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Abstract

One-class learning is the classic problem of fitting a

model to data for which annotations are available only for

a single class. In this paper, we propose a novel objec-

tive for one-class learning. Our key idea is to use a pair of

orthonormal frames – as subspaces – to “sandwich” the

labeled data via optimizing for two objectives jointly: i)

minimize the distance between the origins of the two sub-

spaces, and ii) to maximize the margin between the hyper-

planes and the data, either subspace demanding the data to

be in its positive and negative orthant respectively. Our pro-

posed objective however leads to a non-convex optimization

problem, to which we resort to Riemannian optimization

schemes and derive an efficient conjugate gradient scheme

on the Stiefel manifold.

To study the effectiveness of our scheme, we propose

a new dataset Dash-Cam-Pose, consisting of clips with

skeleton poses of humans seated in a car, the task being

to classify the clips as normal or abnormal; the latter is

when any human pose is out-of-position with regard to say

an airbag deployment. Our experiments on the proposed

Dash-Cam-Pose dataset, as well as several other stan-

dard anomaly/novelty detection benchmarks demonstrate

the benefits of our scheme, achieving state-of-the-art one-

class accuracy.

1. Introduction

There are several real-world problems in which it may be

easy to characterize the normal operating behavior of a sys-

tem or collect data for it, however may be difficult or some-

times even impossible to have data when a system is at fault

or is improperly used. Examples include but not limited to

an air conditioner making an unwanted vibration, a network

attacked by an intruder, abnormal patient conditions such

as heart rates, an accident captured in a video surveillance

camera, or a car engine firing at irregular intervals, among

others [11]. In machine learning literature, such problems
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(a) OC-SVM (b) SVDD

(c) BODS (ours) (d) GODS (ours)

Figure 1. A graphical illustration of classical OC-SVM and SVDD

in relation to our proposed BODS and GODS schemes. The

blue points show the given one-class data, the red-points are out-

liers, and decision boundary of each method is shown by orange

curves/lines.

are usually called one-class problems [4, 44], signifying the

fact that we may be able to have unlimited supply of labeled

training data for one-class (corresponding to the normal op-

eration of the system), but do not have any labels or train-

ing data for situations corresponding to abnormalities. The

main goal of such problems is thus to learn a model that fits

to the normal set, such that abnormalities can be character-

ized as outliers of this model.

Classical solutions for one-class problems are mainly

extensions to support vector machines (SVMs), such as

the one-class SVM (OC-SVM) that maximizes the mar-

gin of the discriminative hyperplane from the origin [46].

There are extensions of this scheme, such as the least-

squares one-class SVM (LS-OSVM) [14] or its online vari-

ants [58] that learn to find a tube of minimal diameter that

includes all the labeled data. Another popular approach is

the support-vector data description (SVDD) that finds a hy-
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persphere of minimum radius that encapsulates the training

data [51]. There have also been kernelized extensions of

these schemes that use the kernel trick to embed the data

points in a reproducible kernel Hilbert space, potentially

enclosing the ‘normal’ data with arbitrarily-shaped bound-

aries.

While, these approaches have shown benefits and have

been widely adopted in several applications [11], they have

drawbacks that motivate us to look beyond prior solutions.

For example, the OC-SVM uses only a single hyperplane,

however using multiple hyperplanes may be beneficial and

provide a richer characterization of the labeled set, as also

recently advocated in [56]. The SVDD scheme makes a

strong assumption on the spherical nature of the data dis-

tribution, which may be seldom true in practice. Further,

using kernel methods may impact scalability. Motivated by

these observations, we propose a novel one-class classifica-

tion objective that: (i) learns a set of discriminative and or-

thogonal hyperplanes, as a subspace, to model a multi-linear

classifier, (ii) learns a pair of such subspaces, one bounding

the data from below and the other one from above, and (iii)

minimizes the distances between these subspaces such that

the data is captured within a region of minimal volume (as

in SVDD). Our framework generates a piecewise linear de-

cision boundary and operates in the input space.

Albeit these benefits, our objective is non-convex due to

the orthogonality constraints. However, such non-convexity

fortunately is not a significant concern as the orthogonal-

ity constraints naturally place the optimization objective on

the Stiefel manifold [17]. This is a well-studied Rieman-

nian manifold [6] for which there exist efficient non-linear

optimization methods at our disposal. We use one such

optimization scheme, dubbed Riemannian conjugate gradi-

ent [1], which is fast and efficient.

To evaluate the usefulness of our proposed scheme, we

apply it to the concrete setting of detecting abnormal or

‘out-of-position’ human poses [54, 53] in cars; specifically,

our goal is to detect if the passengers or the driver are

seated ”out-of-position” (OOP) as captured by an inward

looking dashboard camera. This problem is of at most

importance in vehicle passenger safety as humans seated

OOP may be subject to fatal injuries if the airbags are de-

ployed [43, 36, 25]. The problem is even more serious in

autonomous cars, which may not (in the future) have any

drivers at all to monitor the safety of the passengers. Such

OOP human poses include abnormal positions of the face

(such as turning back), legs on the dashboard, etc., to name

a few. As it may be easy to define what normal seating

poses are, while it may be far too difficult to model abnor-

mal ones, we cast this problem in the one-class setting. As

there are no public datasets available to study this problem,

we propose a novel dataset, Dash-Cam-Pose consisting of

nearly 5K short video clips and comprising of nearly a mil-

lion human poses (extracted using OpenPose [8]). Each clip

is collected from long Internet videos or Hollywood road

movies and weakly-annotated with a binary label signify-

ing if passengers are seated correctly or out-of-position for

the entire duration of the clip.

We showcase the effectiveness of our approach on the

Dash-Cam-Pose dataset, as well as several other popu-

lar benchmarks such as UCF-Crime [50], action recogni-

tion datasets such as JHMDB [23], and two standard UCI

anomaly datasets. Our experiments demonstrate that our

proposed scheme leads to more than 10% improvement in

performance over classical and recent approaches on all the

datasets we evaluate on.

Before moving ahead detailing our method, we summa-

rize below the main contributions of this paper:

1. We first introduce a one-class discriminative subspace

(BODS) classifier that uses a pair of hyperplanes.

2. We generalize BODS to use multiple hyperplanes,

termed generalized one-class discriminative subspaces

(GODS).

3. We propose a new Dash-Cam-Pose dataset for anoma-

lous pose detection of passengers in cars, and

4. We provide experiments on the Dash-Cam-Pose

dataset, as well as four other public datasets, demon-

strating state-of-the-art performance.

2. Background and Related Works

Let D ⊂ R
d denote the data set consisting of our one

class-of-interest and everything outside it, denotedD, be the

anomaly set. Suppose we are given n data instances Do =
{x1,x2, · · · ,xn} ⊂ D. The goal of one-class classifiers is

to use Do to learn a functional f which is positive on D and

negative on D. Typically, the label of D is assumed +1 and

that of D as −1.

In One-Class Support Vector Machine (OC-SVM) [46],

f is modeled as an extension of an SVM objective by learn-

ing a max-margin hyperplane that separates the origin from

the data points in Do. Mathematically, f has the form

sgn(wT
x + b), where (w, b) ∈ R

d × R
1 and is learned

by minimizing the following objective:

min
w,b,ξ≥0

1

2
‖w‖

2
2−b+C

n
∑

i=1

ξi, s.t. wT
xi ≥ b−ξi, ∀xi ∈ Do,

where ξi’s are non-negative slacks, b is the hyperplane in-

tercept, and C is the slack penalty. As a single hyperplane

might be insufficient to capture all the non-linearities asso-

ciated with the one-class, there are extensions using non-

linear kernels via the kernel-trick [46]. However, as is com-

mon with kernelized SVM, such a formulation is difficult



to scale with the number of data points. Another popular

variant of one-class classifiers is the support vector data de-

scription (SVDD) [51] that instead of modeling data to be-

long to an open half-space of Rd (as in OC-SVM), assumes

the labeled data inhabits a bounded set; specifically, the op-

timization seeks the centroid c ∈ R
d of a hypersphere of

minimum radiusR > 0 that contains all points in Do. Math-

ematically, the objective reads:

min
c,R,ξ≥0

1

2
R2+C

n
∑

i=1

ξi, s.t. ‖xi − c‖
2
2≤R2−ξi, ∀xi ∈ Do,

where, as in OC-SVM, the ξ’s model the slack. There have

been extensions of this scheme, such as the mSVDD that

uses a mixture of such hyperspheres [29], density-induced

SVDD [30], using kernelized variants [52], and more re-

cently, to use subspaces for data description [49]. A ma-

jor drawback of SVDD in general is the strong assump-

tion it makes on the isotropic nature of the underlying data

distribution. Such a demand is ameliorated by combining

OC-SVM with the idea of SVDD in least-squares one-class

SVM (LS-OSVM) [14] that learns a tube around the dis-

criminative hyperplane that contains the input; however,

this scheme also makes strong assumptions on the data

distribution (such as being cylindrical). In Figures 1(a)

and 1(b), we graphically illustrate OC-SVM and SVDD

schemes.

Unlike OC-SVM that learns a compact data model to en-

close as many training samples as possible, a different ap-

proach is to use principal component analysis (PCA) (and

its kernelized counterpart, such as Kernel PCA and Roboust

PCA[7, 15, 20, 38, 60]) to summarize the data by using its

principal subspaces. However, such an approach is usually

unfavorable due to its high computational cost, especially

when the dataset is large. Similar in motivation to the pro-

posed technique, Bodesheim et al. [5] use null space trans-

form for novelty detection and while Liu et al. [34] opti-

mize a kernel-based max-margin objective for outlier re-

moval and soft label assignment. However, their problem

setups are different from ours in that [5] requires multi-class

labels in the training data and [34] is proposed for unsuper-

vised learning.

In contrast to these prior methods, in this paper, we ex-

plore the one-class objective from a very unique perspec-

tive; specifically, to use subspaces as in PCA, however in-

stead of approximating the one-class data, these subspaces

are aligned in such a way as to bound the data in a piecewise

linear manner, via solving a discriminative objective. We

first present a simplified variant of this objective by using

two different (sets of) hyperplanes, dubbed Basic One-class

Discriminative Subspaces (BODS), that can sandwich the

labeled data by bounding from different sides; these hyper-

planes are independently parameterized and thus can be ori-

ented differently to better fit to the labeled data. Note that

there is a similar prior work, termed Slab-SVM [18], that

learns two hyperplanes for one-class classification. How-

ever, these hyperplanes are constrained to have the same

slope, which we do not impose in our BODS model, as a

result, our model is more general than Slab-SVM. We ex-

tend the BODS formulation by using multiple hyperplanes,

as a discriminative subspace, which we call Generalized

One-class Discriminative Subspaces (GODS); these sub-

spaces provide better support for the one-class data, while

also circumscribing the data distribution. The use of such

discriminative subspaces has been recently explored in the

context of representation learning on videos in Wang and

Cherian [56] and Wang et al. [57], however demands a sur-

rogate negative bag of features found via adversarial means.

Anomaly Detection: In computer vision, anomaly detec-

tion has been explored from several facets and we refer in-

terested readers to excellent surveys provided in [11, 42]

on this topic. Here we pickout a few prior works that are

related to the experiments we present. To this end, Adam

et al., [2] and Kim et al. [26] use optical flow to capture

motion dynamics, characterizing anomalies. A Gaussian

mixture modelling of people and object trajectories is used

in [32, 48] for identifying anomalies in video sequences.

Saliency is used in [22, 24] and detecting out-of-context

objects is explored in [13, 40] using support graph and

generative models for characterizing normal and abnormal

data. We are also aware of recent deep learning methods

for one-class problems. Feature embeddings (via a CNN) is

explored in [31, 33] minimizing the “in-distribution” sam-

ple distances, so that “out-of-distribution” samples can be

found via suitable distance measures. Differently, we at-

tempt at finding a suitable “in-distribution” data boundary

which is agnostic to the data embedding. A deep variant of

SVDD is proposed in [45], however assumes the one-class

data is unimodal. There are extensions of OC-SVM to a

deep setting in [59, 10, 41]. Due to the immense capacity of

modern CNN models, it is often found that the learned pa-

rameters overfit quickly to the one-class; requiring heuristic

workarounds for regularization or avoiding model collapse.

Thus, deep methods so far have been primarily used as fea-

ture extractors, these features are then used in a traditional

one-class formulation, such as in [10]. We follow this trend.

3. Proposed Method

Using the notation above, in this section, we formally in-

troduce our schemes. First, we present our basic idea using

a pair of hyperplanes, which we generalize using a pair of

discriminative subspaces for one-class classification.

3.1. Basic Oneclass Discriminative Subspaces

Suppose (w1, b1) and (w2, b2) define the parameters of

a pair of hyperplanes respectively; our goal in the basic vari-

ant of one-class discriminative subspace (BODS) classifiers



is to minimize an objective such that all data points xi be

classified to the positive half-space of (w1, b1) and to the

negative half-space of (w2, b2), while also minimizing a

suitable distance between the two hyperplanes. Mathemati-

cally, BODS can be formulated as solving:

min
(w1,b1),(w2,b2),

ξ1,ξ2,β>0

1

2
‖w1‖

2
2+

1

2
‖w2‖

2
2 −b1−b2+Ω(ξ1i, ξ2i)

(1)

s.t.
(

w
T
1 xi − b1

)

≥ η − ξ1i (2)
(

w
T
2 xi − b2

)

≤ −η + ξ2i (3)

dist2((wi, b1) , (w2, b2)) ≤ β,∀i = 1, 2, · · · , n, (4)

where (2) constraints the points such that they belong to

the positive half-space of (w1, b1), while (3) constraints the

points to belong to the negative half-space of (w2, b2). We

use the notation Ω(ξ1i, ξ2i) = C
∑n

i=1 (ξ1i + ξ2i) for the

slack regularization and η > 0 specifies a (given) classifica-

tion margin. The two hyperplanes have their own parame-

ters, however are constrained together by (4), which aims to

minimize the distance dist between them (by β). One pos-

sibility is to assume dist to be the Euclidean distance, i.e.,

dist2((w1, b1) , (w2, b2)) = ‖w1 −w2‖
2
2 + (b1 − b2)

2.

It is often found empirically, especially in a one-class

setting, that allowing the weights wi’s to be unconstrained

leads to overfitting to the labeled data; a practical idea is to

explicitly regularize them to have unit norm (and so are the

data point xi’s), i.e., ‖w1‖2 = ‖w2‖2 = 1. In this case,

these weights belong to a unit hypersphere Ud−1, which is

a sub-manifold of the Euclidean manifold R
d. Using such

manifold constraints, the optimization in (1) can be rewrit-

ten (using a hinge loss variant for other constraints) as fol-

lows, which we term as our basic one-class discriminative

subspace (BODS) classifier.

P1 := min
w1,w2∈Ud−1

ξ1,ξ2≥0,b1,b2

α(b1, b2)−2wT
1 w2 +Ω(ξ1i, ξ2i) (5)

+
∑

i

[

η−
(

w
T
1 xi + b1

)

−ξ1i
]

+
+
[

η+
(

w
T
2 xi + b2

)

+ξ2i
]

+
,

where using the unit-norm constraints dist2 simplifies to

−2wT
1 w2+(b1−b2)

2, and α(b1, b2) = (b1−b2)
2−b1−b2.

The notation [ ]+ stands for the hinge loss. In Figure 1(c),

we illustrate the decision boundaries of BODS model.

3.2. Generalized Oneclass Discriminative Sub
spaces

To set the stage, let us first see what happens if we in-

troduce subspaces instead of hyperplanes in BODS. To this

end, let W1,W2 ∈ SK
d be subspace frames – that is, ma-

trices of dimensions d × K , each with K columns where

each column is orthonormal to the rest; i.e., WT
1 W1 =

W
T
2 W2 = IK , where IK is the K × K identity matrix.

Such frames belong to the so-called Stiefel manifold, de-

noted SK
d , with K d-dimensional subspaces. Note that the

orthogonality assumption on the Wi’s is to ensure they cap-

ture diverse discriminative directions, leading to better reg-

ularization; further also improving their characterization of

the data distribution. A direct extension of P1 leads to:

P2 := min
W∈S

K

d
,ξ≥0,b

dist2W(W1,W2) +α(b1,b2) +Ω(ξ1i, ξ2i)

+
∑

i

[

η −min(WT
1 xi + b1)− ξ1i

]2

+
(6)

+
∑

i

[

η +max(WT
2 xi + b2) + ξ2i

]2

+
, (7)

where distW is a suitable distance between subspaces, and

b ∈ R
K is a vector of biases, one for each hyperplane.

Note that in (6) and (7), unlike BODS, WT
xi + b is a K-

dimensional vector. Thus, (6) says that the minimum value

of this vector should be greater than η and (7) says that the

maximum value of it is less than −η.

Now, let us take a closer look at the distW(W1,W2).
Given that W1,W2 are subspaces, one standard possibility

for a distance is the Procrustes distance [12, 55] defined as

minΠ∈PK
‖W1 −W2Π‖F , where PK is the set of K ×K

permutation matrices. However, including such a distance

in Problem P2 makes it computationally expensive. To this

end, we propose a slightly different variant of this distance

which is much cheaper. Recall that the main motivation to

define the distance between the subspaces is so that they

sandwich the (one-class) data points to the best possible

manner while also catering to the data distribution. Thus,

rather than defining a distance between such subspaces, one

could also use a measure that minimizes the Euclidean dis-

tance of each data point from both the hyperplanes; thereby

achieving the same effect. That is, we redefine dist2W as:

dist2W(W1,W2,b1,b2|x) =

2
∑

j=1

∥

∥W
T
j x+ bj

∥

∥

2

2
, (8)

where now we minimize the sum of the lengths of each

x after projecting on to the respective subspaces; thereby

pulling both the subspaces closer to the data point. Using

this definition of dist2W, we formulate our generalized one-

class discriminative subspace (GODS) classifier as:

P3 := min
W∈SK

d

ξ≥0,b

F =
1

2

n
∑

i=1

2
∑

j=1

∥

∥W
T
j xi + bj

∥

∥

2

2
+α(b1,b2)

+Ω(ξ1i, ξ2i) +
ν

n

∑

i

[

η −min(WT
1 xi + b1)− ξ1i

]2

+

+
1

2n

∑

i

[

η +max(WT
2 xi + b2) + ξ2i

]2

+
. (9)



Figure 1(d) depicts the subspaces in GODS model in rela-

tion to other methods. As is intuitively clear, using multiple

hyperplanes allows richer characterization of the one-class,

which is difficult in other schemes.

4. Efficient Optimization

In contrast to OC-SVM and SVDD, the problem P3 is

non-convex due to the orthogonality constraints on W1 and

W2.1 However, these constraints naturally impose a ge-

ometry to the solution space and in our case, puts the W’s

on the well-known Stiefel manifold [37] – a Riemannian

manifold characterizing the space of all orthogonal frames.

There exist several schemes for geometric optimization over

Riemannian manifolds (see [1] for a detailed survey) from

which we use the Riemannian conjugate gradient (RCG)

scheme in this paper, due to its stable and fast convergence.

In the following, we review some essential components of

the RCG scheme and provide the necessary formulae for

using it to solve our objective.

4.1. Riemannian Conjugate Gradient

Recall that the standard (Euclidean) conjugate gradient

(CG) method [1][Sec.8.3] is a variant of the steepest de-

scent method, however chooses its descent along directions

conjugate to previous descent directions with respect to the

parameters of the objective. Formally, suppose F (W) rep-

resents our objective. Then, the CG method uses the fol-

lowing recurrence at the k-th iteration:

W
k = W

k−1 + λk−1αk−1, (10)

where λ is a suitable step-size (found using line-search)

and αk−1 = − gradF (Wk−1) + µk−1αk−2, where

gradF (Wk−1) defines the gradient of F at W
k−1 and

αk−1 is a direction built over the current residual and con-

jugate to previous descent directions (see [1][pp.182])).

When W belongs to a curved Riemannian manifold, we

may use the same recurrence, however there are a few im-

portant differences from the Euclidean CG case, namely (i)

we need to ensure that the updated point Wk belongs to

the manifold, (ii) there exists efficient vector transports2 for

computing αk−1, and (iii) the gradient grad is along tan-

gent spaces to the manifold. For (i) and (ii), we may resort

to computationally efficient retractions (using QR factoriza-

tions; see [1][Ex.4.1.2]) and vector transports [1][pp.182],

respectively. For (iii), there exist standard ways that take as

input a Euclidean gradient of the objective (i.e., assuming

no manifold constraints exist), and maps them to the Rie-

mannian gradients [1][Chap.3]. Specifically, for the Stiefel

1Note that the function max(0,min(z)) for z in some convex set is

also a non-convex function.
2This is required for computing αk−1 that involves the sum of two

terms in potentially different tangent spaces, which would need vector

transport for moving between them (see [1][pp.182].

manifold, let ∇WF (W) define the Euclidean gradient of

F (without the manifold constraints), then the Riemannian

gradient is given by:

gradF (W) = (I−WW
T )∇WF (W). (11)

The direction gradF (W) corresponds to a curve along the

manifold, descending along which ensures the optimization

objective is decreased (atleast locally).

Now, getting back to our one-class objective, all we need

to derive to use the RCG, is compute the Euclidean gradi-

ents ∇WF (W) of our objective in P3 with regard to the

variables Wj’s; the other variables (such as the biases) are

Euclidean and their gradients are straightforward, and the

joint objective can be solved via RCG on the product mani-

fold comprising the Cartesian product of the Stiefel and the

Euclidean manifolds. Thus, the only non-trivial part is the

expression for the Euclidean gradient of our objective with

respect to the W’s, which is given by:

∂F

∂Wj

=

n
∑

i=1

xi

(

W
T
j xi + b1

)T
−Zi∗

[

η −W
T
j xi − bj − ξji

]

+
,

(12)

where i∗ = h(WT
j xi + bj), h abstracts argmink and

− argmaxk for W1 and W2 respectively, i∗ denotes the

selected hyperplane index (out of K) and Zi∗ is a d × K

matrix with all zeros, except i∗-th column which is xi.

4.2. Initialization

Due to the non-convexity of our objective, there could

be multiple local solutions. To this end, we resort to the fol-

lowing initialization of our optimization variables, which

we found to be empirically beneficial. Specifically, we first

sort all the data points based on their Euclidean distances

from the origin. Next, we gather a suitable number (de-

pending on the number of subspaces) of such sorted points

near and far from the origin, compute a singular value de-

composition (SVD) of these points, and initialize the GODS

subspaces using these orthonormal matrices from the SVD.

5. One-class Classification

At test time, suppose we are given m data points, and our

task is to classify each of them as belonging to either D or

D. To this end, we use the learned parameters of our prob-

lem P3 as above, and compute the score for each point (us-

ing (9)). Next, we use K-means clustering (we could also

use graph-cut) on these scores with K = 2. Those points

belonging to the cluster with smaller scores are deemed to

belong to D and the rest to D.

6. Experiments

In this section, we provide experiments demonstrating

the performance of our proposed schemes on several one-



class tasks, namely (i) out-of-position human pose detec-

tion using the Dash-Cam-Pose dataset, (ii) human action

recognition in videos using the popular JHMDB dataset,

(iii) UCF-Crime dataset to find anomalous video events,

(iv) discriminating sonar signals from a metal cylinder and

a roughly cylindrical rock using the Sonar dataset3, and

(v) abnormality detection in a submersible pump using the

Delft pump dataset4. Before proceeding, we first introduce

our new Dash-Cam-Pose dataset.

6.1. DashCamPose: Data Collection

Out-of-position (OOP) human pose detection is an im-

portant problem with regard to the safety of passengers in

a car. While, there are very large public datasets for hu-

man pose estimation – such as the Pose Track [21] and

MPII Pose [3] datasets, among others – these datasets are

for generic pose estimation tasks, and neither they contain

any in-vehicle poses as captured by a dashboard camera,

nor are they annotated for pose anomalies. To this end, we

collected about 104 videos, each 20-30 min long from the

Internet (including Youtube, ShutterStock, and Hollywood

road movies). As these videos were originally recorded for

diverse reasons, there are significant shifts in camera angles,

perspectives, locations of the camera, scene changes, etc.

To extract as many clips as possible from these videos,

we segmented them to three second clips at 30fps, which re-

sulted in approximately 7000 clips. Next, we selected only

those clips where the camera is approximately placed on

the dashboard looking inwards, which amounted to 4,875

clips. We annotated each clip with a weak binary label

based on the poses of humans in the front seat (the back

seat passengers often underwent severe occlusions, as a re-

sult, was harder to estimate their poses). Specifically, if all

the front-seat humans (passengers and the driver) are seated

in-position, the clip was given a positive label, while if any

human is seated OOP for the entire 3s, the clip was labeled

as negative. We do not give annotations for which human

is seated in OOP. The in-position and out-of-position crite-

ria are defined loosely based on the case studies in [39, 16],

the primary goal being to avoid passenger fatality due to an

OOP if airbags are deployed.

After annotating the clips with binary labels, we applied

Open Pose [8] on each clip extracting a sequence of poses

for every person. These sequences are filtered for poses be-

longing to only the front seat humans. Figure 2 shows a

few frames from various clips. As is clear from the exam-

ples, the OOP poses could be quite arbitrary and difficult to

model; which is the primary motivation to seek a one-class

solution for this task. In the following section, we detail our

data preparation and evaluation scheme. Some statistics of

the dataset are provided in Table 1.

3
https://www.kaggle.com/adx891/sonar-data-set

4
http://homepage.tudelft.nl/n9d04/occ/547/oc_547.html

Dash-Cam-Pose Dataset

Total # clips 4875

% of clips with OOP poses 28.5%

Total # poses 1.06M

Total # OOP poses 310,996

Table 1. Attributes of the proposed Dash-Cam-Pose dataset.

6.2. DashCamPose: Preparation and Evaluation

Suitable representation of the poses is important for us-

ing them in the one-class task. To this end, we explore two

representations, namely (i) a simple bag-of-words (BoW)

model of poses learned from the training set, and (ii) using

a Temporal Convolutional Network (TCN) [27] which uses

residual units with 1D convolutional layers, capturing both

local and global information via convolutions for each joint

across time. For the former, we 1024 pose centroids, while

for the latter the poses from each person in each frame are

vectorized and stacked over the temporal dimension. The

TCN model we use has been pre-trained on the larger NTU-

RGBD dataset [47] on 3D-skeletons for the task of human

action recognition. For each pose thus passed through TCN,

we extract features from the last pooling layer, which are

256-D vectors for each clip.

We use a four-fold cross-validation for evaluating on

Dash-Cam-Pose. Specifically, we divide the entire dataset

into four non-overlapping splits, each split consisting of ap-

proximately 1/4-th the dataset, of which roughly 2/3rd’s are

the labeled positive and the rest are OOP. We use only the

positive data in each split to train our one-class models.

Once the models are trained, we evaluate on the held out

split. For every embedded-pose feature, we use the binary

classification accuracy against the annotated ground truth

for measuring performance. The evaluation is repeated on

all the four splits and the performance averaged.

6.3. Public Datasets

JHMDB dataset: is a video action recognition dataset [23]

consisting of 968 clips with 21 classes (illustrative frames

are provided in Figure 3). To adapt the dataset for a one-

class evaluation, we use a one-versus-rest strategy by choos-

ing sequences from an action class as “normal” while those

from the rest 20 classes are treated as “abnormal”. To eval-

uate the performance over the entire dataset, we cycle over

the 21 classes, and the scores are averaged. For representing

the frames, we use an image-net [28] pre-trained VGG-16

model and extract frame-level features from the ‘fc-6’ layer

(4096-D).

UCF-Crime dataset: is the largest publicly available real-

world anomaly detection dataset [50], consisting of 1900

surveillance videos and 13 categories such as fighting, rob-

bery, as well as several “normal” activities. Illustrative

video frames from this dataset and their class labels are

shown in Figure 3. To encode the videos, we use the state-

https://www.kaggle.com/adx891/sonar-data-set
http://homepage.tudelft.nl/n9d04/occ/547/oc_547.html


Figure 2. Frames from our proposed Dash-Cam-Pose dataset. The leftmost frame has poses in-position (one-class), while the rest of the

frames are from videos labeled out-of-position.

Figure 3. Some examples from JHMDB (left-two) and UCF-Crime

(right-two) datasets, with respective categories.

of-the-art Inflated-3D (I3D) neural network [9]. Specifi-

cally, video frames from non-overlapping sliding windows

(8 frames each) is passed through the I3D network; features

are extracted from the ‘Mix 5c’ network layer, that are then

reshaped to 2048-D vectors. For anomaly detections on the

test set, we first map back the features classified as anoma-

lies by our scheme to the frame-level and apply the official

evaluation metrics [50].

Sonar and Delft pump dataset: are two UCI datasets, hav-

ing 208 and 1500 data points respectively, and two classes.

We directly adopt the raw feature (60-D and 64-D) without

any feature embedding. We keep the train/test ratio as 7/3

while keeping the original proportion of each class in each

set. We randomly pick train/test splits and the evaluation is

repeated 5 times and performances averaged.

6.4. Evaluation Metrics

On the UCF-Crime dataset, we follow the official eval-

uation protocol, reporting AUC as well as the false alarm

rate. For other datasets, we use the F1 score to reflect the

sensitivity and accuracy of our classification models. As

the datasets we use - especially the Dash-Cam-Pose – are

unbalanced across the two classes, having a single perfor-

mance metric over the entire dataset may fail to characterize

the quality of the discrimination for each class separately,

which is of primary importance for the one-class task. To

this end, we also report True Negative Rate TNR = TN
N

,

Negative Predictive Value NPV = TN
TN+FN

, and F1 =
2×TNR×NPV
TNR+NPV

alongside standard F1 scores.

6.5. Ablative Studies

Synthetic Experiments: To gain insights into the inner

workings of our schemes, we present results on several 2D

synthetic toy datasets. In Figure 4, we show four plots with

(a) BODS-Gaussian (b) GODS-Gaussian (c) GODS-Arbitrary

Figure 4. Visualizations of subspaces found by BODS (leftmost)

and GODS on various data distributions.

100 points distributed as (i) Gaussian and (ii) some arbitrary

distribution5. We show the BODS hyperplanes in the first

plot, and the rest two plots show the GODS 2D subspaces

with the hyperplanes belonging to each subspace shown in

same color. As the plots show, our models are able to ori-

ent the subspaces such that they confine the data within a

minimal volume. More results are provided in the supple-

mentary materials.

Parameter Study: In Figure 5, we plot the influence of in-

creasing number of hyperplanes on four of the datasets. We

find that after a certain number of hyperplanes, the perfor-

mance saturates, which is expected, and suggests that more

hyperplanes might lead to overfitting to the positive class.

We also find that the TCN embedding is significantly bet-

ter than the BoW model (by nearly 3%) on the Dash-Cam-

Pose dataset when using our proposed methods. Surpris-

ingly, S-SVDD is found to perform quite inferior against

ours; note that this scheme learns a low-dimensional sub-

space to project the data to (as in PCA), and applies SVDD

on this subspace. We believe, these subspaces perhaps are

common to the negative points as well that it cannot be suit-

ably discriminated, leading to poor performance. We make

a similar observation on the other datasets as well.

6.6. StateoftheArt Comparisons

In Tables 2, we compare our variants to the state-of-the-

art methods. As alluded to earlier, for our Dash-Cam-Pose

dataset, as its positive and negative classes are unbalanced,

we resort to reporting the F1 score on the negative set. As

is clear from the table, our variants outperform prior meth-

ods by a considerable margin. For example, using TCN,

5The data follows the formula f(x) =
√
x ∗ (x + sign(randn) ∗

rand), where randn and rand are standard MATLAB functions.
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Figure 5. Performance of our method on various datasets for an increasing number of subspaces.

Table 2. Average performances on the four datasets, where Dash-Cam-Pose use the F1 score while the rest use F1 score as evaluation

metric (classification accuracy is shown in the brackets). K-OC-SVM and K-SVDD are the RBF kernelized variants.

Method Dash-Cam-Pose BOW Dash-Cam-Pose TCN JHMDB Sonar Pump

OC-SVM [46] 0.167 (0.517) 0.279(0.527) 0.301 (0.568) 0.578 (0.459) 0.623(0.482)

SVDD [51] 0.448 (0.489) 0.477(0.482) 0.407 (0.566) 0.605 (0.479) 0.813 (0.516)

K-OC-SVM [46] 0.327 (0.495) 0.361(0.491) 0.562 (0.412) 0.565 (0.429) 0.601 (0.499)

K-SVDD [51] 0.476 (0.477) 0.489 (0.505) 0.209 (0.441) 0.585 (0.474) 0.809 (0.529)

K-PCA [20] 0.145 (0.502) 0.258 (0.492) 0.245 (0.557) 0.530 (0.426) 0.611 (0.416)

Slab-SVM [18] 0.468 (0.568) 0.498 (0.577) 0.643 (0.637) 0.600 (0.619) 0.809 (0.621)

LS-OSVM [14] 0.234 (0.440) 0.246(0.460) 0.663(0.582) 0.643 (0.466) 0.831 (0.448)

S-SVDD [49] 0.325 (0.490) 0.464 (0.500) 0.642 (0.498) 0.637 (0.500) 0.865 (0.500)

BODS 0.523 (0.582) 0.532 (0.579) 0.725 (0.714) 0.677 (0.662) 0.823 (0.714)

GODS 0.553 (0.629) 0.584 (0.601) 0.777 (0.752) 0.762 (0.775) 0.892 (0.755)
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Figure 6. Training time of each method with increasing number of

training samples.

Method AUC False alarm rate

Random 50.00 -

Hasan et al. [19] 50.60 27.2

Lu et al. [35] 65.51 3.1
∗Waqas et al. [50] 75.41 1.9

Sohrab et al. [49] 58.50 10.5

BODS 68.26 2.7

GODS 70.46 2.1

Table 3. Performances on UCF-Crime dataset. ∗Setup is different.

GODS is over 30% better than OC-SVM; even we outper-

form the kernelized variants by about 20%. Similarly, on

the JHMDB and the other two datasets, GODS is better

than the next best method by about 3-13%, associated with a

significant improvement for the classification accuracy (by

over 10%). As the classes used in the test set for these

datasets are balanced, we report the F1 scores. Overall,

the experiments clearly substantiate the performance ben-

efits afforded by our method on the one-class task. In the

Figure 6, we demonstrate the time consumption for training

different models. It can be seen that the GODS & BODS al-

gorithm are not computationally expensive than other meth-

ods, while being is empirically superior (Table 2).

In Table 3, we present results against the state of the art

on the UCF-Crime dataset using the AUC metric and false

alarm rates (we use the standard threshold of 50%). While,

our results are lower than [50], their problem setup is com-

pletely different from ours in that they use weakly labeled

abnormal videos as well in their training, which we do not

use and which as per definition is not a one-class problem.

Thus, our results are incomparable to theirs. On other meth-

ods for this dataset, our methods are about 5-20% better.

7. Conclusions

In this paper, we presented a novel one-class learning

formulation using subspaces in a discriminative setup, these

subspaces are oriented in such a way as to sandwich the

data. Due to the non-linear constraints optimization prob-

lem that ensues, we cast the objective in Riemannian con-

text however, for which we derived efficient numerical so-

lutions. Experiments on a diverse collection of five datasets,

including our new Dash-Cam-Pose dataset, demonstrated

the usefulness of our approach achieving state-of-the-art

performances.
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