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Figure 1. From left to right: An input face image, proxy 3D face, texture and displacement map produced by our Emotion-to-Face (E2F)
framework, detailed face geometry using our learning based synthesis technique, and the re-rendered result.

Abstract

We present a single-image 3D face synthesis technique
that can handle challenging facial expressions while recov-
ering fine geometric details. Our technique employs expres-
sion analysis for proxy face geometry generation and com-
bines supervised and unsupervised learning for facial detail
synthesis. On proxy generation, we conduct emotion predic-
tion to determine a new expression-informed proxy. On de-
tail synthesis, we present a Deep Facial Detail Net (DFDN)
based on Conditional Generative Adversarial Net (CGAN)
that employs both geometry and appearance loss functions.
For geometry, we capture 366 high-quality 3D scans from
122 different subjects under 3 facial expressions. For ap-
pearance, we use additional 20K in-the-wild face images
and apply image-based rendering to accommodate lighting
variations. Comprehensive experiments demonstrate that
our framework can produce high-quality 3D faces with re-
alistic details under challenging facial expressions.

1. Introduction

Producing high quality human faces with fine geometric
details has been a core research area in computer vision and
graphics. Geometric structure details such as wrinkles are

important indicators of age and facial expression and are
essential for producing realistic virtual human [2]. Success-
ful solutions by far rely on complex and often expensive
capture systems such as stereo-based camera domes [20]
or photometric-based LightStage [32, 12]. Although such
solutions have become increasingly popular and affordable
with the availability of low-cost cameras and lights, they are
still bulky and hence do not support portable scanning. In
addition, they are vulnerable to low texture regions such as
bare skins.

We aim to produce high-quality 3D faces with fine geo-
metric details from a single image, with quality comparable
to those produced from the dome systems and LightStage.
Existing single-image solutions first construct a 3D proxy
face from templates and then refine the proxy by deforming
geometry and adding details. Such proxies can be derived
from 3D Morphable Model (3DMM) [10, 9, 42, 51, 16]
by blending base face geometry. More complex techniques
employ sparse coding on 3D face dictionaries to further im-
prove robustness and quality [41, 10, 9, 42, 51, 16, 23, 43,
7]. However, artifacts arise from these approaches such as
over-smoothing and incorrect expression, where a relatively
small number of parameters are used to approximate the
high dimensional space for real face. Shape-from-shading
[28], photometric stereo [12], and deep learning [52, 39, 14]
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have been used to generate the missing details. However,
existing methods have limits in attaining correct shape un-
der unseen emotional expressions and lighting, thus deliv-
ering insufficient or inaccurate geometric details, as shown
in Fig. 7

In this paper, we present a novel learning-based tech-
nique to produce accurate geometric details from a single
face image. Our approach takes into account emotion, ex-
pression and appearance. For proxy generation, we em-
ploy the Basel Face Model (BFM) [37] composed of shape,
expression and surface reflectance (albedo). 3D expres-
sions, however, exhibit strong ambiguity after being pro-
jected onto 2D images: a pair of 3D meshes that represent
very different emotional expressions can have similar 2D
landmarks on images. Therefore, we first devise a learning-
based approach to conduct emotion prediction and then use
the result to determine an expression informed proxy.

For geometric detail synthesis, we devise a Deep Fa-
cial Detail Net (DFDN) based on Conditional Generative
Adversarial Net (CGAN ) to map an image patch to a de-
tailed displacement map. Our DFDN has two components:
a medium scale geometry module that learns the PCA co-
efficients (in our case 64) of each patch and a fine scale
geometry module that refines the PCA based result with ad-
ditional details. For training, we captured a total of 366
high quality 3D scans from 122 different subjects under
three facial expressions (one neutral and two extreme ex-
pressions). We augment the training data with 340 high res-
olution meshes from ICT-3DRFE [47]. The loss function is
defined in terms of geometric differences between the es-
timation and the ground truth. However, we observe that
these training data are still insufficient to cover a wide range
of lighting conditions. Hence, we introduce an additional
unsupervised learning procedure (with an additional 20K
images captured in the wild) where for each image we ob-
tain its proxy geometry using our emotion-driven shape esti-
mator and then approximate the corresponding environment
lighting using spherical harmonics (SH). We use DFDN to
obtain an estimate of the geometry, but since we do not have
the ground truth geometry, we re-render these results using
the estimated albedo and environment lighting, and com-
pute the loss function in terms of the image differences.
Finally, we alternate the supervised and the unsupervised
learning processes, on geometry and image, respectively.

2. Related Work
Existing approaches for producing high quality 3D face

geometry either rely on reconstruction or synthesis.
Reconstruction-based Techniques. Multi-View Stereo

(MVS) 3D face reconstruction systems employ stereo [33]
or structure-from-motion [57]. A sparse set of cameras pro-
duce large scale geometry [20] whereas denser and hence
more expensive settings [2] provide more accurate mea-

sures. In either case, the reconstruction quality depends
heavily on the feature matching results as they act as an-
chor points dominating the final shape. For regions with
few textures such as bare skin, the reconstruction tends to be
overly smooth due to lack of features. For example, wrin-
kles caused by facial expressions are particularly difficult
to reconstruct: even though they cause shading variations,
their geometry is too slight to capture using stereo, espe-
cially when the camera baseline is small. Recently, Graham
et al. [20] use 24 entry-level DSLR photogrammetry cam-
eras and 6 ring flashes to capture facial specular response
independently and then combine shape-from-chroma and
shape-from-specularity for high quality reconstruction.

Another class of multi-shot techniques employed in face
reconstruction is Photometric Stereo (PS). PS is based on
analyzing image intensity variations under different illumi-
nations from a fixed viewpoint. Instead of directly recon-
structing 3D geometry, PS intends to first recover the nor-
mal map and then the 3D mesh, e.g., via normal integra-
tion. A common artifact in PS is low-frequency distortions
in the final reconstruction [35, 48] caused by perspective
projection violating the orthographic assumption. Accurate
calibrations on both the light sources and camera, though
able to mitigate the problem, are cumbersome. Most recent
techniques [36, 58, 15] combine PS with MVS by using the
MVS results as a proxy for calibration and then refine the
results. Aliaga et al. [3] simulates a MVS setup by em-
ploying multiple digital projectors as both light sources and
virtual cameras. We refer the readers to [1] for a compre-
hensive review of PS variants.

Synthesis-based approaches. The availability of high
quality mobile cameras and the demand on portable 3D
scanning have promoted significant advances on produc-
ing high quality 3D faces from a single image. The sem-
inal work of Blanz and Vetter [5] pre-captures a database of
face models and extracts a 3D morphable model (3DMM)
composed of base shapes and albedos. Given an input im-
age, it finds the optimal combination of the base models
to fit the input. Their technique can also handle geometric
deformations under expression [37, 18] if the database in-
cludes expressions, e.g., captured by RGBD cameras [11].
More extensive facial databases have been recently made
publicly available [59, 24, 55, 30, 6], with an emphasis
on handling complex expressions [30, 6]. Most recently,
Li et al. [30] capture pose and articulations of jaw, neck,
and eyeballs with over 33,000 3D scans that have helped
boost the performance of single-image/video face recon-
struction/tracking [41, 10, 9, 46, 61, 42, 51, 16, 23, 43, 7].
The current databases, however, still lack mid- and high-
frequency geometric details such as wrinkles and pores that
are epitomes to realistic 3D faces. Shading based compen-
sations can improve the visual appearance [16, 27] but re-
main far behind quality reconstruction of photos.
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Figure 2. Our processing pipeline. Top: training stage for emotion-driven proxy generation (a) and facial detail synthesis (b). Bottom:
applying the trained network on a real image.

Our approach is part of the latest endeavor that uses
learning to synthesize fine geometric details from a single
image. Real [53] or synthetically rendered [39, 14] face im-
ages were used as training datasets, and convolutional neu-
ral networks (CNNs) are then used to estimate 3D model
parameters. Sela et al. [44] use synthetic images for train-
ing but directly recover depth and correspondence maps in-
stead of model parameters. Richardson et al. [40] apply
supervised learning to first recover model parameters and
then employ shape-from-shading (SfS) to recover fine de-
tails. Guo et al. [21] adopts a two-stage network to recon-
struct facial geometry at different scales. Tewari et al. [50]
adopts a self-supervised approach based on an autoencoder
where a novel decoder depicts the image formation process.
Kim et al. [29] combine the advantages of both synthetic
and real data to [49] jointly learn a parametric face model
and a regressor for its corresponding parameters. Learning
based techniques can also produce volumetric representa-
tions [26] or normal fields [45]. Yet, few approaches can
generate very fine geometric details. Cao et.al [8] capture
18 high quality scans and employ a principal component
analysis (PCA ) model to emulate wrinkles as displacement
maps. Huynh et al. [25] use high precision 3D scans from
the LightStage [19]. Although effective, their technique as-
sumes similar environment lighting as the LightStage.

3. Expression-Aware Proxy Generation
Our first step is to obtain a proxy 3D face with surface

albedo map and accurate facial expressions. We employ
the Basel Face Model (BFM) [37], which consists of three
components: shapeMsha, expressionMexp and albedoMalb.
ShapeMsha and expressionMexp determine vertex locations
while albedo Malb encodes per-vertex albedo:

Msha(α) = as + Es · α (1)
Mexp(β) = ae + Ee · β (2)
Malb(γ) = aalb + Ealb · γ (3)

where as, ae, aalb ∈ R3n represent the mean of corre-
sponding PCA space. Es ∈ R3n×199, Ee ∈ R3n×100 con-
tain basis vectors for shape and expression while Ealb ∈
R3n×199 contain basis vectors for albedo. α, β, γ corre-
spond to the parameters of the PCA model.

3.1. Proxy Estimation

Given a 2D image, we first extract 2D facial landmarks
L ∈ R2m and use the results to compute PCA parameters
α, β for estimation of proxy shape. Specifically, we set out
to find the parameters that minimize the reprojection error
on landmarks:

E =
∑
k

wk‖Lk − P (lk(α, β))‖2 + λs‖α‖2+

λe‖β − βprior‖2 (4)



where lk(α, β) corresponds to the kth facial vertex land-
mark and P (·) is the camera projection operator that
maps 3D vertices to 2D image coordinates. wk controls
the weight for each facial landmark whereas λs, λe im-
poses regularization on the parameters. βprior denotes the
emotion-based expression prior that we will describe in
Section 3.2.

To solve for Eq. 4, we use the iterative linear
method [24]. Specifically, the camera projection operator
P (·) is parameterized as an affine camera matrix. For each
round of iterations, we first fix α, β and solve for P (·) us-
ing the Gold Standard Algorithm [22]. We then fix P (·)
and solve for α, β. To bootstrap this iterative scheme, we
initialize α, β as 0.

3.2. Imposing Expression as Priors

The most challenging component in proxy estimation is
expression. 3D expressions exhibit a significant ambiguity
after being projected onto 2D images, e.g., different expres-
sions may have similar 2D facial landmarks after projection.
Fig. 3 shows an example of this ambiguity: the landmarks
of the two faces are extremely close to each other while their
expression parameters and shapes are vastly different, espe-
cially near the facial decree areas. So it is hard to define
or train a mapping directly from image to 3D expression.
In our experiments, we also observe that the reprojection-
based loss function can easily fall into local minimum that
reflects such ambiguity.

We propose to use facial semantic information to nar-
row the 3D expression parameter solving space via convert-
ing the problem into a conditional distribution. Our facial
expression features include physical based appearance fea-
tures(e.g. gender,age and FACS) and underlay high level
emotion features.

To obtain the emotion features, we reuse a 11 discrete
expression emotion dataset [34] to train an emotion fea-
ture predictor Emotion-Net. Next, we randomly generate
expression parameters β from normal distribution in inter-
val [−3, 3] and render 90K images with different facial ex-
pressions. We feed the images into the trained Emotion-
Net and obtain a total of 90K emotion feature vectors. Us-
ing these emotion feature vectors along with their corre-
sponding appearance feature parameters, we formulate a
dictionary Ψ: Ψemo → Ψexp that record semantics features
Ψemo to expression parameters Ψexp. We utilize the 18-
layer Residual Net (ResNet-18 ) to train our emotion fea-
ture predictor and use the output of the second last layer
f ∈ R512 as the feature vectors to represent human emo-
tions. Once we obtain the trained model and the expression
dictionary, we can predict expression parameters βprior as
a prior for proxy estimation.

Given a new image I , we first feed it to Emotion-Net
and physical appearance features predictor[4] to obtain its
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Figure 3. Expression projection ambiguity. Top: Visualization of
the two models’ first eight dimensions of 3D expression parame-
ters. Bottom: 2D facial images, their landmarks layered onto one
image, and the corresponding geometric. ’left, right’ refer to both
rendered images and meshes.

semantics feature vector. We then find its closest semantics
vector in the dictionary and use the corresponding expres-
sion parameters for βprior:

βprior = Ψ(arg min
ψemo

‖Emotion-Net(I)− ψemo‖2) (5)

4. Deep Facial Detail Synthesis
With the 3D proxy face, we synthesize geometric details

by estimating displacement map and applying to the proxy
mesh. The key observation here is that for facial details such
as wrinkles, there is strong correlation between geometry
and appearance.

4.1. Network Architecture

Fig. 4 shows our Deep Facial Detail Net (DFDN ) with
two main cascaded modules. The Partial Detail Inference
Module (PDIM ) takes 2D image patches as inputs and gen-
erates 3D facial geometric details using a PCA -based tech-
nique (Section 4.2). Such a scheme dramatically reduces
the parameter space and is stable for both training and in-
ference process. However, PCA -based approximations lose
high frequency features that are critical to fine detail synthe-
sis. We therefore introduce the Partial Detail Refinement
Module (PDRM ) to further refine high-frequency details.
The reason we explicitly break down facial inference proce-
dure into linear approximation and non-linear refinement is
that facial details consist of both regular patterns like wrin-
kles and characteristic features such as pores and spots. By
using a two-step scheme, we encode such priors into our
network.
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Figure 4. Network architecture for facial detail synthesis. PDIM for median frequency detail (wrinkles) synthesis and PDRM for high
frequency detail (pores) synthesis.

In PDIM module, we use UNet-8 structure concatenated
with 4 fully connected layers to learn the mapping from tex-
ture map to PCA representation of displacement map. The
sizes of the 4 fully connected layers are 2048, 1024, 512, 64.
Except for the last fully connected layer, each linear layer
is followed by an ReLU activation layer. In the subsequent
PDRM module, we use UNet-6, i.e. 6 layers of convolu-
tion and deconvolution, each of which uses 4×4 kernel, 2
for stride size, and 1 for padding size. Apart from this, we
adopt LeakReLU activation layer except for the last convo-
lution layer and then employ tanh activation.

To train PDIM and PDRM modules, we combine super-
vised and unsupervised training techniques based on Con-
ditional Generative Adversarial Nets (CGAN ), aiming to
handle variations in facial texture, illumination, pose and
expression. Specifically, we collect 706 high precision 3D
human faces and over 20K unlabeled facial images captured
in-the-wild to learn a mapping from the observed image x
and the random noise vector z to the target displacement
map y by minimizing the generator objective G and maxi-
mizing log-probability of ’fooling’ discriminator D as:

L = arg min
G

max
D

(LcGAN(G,D) + λLL1(G)), (6)

where we set λ = 100 in all our experiments and

LcGAN(G,D) =Ex,y[log D(x, y)]+

Ex,z[log(1−D(x,G(x, z)))]. (7)

A major drawback of the supervised learning scheme
mentioned above is that the training data, captured under
fixed setting (controlled lighting, expression, etc.), are in-
sufficient to emulate real face images that exhibit strong
variations caused by environment lighting and expressions.
We hence devise a semi-supervised generator G, exploiting
labeled 3D face scans for supervised loss Lscans as well as
image-based modeling and rendering for unsupervised re-

construction loss Lrecon as:

LL1(G) = Lscans(x, z, y) + ηLrecon(x, z, y) (8)

Where η controls the contribution of reconstruction loss and
we fix it as 0.5 in our case. In the following subsections,
we discuss how to construct the supervised loss Lscans for
geometry and unsupervised loss Lrecon for appearance.

4.2. Geometry Loss

The geometry loss compares the estimated displacement
map with ground truth. To do so, we need to capture ground
truth facial geometry with fine details.

Face Scan Capture. To acquire training datasets, we
implement a small-scale facial capture system similar to
[12] and further enhance photometric stereo with multi-
view stereo: the former can produce high quality local de-
tails but is subject to global deformation whereas the latter
shows good performance on low frequency geometry and
can effectively correct deformation.

Our capture system contains 5 Cannon 760D DSLRs and
9 polarized flash lights. We capture a total of 23 images for
each scan, with uniform illumination from 5 different view-
points and 9 pairs of vertically polarized lighting images
(only from the central viewpoint). The complete acquisition
process only lasts about two seconds. For mesh reconstruc-
tion, we first apply multi-view reconstruction on the 5 im-
ages with uniform illumination. We then extract the specu-
lar/diffuse components from the remaining image pairs and
calculate diffuse/specular normal maps respectively using
photometric stereo. The multi-view stereo results serve as
a depth prior z0 for normal integration [38] in photometric
stereo as:

min

∫∫
(u,v)∈I

[(∇z(u, v)− [p(u, v), q(u, v)]>)2

+µ(z(u, v)− z0(u, v))2]dudv,

(9)



Figure 5. From left to right: from the image, we estimate its proxy
mesh, normal, lighting/shading, and albedo to re-render an image.

where u, v represents image coordinates, p, q represents ap-
proximations to ∂uz and ∂vz respectively, z0 is the depth
prior. µ controls the contribution of prior depth z0. In or-
der to generate geometry pairs with and without details, we
set the weight parameter µ to 1e−5 and 1e−3 respectively.
Then we obtain a ground truth displacement map for each
geometry pair.

PCA-Based Displacement Map. In our training
scheme, we choose not to directly feed complete face im-
ages as inputs to the network: such training can easily cause
overfitting since we do not have sufficient 3D face models
with fine details to start with. Instead, we observe that de-
spite large scale variations on different faces, local texture
details present strong similarities even if the faces appear
vastly different. Hence we adopt the idea from [8, 12] to
enhance our network generalization by training the network
with texture/displacement patches of 256× 256 resolution.
We model the displacement using PCA, where each patch
is a linear combination of 64 basis patches.

Our geometric loss is then defined as:

Lscans(x, z, y) =
∑
||PDIM(x, z)− PCA(y)||1+

||PDRM[PDIM(x, z)]− y||1 (10)

where we combine the loss in PCA space with the per-pixel
loss to recover finer details.

For patch sampling, we unfold each facial image into a
4096 × 4096 resolution texture map and regionally sample
training patches based on semantic facial segmentation. For
the sampling scheme, we iteratively reduce the displace-
ment map gradient with a weighted Gaussian kernel for the
training set, and uniformly sample patches with 50% over-
lap in our validations.

4.3. Appearance Loss

Recall that the small amount of labeled facial geometry
is insufficient to cover a broad range of illumination con-
ditions and surface reflectance. Thus, we further adopt a
rendering-based, unsupervised learning approach: we ob-
tain 20K in-the-wild images, estimate its proxy (using E2F)
and geometric details (using DFDN ), and then use this in-
formation to calculate lighting and albedo. Finally, we re-
render an image with all these estimations and compute re-
construction loss against the input image. Genova et al. [17]
adopted a similar approach by creating a vertex buffer and
conducting rasterization and interpolation.

To obtain per-pixel normals with geometric details
added, we propose an texture space manipulation using
the proxy mesh’s position map Pproxy (shown in Fig. 2,
the middle of first row) and the output displacement map
G(x, z) from DFDN :

Pfine = Pproxy +G(x, z) ∗ Nproxy (11)

Nfine = F(Pfine) (12)

where Nproxy,Nfine represent proxy and fine scale geo-
metric normal map and Pfine is position map for fine de-
tailed mesh. F(·) is normalized cross product operator on
position difference:

F(Pfine) =
convh(Pfine)× convv(Pfine)
||convh(Pfine)|| · ||convv(Pfine||

(13)

We compute position difference via nearby horizontal and
vertical 3 pixels in texture space, giving rise to convolu-
tion kernels of [−0.5, 0, 0.5] and [−0.5, 0, 0.5]> for convh,
convv respectively.

With known normal of fine detailed mesh, we assume a
Lambertian skin reflectance model and represent the global
illumination using Spherical Harmonics (SH) to estimate
environment lighting and surface albedo. Under this model,
we can compute the radiance L emitting from point v at any
viewing direction as:

L(v) = ρ(v)S(nv) = ρ(v)

n∑
i=1

liYi(nv) (14)

where ρ(v) denotes the surface albedo, S irradiance, Yi the
basis of spherical harmonics (see details in supplementary
material), li the corresponding weight, and nv the normal
of vertex v. We also represent albedo using BFM :

L(v) = (avalb + Evalb · γ)

n∑
i=1

liYi(nv) (15)

with avalb andEvalb being the mean and principle component
albedo at vertex v. We use the first nine harmonic basis and
have:

L(v) = (avalb + Evalb · γ)Hv · l (16)



where Hv =

1 0 0
0 1 0
0 0 1

 ⊗ [Y1(nvi) · · · Y9(nvi)
]

and

l =
[
l11, · · · l19, l21, · · · l29, l31, · · · l39

]T
. Ac-

cordingly, a reconstructed face image Irecon can be repre-
sented by

Irecon = (aalb + Ealb · γ) ◦ (H · l) (17)

where H =
[
HT
v1 , · · · , HT

vn

]T
, and H ∈ R3n×27.

We estimate lighting and albedo by minimizing the en-
ergy function Eq. 18 on the illumination coefficients l and
the albedo parameters γ:

E(l, γ) = ‖Iinput − Irecon‖22 (18)

where Iinput is the intensity value of vertices. In order to
achieve a reliable estimation, in our implementation, we
first use a self-adaptive mask to select vertices that have re-
liable normals with which to apply the optimization.

We adopt an iterative optimization scheme similar to
[56]. The complete algorithm is shown in Algorithm 1
where M, ξ1, ξ2 are termination threshold. They are set as
50, 0.05 and 50 in our experiments.

Algorithm 1 lighting and albedo estimation
Require: Iinput, H, aalb, Ealb,M, ξ1, ξ2, i = 0
Ensure: l, γ = arg minl,γ E(l, γ)

1: i← 0
2: γ ← 0
3: while i ≤M do
4: l← arg minl ‖Iinput− (aalb +Ealb · γ) ◦ (H · l)‖22
5: δI ← Iinput − (aalb ◦ (H · l))
6: δγ ← arg minδγ ‖δI − (Ealbδγ) ◦ (H · l)‖22
7: γ ← γ + δγ
8: i← i+ 1
9: if ‖δγ‖22 < ξ1 or ‖δI‖22 < ξ2 then return l, γ

10: return l, γ

For training, we synthesize high resolution facial images
from the emotion dataset AffectNet [34] which contains
more than 1M facial images collected from the Internet and
about half of the retrieved images (440K) were manually
annotated. Importantly, AffectNet is the largest database of
facial expressions, valence, and arousal in the wild.

In our experiments, We also use HSV color space in-
stead of RGB to accommodate environment lighting vari-
ations and employ a two-step training approach, i.e. only
back propagate PCA parameters loss for the first 10 epochs,
which we found the loss reduces much faster than that in
directly training. Moreover, we train 250 epochs for each
facial area based on our observation that the loss is smaller
when there are more epochs, but the mesh is noisier in the

experiment. To sum up, our expression estimation and de-
tail synthesis networks borrow the idea of residual learning,
breaking down the final target into a few small tasks, which
facilitates training and improves performance in our tasks.

5. Experimental Results
In order to verify the robustness of our algorithm, we

have tested our emotion-driven proxy generation and facial
detail synthesis approach on over 20,000 images (see sup-
plementary material for many of these results).

Expression Generation. We downsample all images from
AffectNet dataset into 256×256 (the downsampling is only
for proxy generation, not for detail synthesis) and randomly
sample 10% of the images for the validation set. We use the
Adam optimization framework with a momentum of 0.9.
We train a total of 150 epochs and set learning rate to be
0.0001 for the first 50 epochs, and gradually reduce it to 0
in the rest epochs. Our trained Emotion-Net achieves a test
accuracy of 47.1%. Recall that facial emotion classification
is a challenging task and even human annotators achieve
only 60.7% accuracy. Since our goal focuses on producing
more realistic 3D facial models, we find this accuracy is
sufficient for producing reasonable expression prior.

Fig. 6 shows some samples of our proxy generation re-
sults. Compared with the state-of-the-art solutions of 3D
expression prediction [60, 13], we find that all methods
are able to produce reasonable results in terms of eyes and
mouth shape. However, the results from 3DDFA [60] and
ExpNet [13] exhibit less similarity with input images on re-
gions such as cheeks, Nasolabial folds and under eye bags
while ours show significantly better similarity and depict
person-specific characteristics. This is because such regions
are not covered by facial landmarks. Using landmarks alone
falls into the ambiguity mentioned in Section 3.2 and can-
not faithfully reconstruct expressions on these regions. Our
emotion-based expression predictor exploits global infor-
mation from images and is able to more accurately capture
expressions, especially for jowls and eye bags.

Facial Detail Synthesis. We sampled a total of 10K patches
for supervised training and 12K for unsupervised training.
We train 250 epochs in total, and uniformly reduce learn-
ing rate from 0.0001 to 0 starting at 100th epoch. Note, we
use supervised geometry loss for the first 15 epochs, and
then alternate between supervised geometry loss and unsu-
pervised appearance loss for the rest epochs.

Our facial detail synthesis aims to reproduce details from
images as realistically as possible. Most existing detail syn-
thesis approaches only rely on illumination and reflectance
model [31, 54]. A major drawback of these methods lies
in that their synthesized details resemble general object sur-
face without considering skin’s spatial correlation, as shown
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Figure 6. Comparisons of our emotion-driven proxy estimation vs. the state-of-the-art (3DDFA [60] and ExpNet [13])
.
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Figure 7. Close-up views of the synthesized meshes using
Pix2vertex [44], FPD [31], Extreme3D [54] and ours.

in close-up views in Fig. 7 (full mesh in supplementary

material). Our wrinkles are more similar to real skin sur-
face while the other three approaches are more like cutting
with a knife on the surface. We attribute this improvement
to combining illumination model with human face statistics
from real facial dataset and wrinkle PCA templates.

Our approach also has better performance on handling
the surface noise from eyebrows, braids and beards while
preserving skin details (2, 5 and 6th row of Fig. 7). Fi-
nally, our output displacement map is easy to integrate with
existing rendering pipelines and can produce high-fidelity
results, as shown in Fig. 1.

6. Conclusion and Future Work
We have presented a single-image 3D face synthesis

technique that can handle challenging facial expressions
while preserving fine geometric structures. Our technique
combines cues provided by emotion, expression, appear-
ance, and lighting for producing high fidelity proxy geom-
etry and fine geometric details. Specifically, we have con-
ducted emotion prediction to obtain an expression informed
proxy and we have demonstrated that our approach can han-
dle a wide range of expressions. For detail synthesis, our
Deep Facial Detail Net (DFDN) employs both geometry and
appearance loss functions and was trained on both real cap-
tured and synthesized data from in-the-wild images. Com-
prehensive experiments have shown that our technique can
produce, from a single image, ultra high quality 3D faces
with fine geometric details under various expressions and
lighting conditions.

Although our solution is capable of handling a variety
of lighting conditions, it has not yet considered the effects
caused by occlusions (e.g., shadows), skin scattering (e.g.,
specularity), or non-facial objects (hair or glasses) that may
cause incorrect displacement estimations. For shadows, it
may be possible to directly use the proxy to first obtain an
ambient occlusion map and then correct the image. Shadow
detection itself can be directly integrated into our learning-
based framework with new sets of training data. Another



limitation of our technique is that it cannot tackle low reso-
lution images: our geometric detail prediction scheme relies
heavily on reliable pixel appearance distribution. Two spe-
cific types of solutions we plan to investigate are to conduct
(learning-based) facial image super-resolution that already
accounts for lighting and geometric details as our input and
to design a new type of proxy face model that includes de-
formable geometric details.
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stéréophotométrie. PhD thesis, 2015. 5

[39] E. Richardson, M. Sela, and R. Kimmel. 3d face reconstruc-
tion by learning from synthetic data. In 3D Vision (3DV),
2016 Fourth International Conference on, pages 460–469.
IEEE, 2016. 1, 3

[40] E. Richardson, M. Sela, R. Or-El, and R. Kimmel. Learning
detailed face reconstruction from a single image. In Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, pages 5553–5562. IEEE, 2017. 3

[41] S. Romdhani and T. Vetter. Estimating 3d shape and texture
using pixel intensity, edges, specular highlights, texture con-
straints and a prior. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 2, pages 986–993. IEEE, 2005. 1, 2

[42] S. Saito, T. Li, and H. Li. Real-time facial segmentation and
performance capture from rgb input. In European Confer-
ence on Computer Vision, pages 244–261. Springer, 2016. 1,
2



[43] S. Schönborn, B. Egger, A. Morel-Forster, and T. Vetter.
Markov chain monte carlo for automated face image anal-
ysis. International Journal of Computer Vision, 123(2):160–
183, 2017. 1, 2

[44] M. Sela, E. Richardson, and R. Kimmel. Unrestricted fa-
cial geometry reconstruction using image-to-image transla-
tion. In Computer Vision (ICCV), 2017 IEEE International
Conference on, pages 1585–1594. IEEE, 2017. 3, 8

[45] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Ja-
cobs. Sfsnet: learning shape, reflectance and illuminance of
faces in the wild. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6296–6305, 2018. 3

[46] F. Shi, H.-T. Wu, X. Tong, and J. Chai. Automatic acquisition
of high-fidelity facial performances using monocular videos.
ACM Transactions on Graphics (TOG), 33(6):222, 2014. 2

[47] G. Stratou, A. Ghosh, P. Debevec, and L.-P. Morency. Ef-
fect of illumination on automatic expression recognition: a
novel 3d relightable facial database. In Automatic Face &
Gesture Recognition and Workshops (FG 2011), 2011 IEEE
International Conference on, pages 611–618. IEEE, 2011. 2

[48] A. Tankus and N. Kiryati. Photometric stereo under perspec-
tive projection. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, volume 1, pages 611–
616. IEEE, 2005. 2
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P. Pérez, and C. Theobalt. Self-supervised multi-level face
model learning for monocular reconstruction at over 250 hz.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2549–2559, 2018. 3
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