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Abstract

Person re-identification (Re-ID) has achieved great im-
provement with deep learning and a large amount of la-
belled training data. However, it remains a challenging task
for adapting a model trained in a source domain of labelled
data to a target domain of only unlabelled data available. In
this work, we develop a self-training method with progres-
sive augmentation framework (PAST) to promote the model
performance progressively on the target dataset. Specially,
our PAST framework consists of two stages, namely, conser-
vative stage and promoting stage. The conservative stage
captures the local structure of target-domain data points
with triplet-based loss functions, leading to improved fea-
ture representations. The promoting stage continuously op-
timizes the network by appending a changeable classifica-
tion layer to the last layer of the model, enabling the use
of global information about the data distribution. Impor-
tantly, we propose a new self-training strategy that progres-
sively augments the model capability by adopting conser-
vative and promoting stages alternately. Furthermore, to
improve the reliability of selected triplet samples, we intro-
duce a ranking-based triplet loss in the conservative stage,
which is a label-free objective function basing on the simi-
larities between data pairs. Experiments demonstrate that
the proposed method achieves state-of-the-art person Re-ID
performance under the unsupervised cross-domain setting.

Code is available at: tinyurl.com/PASTReID

1. Introduction
Person re-identification (Re-ID) is a crucial task in

surveillance and security, which aims to locate a target
pedestrian across non-overlapping camera views using a
probe image. With the advantages of convolutional neu-
ral networks (CNN), many person Re-ID works focus on
supervised learning [12, 29, 37, 3, 46, 2, 4, 18, 28, 5, 24]
and achieve satisfactory improvements. Despite the great
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Figure 1 – Label quality vs. model generalization. The accuracy of
pseudo labels prediction (top) and performance comparison (bottom)
of different training processes over training iterations. Here we use
Duke [43] as the source domain and Market-1501 [42] as the target do-
main.

success, they depend on large labelled datasets which are
costly and sometime impossible to obtain.

To tackle this problem, a few unsupervised learning
methods [34, 22, 20] propose to take advantage of abundant
unlabelled data, which are easier to collect in general. Un-
fortunately, due to lack of supervision information, the per-
formance of unsupervised methods is typically weak, thus
being less effective for practical usages. In contrast, unsu-
pervised cross-domain methods [36, 8, 34, 45, 16, 25, 10,
23, 19, 27] propose to use both labelled datasets (source
domain) and unlabelled datasets (target domain). However,
directly applying the models trained in the source domain to
the target domain leads to unsatisfactory performances due
to the inconsistent characteristics between the two domains,
which is known as the domain shift problem [19]. In unsu-
pervised cross-domain Re-ID, the problem becomes how to
transfer the learned information of a pre-trained model from
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the source domain to the target domain effectively in an un-
supervised manner.

Some domain transfer methods [45, 16, 25, 10, 23,
19, 27, 22] have taken great efforts to address this chal-
lenge, where the majority are based on pseudo label esti-
mation [10, 27, 23]. They extract embedding features of
unlabelled target datasets from the pre-trained model and
apply unsupervised clustering methods (e.g., k-means and
DBSCAN [9]) to separate the data into different clusters.
The samples in the same cluster are assumed to belong to
the same person, which are adapted for training as in su-
pervised learning. The drawback of these methods is that
the performance highly depends on the clustering quality,
reflecting on whether samples with the same identity are as-
signed to one cluster. In other words, performance relies on
to what extent are the pseudo labels from clustering consis-
tent with ground truth identity labels. Since the percentage
of corrupted labels largely affect the model generalization
on the target dataset [40], we propose a method to improve
the quality of labels in a progressive way which results in
considerable improvement of model generalization on the
unseen target dataset.

Here we propose a new Self-Training with Progressive
Augmentation framework (PAST) to: 1) restrain error am-
plification at early training epochs when the quality of
pseudo label can be low; and 2) progressively incorporate
more confidently labelled examples for self-training when
the label quality is becoming better. PAST has two learning
stages, i.e., conservative and promoting stage, which con-
sider complementary data information via different learning
strategies for self-training.
Conservative Stage. As shown in Figure 1, the percent-
age of correctly labelled data is low at first due to the do-
main shift. In this scenario, we need to select confidently
labelled examples to reduce label noise. We consider the
similarity score between images as a good indicator of con-
fidence measure. Beside the widely used clustering-based
triplet loss (CTL) [15], which is sensitive to the quality of
pseudo labels generated from clustering method, we pro-
pose a novel label-free loss function, ranking-based triplet
loss (RTL), to better capture the characteristic of data distri-
bution in the target domain.

Specifically, we calculate the ranking score matrix for
the whole target dataset and generate triplets by select-
ing the positive and negative examples from the top η and
(η, 2η] ranked images for each anchor. The triplets are then
fed into the model and trained with the proposed RTL. In
the conservative stage, we mainly consider the local struc-
ture of data distribution which is crucial for avoiding model
collapse when the label quality is mediocre at early learning
epochs.
Promoting Stage. However, as the number of training
triplets dramatically grows in large datasets and triplets

only focus on local information, the learning process with
triplet loss inevitably becomes instability and suffers from
the local-optimal result, as shown by the “CTL” and
“CTL+RTL” in Figure 1. To remedy this issue, we pro-
pose to use the global distribution of data points for network
training at the promoting stage. That is, we treat each clus-
ter as a class and convert the learning process into a classifi-
cation problem. Softmax cross-entropy loss is used to force
different categories staying apart for encouraging inter-class
separability. After the promoting stage, the model is prone
to be more stable which facilitates learning the discrimina-
tive features. Since the error is most likely amplified when
training on images with extremely corrupted labels using
the softmax cross-entropy loss, we employ this stage fol-
lowing the conservative learning stage and carry out two
stages interchangeably. With this alternate process, our pro-
posed PAST framework can stabilize the training process
and progressively improve the capability of model general-
ization on the target domain.

To summarize, our main contributions are as follows.
1) We present a novel self-training with progressive aug-

mentation framework (PAST) to solve the unsupervised
cross-domain person Re-ID problem. By executing the two-
stage self-training process, namely, conducting conserva-
tive and promoting stage alternately, our method consider-
ably improve the model generalization on unlabelled target-
domain datasets.

2) We propose a ranking-based triplet loss (RTL), solely
relying on similarity scores of data points, to avoid selecting
triplet samples using unreliable pseudo labels.

3) We take advantage of global data distribution for
model training with softmax cross-entropy loss, which is
beneficial for training stability and promoting the capability
of model generalization.

4) Experimental results on three large-scale datasets in-
dicate the effectiveness of our proposed method on the task
of unsupervised cross-domain person Re-ID.

1.1. Related Work

Supervised Person Re-ID. Most existing deep person Re-
ID methods follow a supervised setting. They are mainly
based on either well-designed model architectures [29, 6,
35, 30, 41, 37, 5, 2], additional attributions [3, 26, 46, 4]
or metric learning [12, 15, 21, 44]. Although significant
progress has been obtained by these methods, they all re-
quire a large amount of labelled training data, which are
costly and impractical to be annotated due to drastic appear-
ance change among different datasets.
Unsupervised Person Re-ID. To alleviate the above limi-
tation, unsupervised person Re-ID methods [38, 22, 20, 32,
33] are proposed to make full use of large-scale unlabelled
datasets. Most of them exploit cross-view identity-specific
information to capture discriminate features [38, 33] or in-
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Figure 2 – The overview of our self-training framework with progressive augmentation (PAST). The model is pre-trained on the labelled source dataset.
During training, we first carry out a sampling process, which consists of extracting embedding features of unlabelled target dataset with the current model
and calculating the ranking score matrix with Eq. (2). We then assign pseudo labels to training samples via HDBSCAN [1] clustering method. After that,
we conduct conservative stage by using clustering-based triplet loss (CTL) and the proposed ranking-based triplet loss (RTL) simultaneously to update
the model. In promoting stage, the softmax cross-entropy loss is employed to further improve the capability of the model. Note that the conservative stage
and promoting stage alternate iteratively during the whole learning process. For Re-ID evaluation, we extract the embedding features for both query and
gallery images and use the cosine distance for ranking.

corporate clustering methods into training to separate unla-
belled images into different classes [20, 22]. However, since
specific identity labels are unavailable, these unsupervised
learning methods are not able to achieve comparable results
as supervised-based approaches.
Unsupervised Cross-Domain Person Re-ID. Recently, re-
searchers pay intensive attention to unsupervised cross-
domain person Re-ID algorithms [36, 8, 34, 45, 16, 25,
10, 23, 19, 27] to leverage Re-ID models pre-trained in the
source domain to improve the performance on unlabelled
target domain. They all focus on overcoming domain shift
so as to learn domain-invariant feature representation.

Among these existing works, PTGAN [36] and SP-
GAN [8] transfer source images into target-domain style by
CycleGAN and then use translated images to train a model.
However, due to unable to guarantee the identity of gener-
ated images, these style transfer learning methods can not
result in satisfactory performance. Another line of unsuper-
vised cross-domain person Re-ID works [34, 45, 23, 16]
combine other auxiliary information as an assistant task
to improve the model generalization. For instance, TFu-
sion [23] integrates spatio-temporal patterns to improve the
Re-ID precision, while EANet [16] uses pose segmenta-
tion. TJ-AIDL [34] learns an attribute-semantic and identity
discriminative feature representation space simultaneously,
which can be transferred to any new target domain for re-id
tasks. Similar as the difficulty of supervised learning, these
domain adaptation approaches suffer from the requirement
of collecting attribute annotations.

Beyond the above methods, some approaches [10, 27,

23] focus on estimating pseudo identity labels on the target
domain so as to learn deep models in a supervised manner.
Usually, clustering methods are used in the feature space
to generate a series of clusters which are used to update
networks with an embedding loss (e.g., triplet loss [15] or
contrastive loss) [27, 23] or classification loss (e.g., soft-
max cross-entropy loss) [10]. Whereas, embedding loss
functions suffer from the limitation of sub-optimal results
and slow convergence, while classification loss extremely
depends on the quality of pseudo labels. While the work
in [39] introduces a simple domain adaptation framework
which also use both triplet loss and softmax cross-entropy
loss jointly, it aims at solving one-shot leaning problem.

2. Our Method
For unsupervised cross-domain person Re-ID, the prob-

lem that we concentrate on is how to learn robust feature
representations for unlabelled target datasets using the prior
knowledge from the labelled source datasets. In this sec-
tion, we present our proposed self-training with progressive
augmentation framework (PAST) in detail.

2.1. Overview of Our Proposed Framework

The overall framework of our proposed self-training with
progressive augmentation framework (PAST) is described
in Figure 2. The framework is based on a deep neural net-
work M trained on ImageNet [7], which contains two main
components: conservative stage and promoting stage.

We first fine-tune the model M using labelled source
training dataset S in a supervised manner. Then, this pre-



trained model is utilized to extract features F on all training
images in the target domain T , which are used as the in-
put features of our framework. For the conservative stage,
based on the ranking score matrix DR learned from the in-
put features, we can generate a more reliable training set TU
via the HDBSCAN [1] clustering method (other clustering
methods can be employed here too). This updated training
set TU is a subset of the whole training data T . Combining
with two triplet-based loss functions, i.e., clustering-based
triplet loss (CTL) and the proposed ranking-based triplet
loss (RTL), local structure of the current updated training
set can be captured for model optimization. After that, we
can use the new model to extract features FU of the cur-
rent training set TU . Next, in the promoting stage, with the
new features FU from the conservative stage, we propose
to employ softmax cross-entropy loss for further optimiz-
ing the network. At this stage, the global distribution of the
training set is considered to improve the discrimination of
feature representation. Finally, the capability of model gen-
eralization is improved gradually by training the network
with the conservative stage and promoting stage alternately.

2.2. Conservative Stage

In the task of unsupervised domain adaptation, it is a nat-
ural goal to gather samples of the same identity together
and push samples from different classes away from each
other. Triplet loss [45, 27, 23] has been proved to be able to
discover meaningful underlying local structure of data dis-
tribution by generating reliable triplets of the target data.
Different from the supervised setting, pseudo labels are as-
signed to unlabelled samples, which is more difficult to con-
struct high-quality triplets. Therefore, our goal is to design
a learning strategy to not only generate reliable samples but
also improve the model performance.

In practice, we conduct the following procedure in
the conservative stage. At the beginning, on the whole
training dataset T : {x1, x2, ..., xN}, we extract features
F: {f(x1), f(x2), ..., f(xN )} from the current model, and
adopt the k-reciprocal encoding [44], which is a variation
of the Jaccard distance between nearest neighbors sets, to
generate the distance matrix D as:

D = [DJ(x1) DJ(x2) . . . DJ(xN )]T ,

DJ(xi) = [dJ(xi, x1) dJ(xi, x2) . . . dJ(xi, xN )],

∀i ∈ {1, 2, . . . , N},
(1)

where DJ(xi) represents the distance vector of one specific
person xi with all training images. dJ(xi, xj) is the Jaccard
distance between sample xi and xj .

According to the fact that a smaller distance reflects
more similarities between two images, we sort every dis-
tance vector DJ(xi) from smallest value to largest value,

yielding ranking score matrix DR as:
DR = [DR(x1) DR(x2) . . . DR(xN )]T ,

DR(xi) = [dJ(xi, x̃1) dJ(xi, x̃2) . . . dJ(xi, x̃N )],

∀i ∈ {1, 2, . . . , N},
(2)

where DR(xi) is the ranking format of DJ(xi) from small
to large. Given a specific sample xi, x̃j in dJ(xi, x̃j) repre-
sents the j-th most similar sample.

Then, we apply a hierarchical density-based clustering
algorithm (HDBSCAN) [1] on DR to split the whole train-
ing images into different clusters, which are considered as
pseudo labels. After HDBSCAN, some images, not belong-
ing to any clusters, are discarded. Thus, we use images with
assigned labels as the updated training set TU for further
model optimization.

We combine two types of triplet loss functions together
to update the model, i.e., clustering-based triplet loss (CTL)
and ranking-based triplet loss (RTL), which are different
from the way of triplets selection as well as the way for
model optimization.

Clustering-based Triplet Loss (CTL). One loss func-
tion that we use is batch hard mining triplet loss [15], pro-
posed to mine relations among samples within a mini-batch.
We randomly sample P clusters and K instances in each
cluster to compose a mini-batch with size of PK. For each
anchor image xa, the corresponding hardest positive sam-
ple xp and the hardest negative sample xn within the batch
are selected to form a triplet. Since the pseudo labels are
from a clustering method, we rename this loss function as
clustering-based triplet loss (CTL), which is formulated as,

LCTL =

PK∑
a=1

[m+ ||f(xa)− f(xp)||2 − ||f(xa)− f(xn)||2]+

=

P∑
i=1

K∑
a=1

[m+

hardest positive︷ ︸︸ ︷
max

p=1...K
||f(xi,a)− f(xi,p)||2

− min
n=1...K
j=1...P

j 6=i

||f(xi,a)− f(xj,n)||2

︸ ︷︷ ︸
hardest negative

]+,

(3)
where xi,j is a data point representing the j-th image of the
i-th cluster in the batch. f(xi,j) is the feature vector of xi,j .

Ranking-based Triplet Loss (RTL). However, it is
clear that the effect of CTL highly depends on the qual-
ity of label estimation, which is hard to decide whether the
clustering result is correct or not. Therefore, we propose a
Ranking-based Triplet Loss (RTL) to make full use of the
ranking score matrix DR. It is a label-free method reflect-
ing the relation between data pairs.

Specifically, given a training anchor xa, positive sample
xp is randomly selected from the top η nearest neighbors
according to the ranking score vector DR(xa), and negative



sample xn is from the location (η, 2η]. In addition, instead
of hard margin in CTL,we introduce a soft margin based on
the relative ranking position of xp and xn, which can adapt
well to different scales of intra-class variation. The formula
of RTL is shown as,

LRTL =

PK∑
a=1

[
|Pp − Pn|

η
m +

||f(xa)− f(xp)||2 − ||f(xa)− f(xn)||2]+,

(4)

where the selected anchors in each batch are the same as
CTL. m is a basic hard margin same as Eq. (3). η is the
maximum of ranking position for positive sample selection.
Pp and Pn are the ranking positions of xp and xn with re-
spect to xa.

To summarize, we optimize the network using the com-
bination of CTL and RTL to better capture the local-
constraint information of data distribution. Our final triplet-
based loss function in conservative stage is shown in
Eq. (5):

LC = LRTL + λLCTL, (5)

where λ is the loss weight to trade off the influence of two
loss functions. Experiments show that this combined triplet-
based loss function can certainly improve the capability of
model representation.

2.3. Promoting Stage

Nevertheless, since triplet-based loss functions only fo-
cus on the data relation within each triplet, the model will be
prone to instability and stuck into a suboptimal local mini-
mum. To alleviate this problem, we propose to apply clas-
sification loss to further improve model generalization by
taking advantage of global information of training samples.
In the promoting stage, a fully-connected layer is added at
the end of the model as a classifier layer, which is initialized
according to the features of current training set. Softmax
cross-entropy loss is used as the objective function, which
is formulated as:

LP = −
PK∑
i=1

log
eW

T
ŷi

xi∑C
c=1 e

WT
c xi

, (6)

where ŷi is the pseudo label of the sample xi. C is the
number of clusters from the HDBSCAN clustering method
with updated training set TU .

Feature-based Weight Initialization for Classifier.
Due to the variation of cluster numbers C, the newly added
classifier layer CL should be initialized every time execut-
ing HDBSCAN. Instead of random initialization, we exploit
the mean features of each cluster as the initial parameters.
Specifically, for each cluster c, we calculate the mean fea-
ture F c by averaging all the embedding features of its ele-
ments. The parameters W of CL are initialized as follows:

Wc = F c, c ∈ {1, 2, . . . , C}, (7)

Algorithm 1: The Self-training with Progressive Aug-
mentation Framework (PAST)

Input : labelled source domain dataset S; whole unlabelled target
domain training dataset T ; CNN model M pre-trained on
ImageNet; maximum iteration Imax; HDBSCAN
clustering method; minimal samples in each cluster for
HDBSCAN Smin.

Output: Model M .
Initialization: Initialize model M on S; Initial selected training set

TU = T .
1 for i = 1 to Imax do
2 Conservative Stage:
3 Extract embedding features F on training data T from M ;
4 Compute ranking score matrix DR on whole training data T

with F according to Eq. (2);
5 Update training set TU using HDBSCAN(DR;Smin);
6 Update model M using TU according to Eq. (5);
7 Extract embedding features FU on TU from M ;

8 Promoting Stage:
9 Initialize classifier layer CL based on FU according to Eq. (7);

10 Update model M with classifier layer using TU according to
Eq. (6);

11 end

where W ∈ Rd×C , Wc is the c-th column of W, and d
is the feature dimensionality. An advantage of this initial-
ization is that we can use the previous information to avoid
the fluctuation of accuracy caused by random initialization,
which is useful for the convergence of model training.

2.4. Alternate Training

The learning process is expected to progressively im-
prove the model capability of generalization, which can
avoid model to fall into local optimum. In this paper, we
carefully develop a simple yet effective self-training strat-
egy which can capture local structure and global informa-
tion of training images. That is, the conservative stage and
the promoting stage are conducted alternately. At the be-
ginning, the model is trained only using the local relations
between data points alone, so that the difficulty of error am-
plification brought by softmax loss can be prevented. After
several training steps in the conservative stage, the ability
of model representation and the quality of clusters are more
trusty. Then model capability is further augmented using
Softmax cross-entropy loss in the promoting stage and the
updated model is used as the initial state for conservative
stage alternately. As the training goes on, model gener-
alization is improved, allowing to learn more discriminate
feature representation of training images. The details of
this two-stage alternate self-training are included in Algo-
rithm 1. We also list one visual example of this alternate
self-training process, shown in Figure 3. It is proved that
our proposed PAST framework is also useful for refining
the quality of clusters.
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Figure 3 – The alternate self-training process of our PAST framework on one visual example. All images belong to same person in truth. Samples with
same color denotes that they are assigned to same pseudo label generated by HDBSCAN clustering method. Gray figure means the sample not belonging
to any cluster and not being used for model training. From training iteration 1 to iteration 4, more samples are selected for training. At the same time, the
pseudo labels are more reliable.

3. Experiments
We evaluate our unsupervised self-learning method on

cross-domain Person Re-ID tasks. Three common large-
scale person Re-ID datasets are used, Market-1501 [42],
DukeMTMC-Re-ID [43], and CUHK03 [17].

Market-1501 [42] contains 32,668 labelled images of
1,501 identities taken by 6 cameras, which are detected
and cropped via Deformable Part Model (DPM) [11]. The
dataset is split into training set with 12,936 images of 751
identities and test set with 19,732 images of 750 identities.

DukeMTMC-Re-ID [43] consists of 36,411 labelled im-
ages belonging to 1,404 identities observed by 8 camera
views. As the format of Matket-1501 dataset, it has 16,522
images of 702 identities for the training set and the remain-
ing 19,889 images of 702 identities for the test set. Here-
after Duke refers to this dataset.

CUHK03 [17] is composed of 14,096 images from 1,467
identities captured by 2 cameras. This dataset was con-
structed by both manual labelling and DPM. In this work,
we experiment on the images detected using DPM. To be
in consistency with the protocol of Market-1501 and Duke,
new train/test evaluation protocol [44] are used: 7,365 im-
ages with 767 identities for training and the remaining 6,732
images with 700 identities for testing.

3.1. Implementation Details

Model and Preprocessing. We adopt PCB [29] as our
model structure, in which ResNet-50 [14] without last clas-
sification layer is used as backbone model. Similar as
EANet [16], we use 9 regions for feature representation.
Instead of using part aligned pooling [16], we change to use
even parts like PCB for simplification. The dimension of
each embedding layer is set to 256. Following each embed-
ding layer, we also implement the classifier layer with one
fully connected layer in the promoting stage. The classifier

output changes according to the number of clusters gener-
ated from HDBSCAN clustering process.

All input images are resized to 384×128×3. It is noting
that we only apply random flipping as data augmentation.

Training Settings. We use the SGD optimizer with a
momentum of 0.9 and weight decay of 5×10−4 to train the
model. Without otherwise specification, in all experiments
we set batch size to 64 and the iteration step to 4. Instead
of directly using same learning rates for both conservative
and promoting stage, we believe that individually setting
the specialized learning rates can work better for our PAST
framework. The reason is that the parameters from the con-
servative stage should be updated slower in the promoting
stage for avoiding error amplification caused by Softmax
cross-entropy loss. Specifically, the learning rate is initial-
ized to 10−4 on fine-tune layers and 2×10−4 on embedding
layers in the conservative stage, while for the promoting
stage, newly added classifier layers use an initial learning
rate of 10−3 and all other layers 5 × 10−5. After 3 itera-
tions, all learning rates are multiplied by 0.1. The margin
hyper parameter m is set to 0.3 in both Eq. (3) and Eq. (4).

Evaluating Settings. For performance evaluation, fea-
ture vectors from embedding layers of 9 parts are normal-
ized separately and then concatenated as the output repre-
sentation. Given a query image, we calculate cosine dis-
tance with all gallery images and then sort it as final ranking
result. We utilize the Cumulated Matching Characteristics
(CMC) [13] and mean Average Precision (mAP) [42] as the
performance evaluation measures. CMC curve shows the
probability that a query appears in different size of can-
didate lists. As for mAP, given a single query, the Av-
erage Precision (AP) is computed from the area under its
precision-recall curve. The mAP is then calculated as the
mean value of AP across all queries. Note that single-shot
setting is adopted similar to [29] in all experiments.



Method Stage M→D D→M
Rank-1 mAP Rank-1 mAP

PCB∗ [29] (DT) - 42.73 25.70 57.57 29.01
PCB-R∗ [44] - 49.69 39.38 59.74 41.93
PCB-R-CTL C 68.18 49.06 71.88 46.17
PCB-R-RTL C 70.69 52.02 72.65 47.62
PCB-R-CTL+RTL C 71.63 52.05 74.26 50.59
PCB-R-PAST C+P 72.35 54.26 78.38 54.62

Table 1 – The effectiveness of conservative stage and promoting stage in
our proposed Self-training with Progressive Augmentation Framework
(PAST). D→M represents that we use Duke [43] as source domain and
Market-1501 [42] as target domain. ∗ denotes that the results are pro-
duced by us. DT means Direct Transfer from PCB with 9 regions. R
means applying k-reciprocal encoding method [44]. CTL represents
clustering-based triplet loss [15], while RTL is our proposed ranking-
based triplet loss. Our PAST framework consists of conservative stage
and promoting stage that are denoted by C and P respectively.

3.2. Ablation Study

In this subsection, we aim to thoroughly analyse the ef-
fectiveness of each components in our PAST framework.

Effectiveness of the Conservative Stage. As shown in
Table 1, we conduct several experiments to verify the effec-
tiveness of the individual components CTL, RTL and the
combination of these two triplet loss functions on the task
of M→D and D→M. First, only with CTL, we improve
the performance by 18.49% and 12.14% at Rank-1 accu-
racy compared with the results from k-reciprocal encoding
method [44] on M→D and D→M respectively. Second, we
observe that containing only our proposed RTL, the Rank-1
accuracy and mAP increase by 21% and 12.64% for M→D,
while 12.91% and 5.69% on D→M. This obvious improve-
ment shows that both CTL and RTL are useful for increas-
ing model generalization. And CTL obtains slightly lower
performance than RTL. Then, as described in Eq. (5), we
combine CTL and RTL together to jointly optimize model
in our conservative stage. It is clear that we achieve bet-
ter results on both M→D and D→M. Especially for D→M,
we gain 2.38% and 4.42% on Rank-1 and mAP comparing
to only using CTL, which shows the significant benefit of
our RTL. Through this conservative stage, we can learn a
relative powerful model for target domain.

Effectiveness of the Promoting Stage. However, as il-
lustrated in Figure 1, there is no further gains even with
more training iterations when only using triplet-based loss
functions. We believe that it is because during conservative
stage, the model only sees local structure of data distribu-
tion brought by triplet samples. Thus, in our PAST frame-
work, we employ softmax cross-entropy loss as the objec-
tive function in the promoting stage to train the model with
the conservative stage alternately. Refer to Table 1 again,
compared with only using conservative stage, our PAST can
further improve mAP and Rank-1 by 2.21% and 0.72% on
M→D task, and 4.03% and 4.12% for D→M. Meanwhile,
from Figure 3, the quality of clusters is also improved with
our PAST framework. This shows that the promoting stage

Method Cluster M→D D→M
Rank-1 mAP Rank-1 mAP

PCB-R-CTL
K 44.84 26.93 54.39 29.94
D 53.73 36.27 67.41 42.42
H 68.18 49.06 71.88 46.17

PCB-R-CTL+RTL
K 53.99 34.46 56.26 32.73
D 67.91 49.08 72.54 48.06
H 71.63 52.05 74.26 50.59

PCB-R-PAST
K 68.94 49.97 75.48 51.39
D 71.90 53.07 75.62 51.70
H 72.35 54.26 78.38 54.62

Table 2 – The comparison of different clustering methods. K, D and H
represents K-means, DBSCAN [9] and HDBSCANRank1HDBSCAN
clustering method respectively.

does play an important role in model generalization.
Through the above experiments, different components in

our PAST have been evaluated and verified. We show that
our PAST framework is not only beneficial for improving
model generation but also refining clustering quality.

Comparison with Different Clustering Methods. We
evaluate three different clustering methods, i.e., k-means,
DBSCAN [9] and HDBSCAN [1] in the conservative stage.
The performance of utilizing these clustering methods un-
der different settings are specified in Table 2. For k-means,
the number of cluster centroids k is set to 702 and 751 on
target data of Market-1501 and Duke respectively, which
is the same as the number of identities of source train-
ing data. It is clear that HDBSCAN performs better than
k-means and DBSCAN under either only using conserva-
tive stage or whole PAST framework. For instance, using
HDBSCAN can achieve mAP 54.26% and Rank-1 72.35%
for M→D task in PAST framework, which are 4.29% and
3.41% higher than using k-means, and 1.19% and 0.45%
than using DBSCAN. In addition, we also observe that
whatever clustering method we use, our PAST framework
always outperforms only using conservative stage. This
means that on the one hand, HDBSCAN clustering method
has more powerful effect in our framework; on the other
hand, our PAST framework indeed provides improvement
of feature representation on target domain.

3.3. Comparison with State-of-the-art Methods

Following evaluation setting in [16, 45], we compare
our proposed PAST framework with state-of-the-art unsu-
pervised cross-domain methods, shown in Table 3. It can
be seen that only using conservative stage with CTL and
RTL for training, the performance is already competitive
with other cross-domain adaptive methods. For example, al-
though EANet [16] proposes complex part-aligned pooling
and combines pose segmentation to provide more informa-
tion for adaptation, our conservative stage still outperforms
it by 3.93% in Rank-1 and 4.05% in mAP when testing on
M→D. Moreover, our PAST framework surpasses all pre-
vious methods by a large margin, which achieves 54.26%,
54.62%, 57.34%, 51.79% in mAP and 72.35%, 78.38%,



Method M→D D→M C→M C→D
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

UMDL [25]’16 18.5 7.3 34.5 12.4 - - - -
PUL [10]’18 30.0 16.4 45.5 20.5 41.9 18.0 23.0 12.0
PTGAN [36]’18 27.4 - 38.6 - 31.5 - 17.6 -
SPGAN [8]’18 46.4 26.2 57.7 26.7 - - - -
TJ-AIDL [34]’18 44.3 23.0 58.2 26.5 - - - -
HHL [45]’18 46.9 27.2 62.2 31.4 56.8 29.8 42.7 23.4
ARN [19]’18 60.2 33.4 70.3 39.4 - - - -
EANet [16]’19 67.7 48.0 78.0 51.6 66.4 40.6 45.0 26.4
Theory [27]’18 68.4 49.0 75.8 53.7 - - - -
PCB∗ [29] (DT)’18 42.73 25.70 57.57 29.01 51.43 27.28 29.40 16.72
PCB-R∗ [44] 49.69 39.38 59.74 41.93 55.91 38.95 35.19 26.89
PCB-R-CTL+RTL (Ours) 71.63 52.05 74.26 50.59 77.70 54.36 65.71 46.58
PCB-R-PAST (Ours) 72.35 54.26 78.38 54.62 79.48 57.34 69.88 51.79

Table 3 – Comparison with state-of-the-art methods under unsupervised cross-domain setting. In each column, the 1st and 2nd highest scores are marked
by red and blue respectively. D, M, C represent Duke [43], Market-1501 [42] and CUHK03 [17] respectively.

79.48%, 69.88% in Rank-1 accuracy for M→D, M→D,
C→M, C→D. We can also prove that it is useful to alter-
nately use conservative and promoting stage by comparing
with the last two rows in Table 3. Especially, our PAST can
improve 4.71% and 5.21% in Rank-1 and mAP for C→D
compared with only using conservative stage.

3.4. Parameter Analysis

Besides, we conduct additional experiments to evaluate
the parameter sensitivity.

Analysis of the Loss Weight λ. λ is a hyper parame-
ter which is used to trade off the effect between ranking-
based triplet loss (RTL) and clustering-based triplet loss
(CTL). We evaluate the impact of λ, which is sampled from
{0.1, 0.2, 0.5, 1.0, 2.0}, on the task of D→M. The results
are shown in Figure 4 (a). We observe that the best result is
obtained when λ is set to 0.5. Note that large or small λ has
limitation on the improvement of performance.

Analysis of the Minimum Samples Smin. In addition,
we analyse how the number of minimum samples (Smin)
for every cluster in HDBSCAN clustering affects the Re-ID
results. We test the impact of {5, 10, 15, 20}minimum sam-
ples on the performance of our PAST framework on D→M
setting. As shown in Figure 4 (b), we can see that setting
Smin to 10 yields superior accuracy. Meanwhile, differ-
ent Smin has large variance on the final number of pseudo
identities from HDBSCAN. We believe that it is because
samples from the same class will be separated to several
clusters when Smin is too small, while low-density classes
will be abandoned if Smin is too large. This can be verified
from Figure 4 (c), the number of identity from HDBSCAN
with minimum sample 10 is 625, which is the closest one to
the true value 751 in Market-1501 training set.

4. Conclusion

In this paper, we have presented a self-training with pro-
gressive augmentation framework (PAST) for unsupervised

cross-domain person re-identification. Our PAST consists
of two different stages, i.e., the conservative and promoting
stage, which are adopted alternately to offer complementary
information for each other. Specifically, the conservative
stage mainly captures local information with triplet-based
loss functions, while the promoting stage is used for ex-
tracting global information. For alleviating the dependence
on clustering quality, we also propose a novel label-free
ranking-based triplet loss. With these proposed method, the
model generalization gains significant improvement, as well
as the capability of feature representation on target domain.
Extensive experiments show that our PAST outperforms the
state-of-the-art unsupervised cross-domain algorithms by a
large margin.

We plan to extend our work to other unsupervised cross-
domain applications, such as face recognition and image re-
trieval tasks.
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Appendix

1. More Experimental Results

1.1. More Experiments for Parameter Analysis

Analysis of the Maximum Ranking Position η for Pos-
itive Sample. The maximum ranking position η is a tunable
hyper-parameter in the ranking-based triplet loss (RTL), as
shown in Eq. (4) in the main paper, which defines the range
(0, η] for selecting positive samples and the range (η, 2η]
for negative samples. We conduct several experiments to
evaluate the sensitivity of our method to η when transferring
from Duke [43] to Market-1501 [42], as shown in Table 4. It
shows that when η is equal or larger than 20, we can obtain
nearly same and competitive results. And we set η = 20
in all experiments except this part. The performance drops
quickly when η is extremely small. We believe that it is due
to the unbalanced identities, e.g., the minimal and maximal
numbers of images are 2 and 72 respectively in the train-
ing set of Market-1501, which results in a large probability
that the selected positive and negative samples are from the
same (ground-truth) identity.

1.2. More Qualitative Analyses

Qualitative Analysis of the Feature Representation.
To demonstrate the results intuitively, we visualize the fea-
ture embeddings calculated by our PAST framework in 2-
D using t-SNE [31]. Three representative classes are dis-
played by showing the corresponding images in the bottom,
i.e., true positive samples, false positive samples and false

D→M
η Rank-1 Rank-5 Rank-10 mAP
5 71.85 83.22 87.00 44.37

10 73.78 84.09 87.62 47.64
15 77.43 86.70 89.99 51.77
20 78.38 88.63 92.01 54.62
25 78.27 88.63 91.63 55.27
30 78.15 88.93 91.95 54.46
35 78.59 88.48 91.83 55.10

Table 4 – The influence of maximum ranking position η for triplet se-
lection of RTL in our PAST framework on D→M setting.



negative samples. As illustrated in Figure 5, images belong-
ing to the same identity are almost well gathered together,
while those from different classes usually stay apart from
each other. It implies that our PAST framework can im-
prove the capability of model generalization which is ben-
eficial for learning discriminative feature representation on
the target-domain dataset.

Qualitative Analysis of the Triplet Selection. In Fig-
ure 6, we visualize the triplet samples generated in the con-
servative stage for CTL and RTL, respectively. We summa-
rize the main advantages of the proposed PAST method in
the following.

1. The proposed PAST algorithm can significantly im-
prove the quality of the clustering assignments during
training. As shown in the first row of the iterations
from 1 to 4, the images assigned to the same class by
the proposed method tend to be more and more simi-
lar. On the other hand, the quality of the pseudo labels
assigned to each images is steadily improved during
training. It means that our PAST framework is ben-
eficial for learning discriminating feature presentation
and can assign more reliable pseudo labels to target
images. The accurate pseudo labels can be used to
promoting stage to improve the model generalization
further.

2. RTL is useful for remedying the variance caused by
CTL. Refer to Figure 6 again, we can observe that
the third cluster in iteration 2 is noisy and the selected
triplets from CTL are not faithful. However, RTL can
select correct positive sample even the cluster is dirty.
We believe that the reason is that RTL just depends on
the similarity ranking matrix and the top η similar im-
ages are used for generating positive samples, which
is more reliable when the features representation is not
so discriminative.

3. RTL helps to further optimize the network, especially
in the later iteration. From Figure 6, we can also see
that different clusters in one mini-batch may look dif-
ferent due to unique color of clothes, which results
in extremely simple negative samples and slows down
the optimization when training on CTL. Whereas, con-
sidering the triplets generated from the RTL, negative
images are extremely similar to the anchors, which is
even hard to be well recognized by human beings. For
example, at the second column in iteration 4, all im-
ages look like one person, although images from the
first two rows are same person, while those from the
third row belong to another person.



True Positive False Positive False Negative

Figure 5 – Qualitative analysis of the feature representation by using t-SNE [31] visualization on a subset of Market-1501 [42] training data. According
to the clustering result, we choose the Top-50 identities which contain Top-50 the largest number of images. Points with the same color have the same
(ground-truth) identity. The green circle means images from the same identity are gathered together, and the cluster is extremely reliable. Images in
orange circle are both from same identity, yet they are clustered to two different classes. We can see that due to the camera style, images from the two
classes have different appearances. In the red circle, although our algorithm may gather images from different (ground-truth) identities into the same
cluster, these images usually share very similar appearances and are hard to distinguish with each other. For instances, every image in the red circle
contains one person with white clothes and a black bicycle.
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Figure 6 – Quality of the triplet selection over training iterations. Images from different clusters are divided by yellow line. The red line means generated
triplets are not completely correct, while green line represents generated triplets are completely correct. The solid line and dashed line are for triplets,
which are generated from CTL and RTL respectively. We use Duke [43] as the source domain and Market-1501 [42] as the target domain.


