent space. For human
and animal shapes, we expect zE to control the articulated
pose, while zI should independently control the intrinsic
body shape. We show the effect of traversing the latent
space within its intrinsic and extrinsic components sepa-
rately, via linear interpolations between shapes in Figure 6
(fixing zR = 0). We observe that moving in zI (horizon-
tally) largely changes the body type of the subject, asso-
ciated with identity in humans or species among animals,
whereas moving in zE (vertically) mostly controls the artic-
ulated pose. Moving in the diagonal of each inset is akin to
latent interpolation in a non-disentangled representation.

We can also consider the viability of our method for
pose transfer, by transferring latent extrinsics between two
shapes. Although the the analogous pose is often exchanged
(see Figure 7), there are some failure cases: for example, on
SMPL and Dyna, the transferred arm positions tend to be
similar, but not exactly the same. This suggests a failure in
the disentanglement, since the articulations are tied to the
latent instrinsics zI . In general, we found that latent manip-
ulations starting from real data (e.g., interpolations or pose
transfers between real point clouds) gave more interpretable
results than those from latent samples, suggesting the model
sometimes struggled to match the approximate posterior to
the prior, particularly for the richer datasets from SMAL
and SMPL. Nevertheless, on the Dyna set, we show that
randomly sampling zE or zI can still give intuitive alter-
ations to pose versus intrinsic shape (Figure 8).

5.3. Pose-Aware Shape Retrieval

We next apply our model to a classical computer vision
task: 3D shape retrieval. Note that our disentangled repre-
sentation also affords retrieving shapes based exclusively on
intrinsic shape (ignoring isometries) or articulated pose (ig-
noring intrinsics). While the former can be done via spectral
methods (e.g., [9, 48]), the latter is less straightforward. Our
method also works directly on raw point clouds.



Figure 6. Latent space interpolations between SMPL (row 1) and SMAL (row 2) shapes. Each inset interpolates z between the upper-left
and lower right shapes, with zE changing along the vertical axis and zI changing along the horizontal one. Per-shape colours denote depth.

Figure 7. Pose transfer via exchanging latent extrinsics. Per inset
of four shapes, the bottom shapes have the zR and zI of the shape
directly above, but the zE of their diagonally opposite shape in
the top row. Per-shape colors denote depth. Upper shapes are real
point clouds; lower ones are reconstructions after latent transfer.
Rows: SMPL, SMAL, and Dyna examples.

We measure our performance on this task using the syn-
thetic datasets from SMAL and SMPL. Since both are de-
fined by intrinsic shape variables (β) and articulated pose
parameters (Rodrigues vectors at joints, θ), we can use
knowledge of these to validate our approach quantitatively.

Note that our model only ever sees raw point clouds (i.e., it
cannot access β or θ values). Our approach is simple: after
training, we encode each shape in a held-out test set, and
then use the L2 distance in the latent spaces (X , z, zE , and
zI ) to retrieve nearest neighbours. We measure the error
in terms of how close the β and θ values of the query PQ
(βQ, θQ) are to those of a retrieved shape PR (βR, θR). We
define the distance Eβ(PQ, PR) between the shape intrin-
sics as the mean squared error MSE(βQ, βR). To measure
extrinsic pose error, we first transform the axis-angle repre-
sentation θ to the equivalent unit quaternion q(θ), and then
compute Eθ(PQ, PR) = LQ(q(θQ), q(θR)). We also nor-
malize each error by the average error between all shape
pairs, thus measuring our performance compared to a uni-
formly random retrieval algorithm. Ideally, retrieving via
zE should have a high Eβ and a low Eθ, while using zI
should have a high Eθ and a low Eβ .

Table 2 shows the results. Each error is computed using
the mean error over the top three matched shapes per query,
averaged across the set. As expected, the Eβ for zI is much
lower than for zE (and z on SMAL), while the Eθ for zE is
much lower than that of zI (and z on SMPL). Just as impor-
tantly, from a disentanglement perspective, we see that the
Eβ of zE is much higher than that of z, as is the Eθ of zI .
We emphasize that Eβ and Eθ measure different quantities,
and should not be directly compared; instead, each error
type should be compared across the latent spaces. In this
way, z and X serve as non-disentangled baselines, where
both error types are low. This provides a quantitative mea-
sure of geometric disentanglement which shows that our un-
supervised representation is useful for generic tasks, such as



Figure 8. Effect of randomly sampling either the intrinsic or extrinsic components of four Dyna shapes. Leftmost shape: original
input; upper row: zI ∼ N (0, I), fixed zE ; lower row: zE ∼ N (0, I), fixed zI . Colors denote depth (distance from the camera).

X z zE zI

SMAL Eβ 0.641 0.743 0.975 0.645
Eθ 0.938 0.983 0.983 0.993

SMPL Eβ 0.856 0.922 0.997 0.928
Eθ 0.577 0.726 0.709 0.947

Table 2. Error values for retrieval tasks, using various latent rep-
resentations. Values are averaged over three models trained with
the same hyper-parameters, with each model run three times to ac-
count for randomness in the point set sampling of the input shapes.
(See Supplemental Material for standard errors).

Figure 9. Shape retrieval. Per inset: leftmost shape is query, mid-
dle two shapes are retrieved via zE , and rightmost two shapes are
retrieved via zI . Color gradients per shape denote depth.

retrieval. Figure 9 shows some examples of retrieved shapes
using zE and zI . The high error rates, however, do suggest
that there is still much room for improvement.

5.4. Disentanglement Penalty Ablations

We use three disentanglement penalties to control the
structure of the latent space, based on the inter-group total
correlation (TC), covariance (COV), and Jacobian (J). To
discern the contributions of each, we conduct the following
experiments (details and figures are in the Supplemental).

We first train several models on MNIST, monitoring the
loss curves while we vary the strength of each penalty.
We find that higher TC penalties substantially reduce COV
and J, while COV and J are less effective in reducing TC.
This suggests TC is a “stronger” penalty than COV and J,
which is intuitive, given that it directly measures informa-
tion, rather than linear relationships (as COV does) or local
ones (as J does). Nevertheless, it does not remove the en-
tanglement measured in COV and J as effectively as direct

penalties on them, and using higher TC penalties quickly
leads to lower reconstruction performance. Using all three
penalties achieves the lowest values for all measures.

We then perform a more specific experiment on the
SMAL and SMPL datasets, ablating the COV and/or J
penalties, and examining both the loss curves and the re-
trieval results. Particularly on SMPL, the presence of a di-
rect penalty on COV and J is very useful in reducing their
respective values. Regarding retrieval, the Eβ using zI on
SMAL and the Eθ using zE on SMPL were lowest using
all three penalties. Interestingly, Eβ using zI on SMPL and
Eθ using zE on SMAL could be improved without COV
and J; however, such decreases were concomitant with re-
ductions in Eθ using zI and Eβ using zE , which suggests
increased entanglement. While not exhaustive, these exper-
iments suggest the utility of applying all three terms.

We also considered the effect of noise in the spectra es-
timates (see Supplemental Material). The network tolerates
moderate spectral noise, with decreasing disentanglement
performance as the noise increases. In practice, one may
use meshes with added noise for data augmentation, to help
generalization to noisy point clouds at test time.

6. Conclusion

We have defined a novel, two-level unsupervised VAE
with a disentangled latent space, using purely geometric in-
formation (i.e., without semantic labels). We have consid-
ered several hierarchical disentanglement losses, including
a novel penalty based on the Jacobian of the latent vari-
ables of the reconstruction with respect to the original la-
tent groups, and have examined the effects of the various
penalties via ablation studies. Our disentangled architec-
ture can effectively compress vector representations via en-
coding and perform generative sampling of new shapes.
Through this factored representation, our model permits
several downstream tasks on 3D shapes (such as pose trans-
fer and pose-aware retrieval), which are challenging for en-
tangled models, without any requirement for labels.
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Appendix

A. Dataset Details
A.1. MNIST Dataset

As a simple dataset on which to test our method, we
generate point clouds from the greyscale MNIST images.
We first produce triangle meshes by placing vertices at each
pixel, with the x and y coordinates normalized by image
width, and the z coordinate given by 0.1 times the normal-
ized pixel value. Edges are added between each horizontal
and vertical neighbour, as well as one diagonal, thus defin-
ing 2 triangles per set of four vertex neighbours. This is es-
sentially the mesh of the height field defined by the image of
the digit. We then threshold the mesh, deleting any vertices
with a z height value less than 0.01. Finally, viewing the
mesh as a graph, we take the largest connected component,
giving us the final triangle mesh from which we sample our
point clouds. This resulted in 59483 training and 9914 test-
ing meshes with spectra. For the MNIST dataset, we fixed
NT = 2000, Nλ = 40, and NS = 1000.

A.2. MPI Dyna Dataset

The Dyna dataset [49] consists of 3D scans of 10 individ-
uals performing various sequences of simple actions (e.g.,
holding up their arms). In total, the dataset contains ap-
proximately 40K triangle meshes of multiple body types in
a large variety of poses. During training, we fixed the to-
tal number of samples to NT = 6000, the spectrum length
as Nλ = 100, and the size of the input point clouds as
NS = 2000 for the Dyna dataset.

A.3. SMAL-derived Dataset

Using the SMAL model [65], we generated a dataset of
animal meshes, including random body types and articu-
lated motions. In detail, we use the fitted multivariate Gaus-
sians computed by the authors of SMAL, which each act as
a distribution over clusters of the shape parameters of the
same animal species. We generate 3200 meshes for each
of the five categories by sampling from each cluster distri-
bution. Following the generation procedure in other works
[21], we then sample the pose (here, the joint angles) via a
Gaussian distribution with a standard deviation of 0.2. We
then split the resulting dataset into 15000 training and 1000
testing meshes (each comprised of equal numbers of meshes
per species). For SMAL, the total number of samples was
NT = 8000, the spectrum length wasNλ = 50, and the size
of the input point clouds during training was NS = 1500.

A.4. SMPL-derived Dataset

Similar to the dataset derived from SMAL, we generate
a dataset of human meshes with random body types and ar-
ticulations via the SMPL model [40]. We largely follow
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Figure 10. Confusion matrix of a shallow classifier, mapping mesh
spectra to digit identity. Note the main confusions, e.g., between 9
and 6, match our intuition for the shape of the digit geometrically.

the protocol from 3D-CODED [21]. Briefly, we sampled
20500 meshes from each of the male and female models us-
ing random samples from the SURREAL dataset [60]. We
augmented this data with 3100 meshes of “bent” humans
per gender, using the alterations from Groueix et al [21].
We then assigned 500 unbent and 100 bent meshes (per gen-
der) to the held-out test set, and the remaining meshes to the
training set. This resulted in 45992 meshes and 1199 test-
ing meshes after spectral calculations. Using these meshes,
we derived point clouds with NT = 8000, Nλ = 40, and
NS = 2000.

B. Spectral Geometry Intuition
In this section, we provide some intuition for the geomet-

ric meaning of the spectrum and why it can be used as a ge-
ometrically disentangled prior for shape representation, par-
ticularly for shapes that undergo isometric articulated pose
transforms.

For MNIST, an obvious question is how the intrinsic ge-
ometry of a digit’s shape captured by its LBO spectrum
is related to its semantic label (i.e., numeric value). Intu-
itively, a natural notion of the shapes of the digits should be
closely related to their numeric identity, while minor per-
turbations that change the style of the digits should have
less of an effect on the intrinsic shape. We examine this re-
lation by training a simple classifier, which learns to map
from the spectrum vector to the digit identity. We use a
neural network with one hidden layer (size 100), using the
ReLU non-linearity and otherwise default parameters from
the scikit-learn library [47]. This obtains an accuracy of
0.69, suggesting that the intrinsic digit shape alone is ca-
pable of significant discriminatory power, but not as much
as the complete shape information. The confusion matrix
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Figure 11. A t-SNE plot of the LBO spectra of the human shapes in
the Dyna dataset. Each color corresponds to a different individual.
Note the natural clusters formed by individuals.

is shown in Figure 10. The observed results agree with
our intuition: for instance, 9 and 6 are close to rotations
of each other, while 2 and 5 also clearly have very similar
intrinsic shapes; unsurprisingly, these are relatively more
common misclassifications. The most misclassified shapes,
however, are 3 and 5, which differ only in the placement of
the “bridge” between the lower curved part and the upper
line making up the digits.

For datasets of some objects, such as people, articula-
tions (i.e., non-rigid changes in pose for a single person) are
nearly isometric transformations. Just as one naturally di-
vides rigid and non-rigid deformations of objects, so too can
one separate isometries from non-isometric deformations.
To illustrate, in Figure 11, a t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [41] plot (via scikit-learn [47])
shows the embeddings of the spectra of a portion of the
Dyna dataset (every sixth shape in each activity sequence).
Notice that the embedding naturally clusters by individual,
as the intrinsic shape of each individual’s body is largely un-
changed by the pose articulations of each action sequence.
This corresponds to an intuitive view of intrinsic shape as
being both continuous (as opposed to labelling each indi-
vidual) and, in this case, articulation invariant.

C. Architectures
All models were implemented in PyTorch [46]. For exact

values for each dataset, see Table 3.

C.1. Autoencoder Architecture

The encoder consists of a PointNet model [50], followed
by fully-connected (FC) layers. The convolutional layers
were of sizes SAE,C. There were two affine transformers
(“T-networks”) after the first and third layers, with convo-

lutional layers of size 64, 128, and 512, followed by an FC
layer with hidden size 256. After the convolutional layers
and affine transforms, 1D max pooling was applied, fol-
lowed by processing by a FC network with hidden layers
of sizes SAE,FE. The final latent representation of the AE
was of dimensionality LAE. The decoder directly generated
a fixed size point cloud (with NAE,OUT points), via a series
of FC layers with hidden layer sizes SAE,FD

We fixed the loss weighting parameters as follows:
αC = 0.75, αH = 0.5. For MNIST and Dyna, FC and
1D convolutional layers utilized a BatchNorm layer [30]
and the ReLU non-linearity between linear transforms. For
SMPL and SMAL, no normalization and layer normaliza-
tion [4] were used, respectively, in the decoder (similar to
the encoder-only usage of batch norm in prior work [1]).
Data augmentation consisted of random rotations about the
“height” axis of the models (e.g., see Figure 15), with ro-
tations in [0, 2π] for MNIST and Dyna and in [−π/6, π/6]
for SMPL and SMAL. A batch-size of SB and a learning
rate of ηAE,LR was used, with Adam [33] as the optimizer,
for NEP epochs.

C.2. GDVAE Architecture

The encoder consists of two parts: one for the rota-
tion R and one for the shape X . Each part consists of
two sub-parts: a set of shared layers, followed by a sepa-
rate network for the variational parameters µ and Σ (i.e.,
zR ∼ N (µ(gshared,r(R)),Σ(gshared,r(R))) and (zE , zI) ∼
N (µ(gshared,x(X)),Σ(gshared,x(X)))). For the rotation map-
ping, the shared layers consisted of FC layers with hidden
sizes 300, 200, while the mean and variance mappings are
each given by a single affine transform. For theX mapping,
the shared layers consisted of FC layers with hidden sizes
1000, 750, and 500, while the mean and variance are pa-
rameterized by a FC network with one hidden layer of size
250 (MNIST/Dyna) or 300 (SMPL/SMAL).

The decoder also consisted of two parts: the rotation de-
coder (FC layers with sizes 200 and 300) and the shape de-
coder (FC layers of sizes 500, 750, and 1000). The spectral
predictor defined on the latent intrinsic zI space was an FC
network with layer sizes Sλ.

Models used a batch-size of SV,B for NV,EP epochs, us-
ing Adam with a learning rate of 0.0001. A small L2

weight decay with coefficient 5×10−6 was used for MNIST
and Dyna. Data was again augmented by random ro-
tations about the height axis, but limited to an angular
magnitude within [−π/5, π/5] for MNIST and Dyna, and
[−π/12, π/12] for SMPL and SMAL.

Concerning hyper-parameters, unless otherwise speci-
fied, we used a spectral weight of ζ = 1000, a relative
quaternionic loss weight of wQ = 10, hierarchically fac-
torized VAE loss coefficients of β1 = β2 = β3 = 1.0, and
a reconstruction loss weight of η = dim(X) (on MNIST



MNIST Dyna SMAL SMPL

AE

SAE,C 50, 100, 200, 300, 400 50, 100, 200, 300, 400 50, 100, 200, 400, 500 50, 100, 200, 400, 500
SAE,FE 300 300 800 500
LAE 250 250 400 300
SAE,FD 300, 500, 800 300, 500, 800 800, 800, 2000 500, 800, 2000
rC , rH 10, 1 10, 1 20, 0.1 20, 0.1
NAE,OUT 1000 2000 1500 2000
SB , NEP 32, 100 32, 200 30, 500 20, 100
ηAE,LR 0.00005 0.00005 0.00025 0.00025

VAE

Sλ 500, 400 500, 400 300, 300 300, 400
SV,B 200 200 250 250
NV,EP 150 150 200 100
|zE |, |zI | 5, 5 10, 10 8, 5 12, 5
β4, γI , wJ 50, 1, 1 25, 5, 5 50, 100, 10 50, 10, 10

Table 3. Architectural parameters for the models across different datasets. See Sections C.1 and C.2 for details concerning the AE and VAE
parameters, respectively.

Beta-VAE Jacobian Cov TC All

β4 1 1 1 100 100
γI 0 0 100 0 100
wJ 0 100 0 0 100

Table 4. Hyper-parameter values varied in the test of various loss
weightings. (See Figure 13 for visualization of results).

and Dyna), η = 200 (on SMPL), and η = 1 (on SMAL).
On SMPL, we used ζ = 500, however. Recall that the
weights on the disentanglement penalties were written β4
for the inter-group TC, γI for the inter-group covariance,
and wJ for the Jacobian.

D. MNIST Disentanglement
D.1. MNIST Latent Interpolations

Compared to that of articulating shapes (e.g., humans or
other animal), the geometric disentanglement of the latent
MNIST digit representation is less intuitive. Often, how-
ever, we found that moving in zE would tend to deform the
digit in “style”, while tranversing zI would more affect digit
scale/thickness and identity. Some examples are shown in
Figure 12. For instance, in the first inset, moving in zE sim-
ply shifts around the lines of the ‘8’ without changing its
digit identity (deforming it stylistically), while moving in
zI horizontally squishes the ‘8’ into a ‘1’.

D.2. MNIST Classification Results

We considered the information stored in the disentangled
latent space segments by examining the performance of a
classifier trained on various combinations of them, as rep-
resentations of the digits. We show the confusion matrices
for a linear SVM classifier on these sub-components of the
latent spaces in Figure 14. Notice that utilizing zR only has
the poorest performance (and that adding it to zEI has little

effect), and that the most prominent mistakes when using
only zI are very similar to those in Figure 10 (e.g., mixing
up 2, 3, 4; and 6, 9).

E. Rotation Disentanglement

We examine the performance of the deterministic au-
toencoder, visualizing a number of reconstructions in Fig-
ure 15. Qualitatively, the points sampled over the recon-
structions are largely uniformly spread out. However, thin
or protruding areas tend to have lower densities of points,
an issue identified by other works [1].

One question is how the presence of the rotation quater-
nion affects the representation. We visualize this by “dero-
tating” the shapes (shown in the last row of each set of
shapes in Figure 15), where the R portion of their represen-
tation is set to the same value. We can see that the derotated
shapes tend to approximately fall into two or three groups
with similar orientation. To confirm this, we also sample
random shapes, rotate them, and then embed their X en-
codings via t-SNE in Figure 16. Qualitatively, we can see
that rotating the point sets does not appear to lead to a single
representation X; instead, it forms a small number of latent
groups.

We also tried adding a “rotational consistency” penalty
to the loss function, which was computed by placing an L2

loss between the X representation of pairs of shapes that
differ only by a rigid rotation (i.e., ||X − Xr||22, where X
and Xr are generated by rotations of the same point cloud).
However, this seemed to lead to higher reconstruction er-
ror and did not entirely prevent the differing representations
forming across rotations. Furthermore, as noted in the main
text, some shapes can naturally become a “new” shape, se-
mantically speaking, due to rotation (e.g., a 9 becoming a



Figure 12. Disentangled latent interpolations for the MNIST dataset. Colours per digit denote depth. For each inset, we are interpolating
between the blue-black digits in the bottom row. The first row corresponds to only moving through zI (with zE constant), while the second
corresponds to only moving through zE (holding zI fixed). The third row traverses the full latent z space. In all cases, zR is set to zero.

Figure 13. Empirical curves of loss terms during training across weight hyper-parameters on model learning. See Table 4 for weight values.
Each colored curve represents a different set of weight values (i.e., model hyper-parameters). Top row: log-likelihood reconstruction loss,
intra-group TC, dimension-wise KL divergence. Middle row: off-diagonal intra-group covariance, on-diagonal covariance terms (i.e.,
variances), inter-group TC. Bottom row: inter-group covariance, Jacobian penalty (intrinsics with respect to extrinsics), Jacobian penalty
(extrinsics with respect to intrinsics).

6), which this penalty does not allow.



Figure 14. Confusion matrices for a linear SVM classifier accuracy on the MNIST test set. Top row: testing with zR, zE , zI . Middle row:
testing with zRE , zRI , zEI . Bottom row: testing with, zREI , (R,X).

F. Model Analysis

F.1. Hyper-parameter Variation

Our generative model must balance three main terms:
(1) autoencoding reconstruction, (2) latent prior sampling,
and (3) disentanglement. We therefore trained five models
on MNIST under five different hyper-parameter conditions
(see Table 4) to showcase the relative effect of these loss
weights. The choice of models was designed to check how
the different penalties affected the metrics of disentangle-
ment based on each loss (e.g., how penalizing covariance
affects the pairwise Jacobian penalty), as well as autoen-
coding and generation.

Based on the results (loss curves are shown in Figure
13), we can make several observations. Firstly, a high TC
penalty results in decreased inter-group covariance and Ja-
cobian losses. However, while the covariance and Jacobian

penalties effectively reduce their own penalties, they strug-
gle to reduce the TC or each other. Nevertheless, the TC
penalty alone does not drive the covariance or Jacobian val-
ues as low as having a penalty on them directly does. This
suggests that the TC may be a more powerful penalty, but it
can still be complemented by the other approaches. One ex-
planation for this effect is that the Jacobian penalty is funda-
mentally local (penalizing the expected change with respect
to an infinitesimal perturbation around each data point sep-
arately) and the covariance penalty only reduces linear cor-
relations, whereas the TC penalty is information-theoretic
(i.e., able to detect non-linear relations) and considers the
estimated latent probability distributions on a more global
level.

On the other hand, the models with high TC show the
worst log-likelihood for reconstructions. The model with
high weights for all terms also has poor dimension-wise KL



Figure 15. Examples of autoencoder reconstructions across different rotations of the same object. Note that the encoding of the datum from
the AE is not passed through the VAE. Colour denotes depth (z value). Within each group of shapes, the columns show different rotations
of the left-most shape, while the top row shows input shapes (i.e., P , from the original data), the middle row shows the reconstruction P̂ ,
and the bottom row shows the derotated shape with the rotation component R set to the value given by the shape in the first column. Note
that these models were trained with data augmentations across all rotations about the gravity axis.

Figure 16. A t-SNE visualization of the ro-
tated shapes from the deterministic AE. Left:
plot of MNIST. Right: plot of Dyna. In both
plots, 10 random shapes are selected, and ro-
tated 40 times, evenly spread over [0, 2π],
with respect to the height axis. Each shape
is then encoded by the AE, and only the X
component of its representation is plotted. A
single color corresponds to a single shape.

divergence, meaning the ability to generate novel samples
may be compromised, though it is not as high as that of the
covariance-penalized model. Though our observations are
limited to this dataset, hyper-parameters, and architecture,
they suggest that the disentanglement term can be in conflict
with reconstruction and sampling (just as the latter two are

known to be in conflict with each other; e.g., [26]).

F.2. Disentanglement Penalty Ablation

To further examine the effect of the disentanglement
penalties, in particular the covariance and Jacobian terms,
we considered two ablation experiments on the SMPL and



Figure 17. Empirical curves of loss terms for disentanglement ablations on SMAL. NC, NJ, and NJC mean no covariance, no Jacobian,
or neither penalties, respectively. Each colored curve represents a different set of weight values (i.e., model hyper-parameters). Top row:
log-likelihood reconstruction loss, intra-group TC, dimension-wise KL divergence. Middle row: off-diagonal intra-group covariance, on-
diagonal covariance terms (i.e., variances), inter-group TC. Bottom row: inter-group covariance, Jacobian penalty (intrinsics with respect
to extrinsics), Jacobian penalty (extrinsics with respect to intrinsics).

SMAL datasets: (1) looking at the loss curves of the esti-
mated entanglement measures during training and (2) con-
sidering the pose-aware retrieval performance. We ex-
amined three conditions, in addition to the regular hyper-
parameter values (REG): no Jacobian penalty (NJ), no co-
variance penalty (NC), and no Jacobian or covariance penal-
ties (NJC).

The various loss terms are shown over training epochs in
Figures 17 and 18, for SMAL and SMPL respectively. On
SMAL, we see that REG and NJ have worse KL-divergence
and reconstruction loss, but better inter-group TC and co-
variance. NJC scores the worst on all four entanglement
measures, except ∂µ̂I/∂µE (where surprisingly NJ holds
the smallest value). On SMPL, we see that NJ consistently
has the highest Jacobian penalties, and that REG and NJ
have the worst TC. On both datasets, we see that the covari-
ance penalty is necessary to ensure the inter-group covari-

ance is small, since NC and NJC always have much higher
inter-group covariance than NJ and REG.

We next considered the pose-aware retrieval task under
the various ablation conditions. Results are shown in Table
5. Recall that low Eθ using zE and low Eβ using zI are
good (indicating zI and zE hold intrinsic shape and pose
respectively), while low Eθ using zI and low Eβ using zE
are not (as it means entanglement is present). For SMAL,
we see that REG has the best Eβ using zI , while NJC is
worse than both NJ and NC. We can also see poor entangle-
ment in the low Eβ using zE of NJC. The scores for Eθ are
poor across all the representations, even including X . NC
has the best Eθ using zE , but it has a worse (i.e., lower) Eβ
using zE , suggesting increased entanglement. For SMPL,
REG has the best Eθ using zE , but NC and NJ have better
Eβ values with zI . However, NC and NJ also have lower
Eθ with zI , meaning pose is entangled with intrinsic shape.



Figure 18. Empirical curves of loss terms for disentanglement ablations on SMPL. NC, NJ, and NJC mean no covariance, no Jacobian, or
neither penalties, respectively. Top row: log-likelihood reconstruction loss, intra-group TC, dimension-wise KL divergence. Middle row:
off-diagonal intra-group covariance, on-diagonal covariance terms (i.e., variances), inter-group TC. Bottom row: inter-group covariance,
Jacobian penalty (intrinsics with respect to extrinsics), Jacobian penalty (extrinsics with respect to intrinsics).

It’s also worth noting that NJC on both SMAL and SMPL
has lower error on both Eβ and Eθ when using z. This
suggests that the increased disentanglement penalties make
holding information harder in general (i.e., allowing more
entanglement can increase reconstruction and thus retrieval
performance).

G. Pose-Aware Retrieval Variance

In Table 6, we consider the standard error of the mean
(SEM) for the retrieval experiments. Each model was
trained three times with the same hyper-parameters (to ac-
count for training stochasticity), and then each model was
run three times to account for randomness in the point set
sampling of the input shapes. We show the SEM across
models (i.e., trainings) after averaging over point samplings
per model. Since each model has its own SEM over sam-
plings, we display the maximum SEM across models. No-

tice that all SEMs are less than 0.01, except for two (over
model trainings): the Eβ when using z and zI on SMAL,
which are the most unstable retrieval performances. In gen-
eral, training instability is a useful consideration for future
work.

H. Pose-Aware Retrieval with Spectral Noise

We also investigated the effect of spectral noise on model
performance. We considered three forms of noise: (1) by di-
rectly injecting Gaussian multiplicative noise into the spec-
tra, (2) replacing the spectrum with Gaussian noise (mean
zero, sigma 50), and (3) by extracting the LBO from sam-
pled point clouds (rather than meshes). To add the noise
in (1), we multiply each eigenvalue with independent noise
ξ ∼ N (1, σ2), and then enforced non-negativity (via clip-
ping) and monotonicity of the spectrum (by re-sorting the
spectrum). To obtain the spectra in (3), we used a simple



X z zE zI

SMAL Eβ 0.641 0.743 0.975 0.645
Eθ 0.938 0.983 0.983 0.993

SMAL-NJ Eβ 0.642 0.829 0.980 0.734
Eθ 0.938 0.979 0.980 0.996

SMAL-NC Eβ 0.642 0.670 0.962 0.656
Eθ 0.938 0.966 0.969 0.991

SMAL-NJC Eβ 0.642 0.661 0.834 0.891
Eθ 0.938 0.967 0.978 0.982

SMPL Eβ 0.856 0.922 0.997 0.928
Eθ 0.577 0.726 0.709 0.947

SMPL-NJ Eβ 0.858 0.907 1.006 0.895
Eθ 0.578 0.695 0.812 0.908

SMPL-NC Eβ 0.855 0.908 0.995 0.905
Eθ 0.578 0.727 0.836 0.909

SMPL-NJC Eβ 0.857 0.888 0.992 0.921
Eθ 0.578 0.693 0.722 0.965

Table 5. Different retrieval scores under various disentanglement
penalty ablation conditions. NJ, NC, and NJC mean no Jacobian,
no covariance, and neither Jacobian nor covariance cases respec-
tively. Note that differences between scores under X are due to
the random samplings of points from the shape; hence, each score
is obtained by running the process three times (across point sam-
plings). However, only the scores for SMAL and SMPL are aver-
aged over multiple training runs.

X z zE zI
SMAL Eβ 0.0006 0.0282 0.0035 0.0381

(M-SEM) Eθ 0.0003 0.0015 0.0015 0.0015
SMPL Eβ 0.0003 0.0048 0.0015 0.0032

(M-SEM) Eθ 0.0003 0.0032 0.0058 0.0059
SMAL Eβ 0.0028 0.0020 0.0030 0.0024

(S-SEM) Eθ 0.0008 0.0005 0.0006 0.0008
SMPL Eβ 0.0015 0.0013 0.0020 0.0053

(S-SEM) Eθ 0.0008 0.0017 0.0022 0.0070
Table 6. SEMs across model training runs (M-SEM) and shape
samplings (S-SEM). Model training SEMs are computed over the
mean of the shape sampling runs; shape sampling SEMs are com-
puted by taking the SEM over point samplings per model, and then
the maximum SEM across models.

Laplacian computed from an affinity matrix, via a radial
basis function kernel on the inter-point L2 distance, with
bandwidth chosen as bσ = d

−1/(2+ξ)
N /4, where dN is the

mean distance of each point to its nearest neighbour and
ξ = 0.01 (similar to [6]).

We note that the shapes (input point clouds) themselves
do not have any additional noise (compared to the standard
experimental setup), only the spectra do. Thus, poorer per-
formance may manifest itself as increased retrieval accuracy
with the wrong latent space segment (e.g., lower Eβ when
retrieving with zE).

Results are shown in Table 7. However, we find that the

X z zE zI
SMAL Eβ 0.641 0.724 0.961 0.666
σ = 0.05 Eθ 0.937 0.969 0.980 0.981
SMAL Eβ 0.641 0.723 0.900 0.868
σ = 0.1 Eθ 0.938 0.969 0.979 0.994
SMAL Eβ 0.636 0.810 0.893 0.838
σ = 0.2 Eθ 0.938 0.979 0.988 0.996

SMAL-R Eβ 0.643 0.822 0.791 0.913
Eθ 0.938 0.977 0.985 0.998

SMAL-P Eβ 0.639 0.629 0.783 0.929
np = 1.2K Eθ 0.939 0.973 0.973 0.995
SMAL-P Eβ 0.641 0.698 0.636 0.895
np = 2K Eθ 0.938 0.980 0.984 0.993

SMPL Eβ 0.857 0.910 1.000 0.913
σ = 0.05 Eθ 0.578 0.735 0.774 0.966

SMPL Eβ 0.856 0.909 0.979 0.929
σ = 0.1 Eθ 0.578 0.694 0.720 0.979
SMPL Eβ 0.858 0.919 0.980 0.925
σ = 0.2 Eθ 0.578 0.710 0.810 0.946

SMPL-R Eβ 0.857 0.933 0.924 0.987
Eθ 0.579 0.694 0.826 0.943

SMPL-P Eβ 0.856 0.946 0.972 0.948
np = 1.2K Eθ 0.577 0.673 0.731 0.954
SMPL-P Eβ 0.856 0.926 0.990 0.944
np = 2K Eθ 0.578 0.695 0.739 0.982

Table 7. Retrieval results in the presence of spectral noise. Each
row corresponds to retrieval results in the presence of spectral
noise either due to multiplicative Gaussian noise (with strength
σ), replacing the spectrum with independent Gaussian noise (mean
zero, sigma 50; denoted “-R”), or using an LBO estimated from a
point cloud (denoted “-P”, using a point cloud of size np, either
1200 or 2000).

network can tolerate moderate spectral noise, with decreas-
ing performance as noise increases. For instance, one can
see Eβ with zI on SMAL and Eθ with zE on SMPL de-
grade as σ increases. Very extreme noise, as when replacing
the spectrum with Gaussian random values (“SMAL-R” and
“SMPL-R” in Table 7), destroys the disentanglement, as the
network no longer has access to the isolated intrinsics. This
is similar to ablating the spectral loss, except that predicting
the random spectrum adds additional burden on zI . Finally,
for the spectra extracted from the point cloud Laplacians,
the network degrades slightly on SMPL, compared to using
the mesh LBO, but much more so on SMAL.

In practice, we note that our method does not require
spectra at test time (for inference or novel sample genera-
tion). However, it will be affected by noise in the training
data (whether in the meshes, spectra, or point clouds). One
approach to improve generalization to noisy point clouds at
test time is to use additional noise for data augmentation
while training.


