
NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object
Detection

Jiyang Gao1 Jiang Wang2 Shengyang Dai2 Li-Jia Li2 Ram Nevatia1
1University of Southern California 2Google Could

{jiyangga, nevatia}@usc.edu, {wangjiang, sydai}@google.com, lijiali@cs.stanford.edu

Abstract

The labeling cost of large number of bounding boxes is
one of the main challenges for training modern object de-
tectors. To reduce the dependence on expensive bounding
box annotations, we propose a new semi-supervised ob-
ject detection formulation, in which a few seed box level
annotations and a large scale of image level annotations
are used to train the detector. We adopt a training-mining
framework, which is widely used in weakly supervised ob-
ject detection tasks. However, the mining process inher-
ently introduces various kinds of labelling noises: false
negatives, false positives and inaccurate boundaries, which
can be harmful for training the standard object detectors
(e.g. Faster RCNN). We propose a novel NOise Tolerant
Ensemble RCNN (NOTE-RCNN) object detector to handle
such noisy labels. Comparing to standard Faster RCNN,
it contains three highlights: an ensemble of two classifica-
tion heads and a distillation head to avoid overfitting on
noisy labels and improve the mining precision, masking the
negative sample loss in box predictor to avoid the harm of
false negative labels, and training box regression head only
on seed annotations to eliminate the harm from inaccurate
boundaries of mined bounding boxes. We evaluate the meth-
ods on ILSVRC 2013 and MSCOCO 2017 dataset; we ob-
serve that the detection accuracy consistently improves as
we iterate between mining and training steps, and state-of-
the-art performance is achieved.

1. Introduction

With the recent advances in deep learning, modern ob-
ject detectors, such as Faster RCNN [22], YOLO [21], SSD
[20] and RetinaNet [18], are reliable in predicting both ob-
ject classes and their bounding boxes. However, the appli-
cation of deep learning-based detectors is still limited by
the efforts of collecting bounding box training data. These
detectors are trained with huge amount of manually labelled
bounding boxes. In real world, each application may require
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Figure 1. Iterative training-mining pipeline.

us to detect a unique set of the categories. It’s expensive and
time-consuming to label tens of thousands of object bound-
ing boxes for each application.

To reduce the effort of labelling bounding boxes, re-
searchers worked on learning object detectors with only
image-level labels, which are substantially cheaper to an-
notate, or even free with image search engines; this task is
called weakly supervised object detection [4, 26, 30]. Mul-
tiple Instance Learning (MIL) [6] based training-mining
pipeline [4, 26, 28] is widely used for this task; however,
the resulting detectors perform considerably worse than the
fully supervised counterparts. We believe the reasons are
two-fold: First, a detector learned with only image-level la-
bels often performs poorly in localization, it may focus on
the object part, but not the whole object (e.g., in Figure 2,
“cat” detector detects cat head); second, without an accurate
detector, object instances cannot be mined correctly, espe-
cially when the scene is complicated.

To address the aforementioned problems in weakly su-
pervised object detection, we propose a semi-supervised
object detection setting: learning an object detector with
a limited amount of labelled bounding boxes (e.g. 10 to
20 images with fully labeled bounding boxes) as well as a
large amount of image-level labels. Specifically, we want
to train an object detector for a set of target categories. For
target categories, a small amount of seed bounding box an-
notations and a large amount of image-level annotations are
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available for training. We also assume that a pre-trained ob-
ject detector for source categories is available. The source
and target categories do not overlap with each other. Given
the wide availability of large scale object detection datasets,
such as MSCOCO [19] and ILSVRC [23], this assumption
is not hard to satisfy in practice. This assumption is not es-
sential for the formulation either. Note that our formulation
is different from previous semi-supervised object detection
[11, 27], in which the seed bounding box annotations are
not considered.

The standard training-mining pipeline [4, 26] in weakly
supervised object detection iterates between the following
steps: 1. Train object detector with the mined bounding
boxes (the initial detector is trained with the whole images
and the labels); 2. Mine the bounding boxes with the current
object detector. A straight-forward way to incorporate the
seed bounding boxes is that we use them to train the initial
object detector, mine bounding boxes with the initial ob-
ject detector, train a new detector with both seed and mined
bounding boxes, and iterate between mining and training
steps.

The mining process inherently introduces various types
of noise. First, mining process inevitably misses some ob-
jects, which are treated as negative (i.e. background) sam-
ples in training phase; such false negatives are harmful for
training the classification head of object detector. Second,
the boundaries of the mined bounding boxes are not precise,
which is harmful for learning the box regression head of the
detector. Third, the class labels of the mined boxes cannot
be 100% accurate, leading to some false positives. Some vi-
sualization examples for the mined labels from the baseline
method are shown in Figure 2. Because of these issues, we
observe that the detection accuracy usually decreases as we
iterate between training and mining steps if standard object
detector architecture (e.g. Faster RCNN) is employed.

We propose a novel NOise Tolerant Ensemble RCNN
(NOTE-RCNN) architecture. The NOTE-RCNN incorpo-
rates an ensemble of classification heads for both box pre-
dictor (i.e. second stage) and region proposal predictor (i.e.
first stage) to increase the precision of the mined bound-
ing boxes, i.e., reduce false positives. Specifically, one
classification head is only trained with seed bounding box
annotations; the other head is trained with both seed and
mined box annotations. The consensus of the both heads
is employed to determine the confidence of the classifica-
tion. This is similar to recent work that uses ensemble for
robust estimation of prediction confidence [3, 2]. We also
utilize the knowledge of the pre-trained detector on source
categories as weak teachers. Specifically, another classifi-
cation head is added to distill knowledge [10] from a weak
teacher; the distillation process acts as a regularizer to pre-
vent the network from overfitting on the noisy annotations.
The NOTE-RCNN architecture is also designed to be ro-

Figure 2. Top: examples of weakly supervised object detection
failure cases: poor localization; objects can’t be discovered in
complicated scenes. Bottom: examples of the mined box noises
using a standard faster RCNN: 1) false negatives, 2) false pos-
itives, 3) inaccurate box boundaries; groundtruth boxes are in
black, mined boxes are in other colors.

bust to false negative labels. For the classification head in
the box predictor that uses mined bounding boxes for train-
ing, we remove the loss of predicting negatives (i.e. back-
ground) from its training loss, thus the training is not af-
fected by the false negatives. Finally, the regression head
is only trained with the seed bounding boxes, which avoids
it being affected by the inaccurate boundaries of the mined
bounding boxes.

We evaluated the proposed architecture on MSCOCO
[19] and ILSVRC [23] datasets. The experimental results
show that the proposed framework increases the precision
of mined box annotations and can bring up to 40% improve-
ment on detection performance by iterative training. Com-
pared with weakly supervised detection, training with seed
annotations using NOTE-RCNN improves the state-of-the-
art performance from 36.9% to 43.7%, while using standard
Faster RCNN only achieves 38.7%. We also perform a large
scale experiment which employs MSCOCO as seed annota-
tions and Open Image Dataset as image-level annotations.
We observe the proposed method also leads to consistent
performance improvement during the training-mining pro-
cess.

In summary, our contributions are three-fold: first, we
propose a practical semi-supervised object detection prob-
lem, with a limited amount of labelled bounding boxes as
well as a large amount of image-level labels; second, we
identified three detrimental types of noise that inherently
exists in training-mining framework ; third, we propose
a novel NOTE-RCNN architecture that is robust to such
noise, and achieves state-of-the-art performance on bench-
mark datasets.

2. Related Work
Weakly supervised object detection. The majority of

recent work treats weakly supervised object detection as a
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Multiple Instance Learning (MIL) [6] problem. An image
is decomposed into object proposals using proposal gener-
ators, such as EdgeBox [31] or SelectiveSearch [29]. The
basic pipeline is to iteratively mine (i.e. localize) objects as
training samples using the detectors and then train detec-
tors with the updated training samples. The detector can
be a proposal level SVM classifier [24, 4, 28] or modern
CNN-based detector [26, 14, 30], such as RCNN [9] or Fast
RCNN [8]. Deselaers et al. [5] first argued to use objectness
score as a generic object appearance prior to the particular
target categories. Cinbis et al. [4] proposed a multi-fold
multiple instance learning procedure, which prevents train-
ing from prematurely locking onto erroneous object loca-
tions. Uijlings et al. [28] argued to use pre-trained detec-
tors as the proposal generator and show its effectiveness in
knowledge transfer from source to target categories.

Recently, there are also work that designs end-to-end
deep networks combining with multiple instance learning.
Bilen et al. [1] designed a two-stream network, one for
classification and the other for localization, it outputs final
scores for the proposals by the element-wise multiplication
on the scores from the two streams. Kantorov et al. et al.
[15] proposed a context-aware CNN model based on con-
trast and additive contextual guidance, which improved the
object localization accuracy.

Semi-supervised object detection. Note that in pre-
vious work [11], the definition of semi-supervised object
detection is slightly different from ours, in which only the
image-level labels and pre-trained source detectors are con-
sidered, but seed bounding box annotations are not used.
Beginning from LSDA [11], Hoffman et al. proposed to
learn parameter transferring functions between the classi-
fication network and the detection network, so that a clas-
sification model trained by image level labels can be trans-
ferred to a detection model. Tang et al. [27] explored the
usage of visual and semantic similarities among the source
categories and the target categories in the parameter trans-
ferring function. Hu et al. [12] further extended this method
to semi-supervised instance segmentation, which transfers
models for object detection to instance segmentation. Ui-
jlings et al. [28] adopted the MIL framework from weakly
supervised object detection, and replaced the unsupervised
proposal generator [31] by the pre-trained source detectors
to use the shared knowledge. Li et al. [17] proposed to use
a small amount of location annotations to simultaneously
performs disease identification and localization.

3. Method

We first briefly introduces our semi-supervised object
detection learning formulation and training-mining frame-
work. We present the proposed NOise Tolerant Ensemble
R-CNN (NOTE-RCNN) detector.

3.1. Problem Formulation

We aim to train object detectors for target categories. For
target categories, we have a small amount of seed bounding
box annotations B0, as well as a large amount of image
level annotations A. We also have a pre-trained object de-
tection S on source categories, which do not overlap with
target categories.

3.2. Detector Training-Mining Framework

The object detectors are trained in a iterative training-
mining framework, where the trained detector at iteration t
is denoted as T t. The detector training-mining framework
has the following steps.

Detector Initialization. A initial target detector T 0 is
initialized from the source detector S and trained using the
seed bounding box annotations B0.

Box Mining. Box mining uses the the current detector
T t−1 to mine a set of high quality bounding box annotation
Bt for target categories from annotations with image-level
labels A. A bounding box is mined if it fulfills the following
conditions: 1) its (predicted) label matches with the image-
level groundtruth label; 2) the box’s confidence score is the
highest among all boxes with the same label; 3) its confi-
dence score is higher than a threshold θb. The process can
be summarized as Bt = M(A, T t−1, θb), where M is the
box mining function;

Detector Retraining. A new detector T t is trained
with the union of mined bounding boxes Bt and the seed
bounding boxes B0. The parameters of the new detector
T t are initialized from the detector T t−1 from the previ-
ous iteration. The process can be summarized as T t =
R(Bt,B0, T t−1), where R represents the re-training func-
tion.

3.3. NOTE-RCNN

NOTE-RCNN is designed to be tolerate to noisy box an-
notations that are generated in the training-mining frame-
work.

There are three types of noise in the mined boxes: false
negatives, false positives and box coordinate noise of the
mined boxes. NOTE-RCNN is based on Faster RCNN,
and it contains three improvements for noise tolerance: en-
sembling two classification heads and a distillation head to
avoid overfitting on noisy labels and improve the mining
precision, masking the negative sample loss in box predictor
to get rid of the harm of false negative labels, and training
box regression head only on seed annotations to eliminate
the effect of inaccurate box coordinates of mined bounding
boxes.

3
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Figure 3. NOise Tolerant Ensemble R-CNN (NOTE-RCNN) architecture. There are three differences from standard Faster RCNN: addi-
tional classification heads in RPN and box predictor; noise tolerant training strategy; knowledge distillation from pre-trained detectors.

3.3.1 Recap of Faster RCNN architecture

In Faster RCNN, object locations are predicted in two
stages: proposal prediction stage and box prediction stage.
The first stage, called Region Proposal Network (RPN), out-
puts a set of class-agnostic proposal boxes for an image. It
uses a feature extractor (e.g., VGG-16, ResNet-101) to ex-
tract feature maps from an image, and it predicts proposal
boxes using ROI pooled features in a set of predefined an-
chors in this feature map. We denote its classification head
as rpn-cls, the box coordinate regression head as rpn-reg.
An outline of the architecture is shown in the left part of
Figure 3. The loss function of RPN is as follows:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )+

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

(1)

where i is the index of an anchor and pi is the predicted
object probability of anchor i. The ground-truth label p∗i
is 1 if the anchor’s overlap with groundtruth bounding box
is larger than a threshold, and is 0 otherwise. ti is a vector
encoding of the coordinates the bounding box, and t∗i is that
of the ground-truth box associated with a positive anchor,
Lcls = −p∗i log(pi) is binary cross-entropy loss, Lreg is
smooth L1 loss.

In the second stage, called box predictor network, Fea-
tures are cropped from the same intermediate feature maps
for each proposal box, and they are resized to a fixed size.
These features are fed to the box predictor network to pre-
dict class probabilities and class-specific box refinement for

each proposal. We denote the classification head as det-cls,
the boundary regression head as det-reg. The loss function
for the second stage is similar to Equation 1. The only dif-
ference is that pi is replaced by pui , which is the predicted
probability of category u; correspondingly, pu∗i is 1 if the
proposal box’s overlap with a box with category u is larger
than a threshold.

3.3.2 Box Predictor in NOTE-RCNN

In order to improve the noise tolerance, we use an ensem-
ble of two classification heads in box predictor network (i.e.
second stage of the detector). The seed classification head
det-cls is trained only one seed bounding box annotations
B0 so that it is not disturbed by the false negatives and false
positives in the mined annotations Bt. The mixed classifi-
cation head det-cls-a utilizes both seed box annotations B0

and mined box annotations Bt for training. The consensus
of the seed and mixed classification head is employed for a
robust estimation of classification confidence.

The regression head det-reg is trained only one seed
bounding box annotations B0, too, so that it is not affected
by the inaccurate box coordinates in Bt.

Filtering background proposal loss. Given that false
negative is extremely hard to eliminate in mined bounding
boxes, the losses of “background” proposals in det-cls-a are
not used in loss to remove the effect of false negatives.

Specifically, if an image i is from mined box annotation
set Bt, then we mask the losses from the proposals that
belong to “background” category (typical implementation
uses index 0 for background); if the image is from seed box
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annotation set B0, then the loss is calculated normally. The
classification loss can be expressed as

Ldet−cls−a(pi, u, i) = −pu∗i log(pui ) ∗ λ(u, i),

λ(u, i) =

{
0 u=0 & i /∈ B0

1 otherwise

(2)

During training, the loss function for the box predictor
consists of the losses ofthree heads: det-cls, det-reg and
det-cls-a, i.e., Ldet = Ldet−cls + Ldet−cls−a + Ldet−reg.
During inference, the classification probability outputs from
det-cls and det-cls-a are averaged.

3.3.3 RPN in NOTE-RCNN

Similarly, we add an additional binary classification head
rpn-cls-a in RPN. Similar to box predictor, the seed clas-
sification head rpn-cls and the regression head rpn-reg are
trained only on seed bounding box annotations B0. The
mixed head rpn-cls-a uses both seed box annotations B0

and mined box annotations Bt for training. Different from
box predictor, we don’t zero the background loss if the train-
ing image is from mined annotation set, as RPN solves a
binary classification problem and filtering background loss
makes it unlearnable.

During training, the loss function for RPN comes from
the three heads, rpn-cls, rpn-reg and rpn-cls-a, which can
be expressed asLrpn = Lrpn−cls+Lrpn−cls−a+Lrpn−reg .
During inference, the classification probability outputs from
rpn-cls and rpn-cls-a are averaged.

3.3.4 Knowledge Distillation as Supervision

We added a knowledge distillation head det-cls-s to source
detector S for additional noise tolerance, because it stops
the target detector from overfitting to noisy annotations.
During training, for a image Ik, we first forward Ik in the
target detectors Tt to generate proposal boxes {P t

k}. Then
we forward the image Ik together with the proposals P t

k

to the source detector S to get the probability distribution
on the source classes for every proposal. We use such dis-
tribution as a supervision to train det-cls-s. This process is
known as knowledge distillation [10]. The loss function can
be expressed as

Ldist =
1

Ndist

∑
s

∑
j

−pj∗s log(pjs) (3)

where j is the class index, s is the proposal index, pj∗s is the
probability of proposal s for class j from source detectors,
and pjs is that from target detectors. The gradients gener-
ated from det-cls-s don’t affect the parameters of det-cls-a,
det-cls and det-reg, but they affect the feature extractor pa-
rameters.

As the source detectors are trained on large scale clean
annotations, we expect to use probability distribution gener-
ated from source detectors as additional supervision to reg-
ularize the feature extractor in target detectors. Our motiva-
tion is not to directly affect the classification head of target
categories, but to prevent the feature extractor from overfit-
ting the noisy annotations.

4. Evaluation
In this section, we first present the implementation de-

tails of the whole detection system. We then introduce the
benchmark datasets for evaluation. Third, we introduce our
evaluation metrics and ablation studies. Finally, we discuss
the experimental results on MSCOCO and ILSVRC, as well
as Open Image Dataset (OID).

4.1. Implementation Details

We use Inception-Resnet-V2 [25] as the feature extractor
of the detector for all the experiments in this paper. The
Inception-Resnet-V2 feature extractor is initialized from the
weights trained on ImageNet classification dataset [23]. All
input images are resized to 600∗1024. In the first stage, 300
proposal boxes are selected. We use SGD with momentum
with batch sizes of 1 and learning rate at 0.0003. The system
is implemented using the Tensorflow Object Detection API
[13]. In all the experiments except the OID one, we employ
8 iterations of training-mining process, because we find the
performance generally satuates after 8 iterations. In each
iteration, the model is trained for 20 epochs. The mining
threshold θb is set to 0.99 if no other specification is given.

4.2. Datasets

MSCOCO 2017. MSCOCO [19] contains 80 categories,
which is a superset of PASCAL VOC [7] categories. We
split both training and validation data to VOC categories
(i.e. source categories) and non-VOC categories (i.e. target
categories). If an image has both source category and target
category bounding boxes, this image is used in both source
category data and target category data, but source category
and target category data only contains bounding boxes with
the corresponding categories.

The source category training data is used to train source
detectors. For target category training data, we ran-
domly pick certain amount of images for each category as
seed groundtruth bounding box annotations, and keep only
image-level labels for the rest of images. We evaluate the
target detectors on the target category validation data. To
evaluate the method under varied amounts of seed annota-
tions, we experiment with seed annotations with different
average sizes: [12, 33, 55, 76, 96]. The average size means
the average number of annotated images per category.

ILSVRC 2013. We follow the same settings as [11,
27, 28] for direct comparisons on ILSVRC 2013 [23]. We
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Figure 4. Ablation studies on MSCOCO 2017 dataset.

split the ILSVRC 2013 validation set into two subsets val1
and val2, and augment val1 with images from the ILSVRC
2013 training set such that each class has 1000 annotated
bounding-boxes in total [9]. Among the 200 object cate-
gories in ILSVRC 2013, we use the first 100 in alphabetical
order as sources categories and rest as target categories. We
use all images of the source categories in augmented val1
set as the source training set, and that of the target categories
in val2 set as source validation set. For target training set,
we randomly select 10-20 images for each target category
in augment val1 set as seed groundtruth bounding boxes,
and use the rest of images as image-level labels by remov-
ing the bounding box information. All images of the target
categories in val2 set are used as target validation set.

OpenImage v4. The training set of OpenImage V4 [16]
contains 14.6M bounding boxes for 600 object classes on
1.74M images. We only keep the image-level labels for
those images by removing all bounding box information.
We use the whole MSCOCO dataset as the seed bounding
box annotation set B0, and the aforementioned OpenImage
images as image-level annotations A to evaluate whether
our method can improve performance when we already
have a large number of groundtruth bounding boxes.

4.3. Experiment Settings

Evaluation metric. For object detection performance,
we use the mean Average Precision (mAP), which is av-
eraged mAP over IOU thresholds in [0.5 : 0.05 : 0.95].
We also report mAP@IOU 0.5. To measure the quality of
mined box annotations, we report box recall and box pre-
cision. Box recall means the percentage of the true pos-
itive boxes in the mined annotations over all groundtruth
boxes, Box precision means the percentage of the true pos-
itive boxes over all boxes in the mined annotations.

Ablation studies. To evaluate the contribution of each
component in NOTE-RCNN, we design the following sys-
tem variants for ablation studies:

(1) Naive: no additional classification head is added to

Figure 5. Ablation studies on ILSVRC 2013 dataset.

RPN nor box predictor, i.e. stardard Faster RCNN; both
mined annotation and seed groundtruth annotation are used
to train the classification heads and regression heads (for
both detection and RPN). (2) Det-A: we add the additional
classification head det-cls-a to box predictor, but not to
RPN; the original head det-cls and det-reg are trained by
the seed groundtruth annotations, det-cls-a is trained on
both seed groundtruth data and seed annotation; we don’t
zero the background sample loss in this variant. (3) Det-
AZ: Similar to Det-A, but we zero the background sam-
ple loss in this variant. (4) Det-AZ&RPN-A: we add the
additional classification heads to both RPN and detection
part. det-cls, det-reg, rpn-cls, rpn-reg are trained on the
seed groundtruth annotations, det-cls-a and rpn-cls-a are
trained on both seed annotations and mined annotations; We
zero the background sample loss on det-cls-a, but not on
rpn-cls-a. (5) Det-AZ&RPN-A&Distill: Similar to Det-
AZ&RPN-A, but we ad the distillation head.

4.4. Experiments and Discussions

Evaluation on additional classification heads. To
show the contribution of each component, we do ablation
studies on the additional heads and the system variants. Ex-
perimental results on MSCOCO are shown in Figure 4. For
Naive, Det-A and Det-AZ, we stop training in 4 iterations,
as the performance already decreases in iteration 4. For
Det-AZ&RPN-A, we train it for 8 iterations. Experimen-
tal results on ILSVRC 2013 are shown in Figure 5. On this
dataset, We train all system variants for 4 iterations. Iter-
ation 0 means that the detector is only trained on the seed
groundtruth box annotations. The performances on iteration
0 for different system variants is slightly different, because
we initialize each detector independently.

From Naive models, we can see that if we don’t sepa-
rate the seed groundtruth annotations with mined annota-
tions, and just train the regression head and classification
head with all data, the performance drops immediately after
we add the mined data (iteration 1 and after). For Det-AZ
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Figure 6. Comparison on “Box Precision vs Number of Samples
Curve” of Mined Annotations on MSCOCO 2017.

and Det-A, it can be observed that zeroing the background
loss gives significant improvements on both MSCOCO (in
Figure 4) and ILSVRC (in Figure 5). Comparing Det-
AZ&RPN-A and Det-AZ in MSCOCO (Figure 4), we can
see that the performance of Det-AZ&RPN-A consistently
increases, but that of Det-AZ starts to decrease after the 3rd
iteration. We believe that the reason is that more accurate
RPN and detection helps to improve the performance of
each other. Specifically, the ensemble classification heads
in RPN improve the proposal quality, resulting in the dis-
covery of more object proposals; higher quality object pro-
posals are beneficial to the detection performance; better
detection performance leads to higher quality mined anno-
tations, which in turn improves the RPN accuracy. Thus, ap-
plying ensemble classification heads to both RPN and box
predictor are important for consistent performance increase.
The difference between Det-AZ&RPN-A and Det-AZ on
ILSVRC (in Figure 5) is not significant. The reason is that
ILSVRC 2013 is a relatively simple dataset for detection,
where an image usually only contains 1 to 2 objects of in-
terest and the area of object is usually large, leading to lower
mining annotation difficulty.

Using different amount of seed annotations. To eval-
uate the performance of the proposed method using dif-
ferent amount of seed bounding box annotations, we test
NOTE-RCNN with varied sizes of seed annotation set on
MSCOCO. The average sizes (i.e. average number of an-
notated images per category) tested are [12, 33, 55, 76, 96].
The method used for evaluation is Det-AZ&RPN-A. We can
see in Figure 7 that NOTE-RCNN provides steady perfor-
mance improvements for all experiments, indicating the ef-
fectiveness of the proposed method when different amount
of seed annotated images are used.

Bounding box mining quality. We evaluate the bound-
ing box mining precision for Naive, Det-AZ&RPN-A and
Det-AZ&RPN-A&Distill methods. First, we draw “box

Figure 7. Comparison on different amount of seed annotations on
MSCOCO 2017.

Det-AZ&RPN-A Det-AZ&RPN-A&Distill
# iter # boxes prec(%) # boxes prec(%)
1 21542 90.0 22972 88.3
2 38323 87.1 32698 90.8
3 44223 86.6 38727 89.9
4 54680 84.9 41576 90.0
5 60899 83.7 42756 89.9

Table 1. Comparison between “with distillation” and “without dis-
tillation” on annotation mining on MSCOCO 2017, threshold θb is
set to be 0.99.

precision vs number of samples” curves of mined annota-
tions on MSCOCO, shown in Figure 6. This curve is gen-
erated by varying the mining threshold θb from 0 to 1.0,
and we show the part of curve that falls in between [0, 105]
samples. The results of 1st to 4th iterations are shown. We
can see that the precision of Naive drops very fast when
the number of samples increase; Det-AZ&RPN-A performs
better than Naive when the number of samples is large;
Det-AZ&RPN-A&Distill achieves the best precision per-
formance.

We further compare the actual precision and number
of boxes in each iteration between Det-AZ&RPN-A and
Det-AZ&RPN-A&Distill by setting the θb as 0.99. As
shown in Table 1, we can see that: (1) without using dis-
tillation, the precision decreases gradually, from 90.0% to
83.7%, with distillation, the precision is preserved at around
90.0%; (2) the increasing speed of mined box number
of Det-AZ&RPN-A is higher than that of Det-AZ&RPN-
A&Distill. Generally, it can be seen that Det-AZ&RPN-A
performs better than Naive, which shows the effectiveness
of the ensemble classification heads, and using distillation
head further improves the mining precision by preventing
the network from overfitting noisy labels.

Combining distillation in training-mining process.
We find that the quantity (i.e. # boxes) and quality (i.e.
box precision) of annotations are the two key factors that
influence the detector performances: both higher quality
and higher quantity result in better detectors. This inspires
us to combine the distillation (higher quality) with non-
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Figure 8. Comparison between “half-distill” and “no-distill” on
target detector performance on MSCOCO 2017.

model backbone mAP
LSDA [11] alexnet 18.1
Tang et al. [27] alexnet 20.0
FRCN+SemiMIL [28] alexnet 23.3
FRCN+SemiMIL [28] inception-resnet 36.9
FRCN+SemiMIL+Seed inception-resnet 38.7
NOTE-RCNN+SemiMIL+Seed inception-resnet 39.9
Ours(wo/ distill) inception-resnet 42.6
Ours(w/distill) inception-resnet 43.7

Table 2. Comparison with state-of-the-art on ILSVRC 2013

distillation (larger quantity) method, called half-distill. We
apply Det-AZ&RPN-A&Distill in the first 4 iterations and
Det-AZ&RPN-A in the later 4 iterations. The experimental
results are shown in Figure 8. We can see that: 1) in the
beginning stage (first three iterations), the performance of
“half-distill” is significantly better than that of “no-distill”,
because “half-distill” could generate higher quality of an-
notations; 2) in the middle stage (around 4 iterations), “no-
distill” catches “half-distill”, as “half-distill” suffers from
fewer mined annotations; 3) in the final stage, after we
switch the “half-distill” to “no-distill”, the performance im-
proves again.

Comparison with state-of-the-art methods. The most
related work is SemiMIL [28], but it doesn’t use seed box
annotations for the target categories. For a fair comparison,
we build two stronger baseline methods based on SemiMIL
[28]. 1) SemiMIL+Seed+FRCN: We use SemiMIL to mine
the box annotations from images, and then add the same
seed annotations to the training set, following [28] to train a
standard Faster RCNN. 2) SemiMIL+Seed+NOTE-RCNN:
Similar to the previous baseline, but we replace the standard
Faster RCNN by NOTE-RCNN.

The performance of state-of-the-art methods and the
new baselines are shown in Table 2. Comparing
FRCN+SemiMIL+Seed and FRCN+SemiMIL, we can see
that by adding seed annotations, the performance increases

mscoco iter 1 iter 2 iter 3
mAP@{0.5-0.95} 32.2 33.6 34.0 34.0

Table 3. “mscoco” means the Det-AZ&RPN-A is only trained on
MSCOCO, “iter k” means iterative training of Det-AZ&RPN-A
on OpenImage image label set for k times.

by 1.8%. By changing Faster RCNN to NOTE-RCNN, the
performance increases by 1.2%, which shows the effective-
ness of NOTE-RCNN in handling the noisy annotations.
Our method (wo/ distill) achieves 42.6% mAP and outper-
forms all state-of-the-art methods; by applying distillation
(w/ distill), we further improve the performance to 43.7%,
which is the best among all methods.

What is the limit of data scale? Previous evaluation
shows that our method can consistently improve perfor-
mance when the number of seed bounding box annotations
varies from 10 to 90. We also have an experiment to eval-
uate the effectiveness of the proposed method when a rela-
tively large number of seed bounding is available. Specifi-
cally, we use the whole MSCOCO dataset (all 80 categories,
around 15k boxes pe category) as the seed annotation set
B0, and Openimage V4 as image-level annotation set A,
(only image-level labels is used). Det-AZ&RPN-A is tested
in this experiment, the results are shown in Table 3. It can
be seen that by our method can still consistently improve
the detection performance during the training-mining pro-
cess. However, the performance improvements saturates at
iteration 2. The reason is the initial detector trained with
already have good accuracy, it takes less iteration to mine
enough useful bounding boxes. It shows that even when
a large amount of box-level annotations is available, larger
scale of image-level annotation augmentation is still helpful
for further performance improvement.

5. Conclusion and Future Work

We proposed a new semi-supervised object detection for-
mulation, which uses large number of image levels labels
and a few seed box level annotations to train object de-
tectors. To handle the label noises introduced in training-
mining process, we proposed a NOTE-RCNN object detec-
tor architecture, which has three highlights: an ensemble of
two classification heads and a distillation head to improve
the mining precision, masking the negative sample loss in
box predictor to avoid the harm of false negatives, and train-
ing box regression heads only on seed annotations to elimi-
nate the harm from inaccurate box boundaries. Evaluations
were done on ILSVRC and MSCOCO dataset, we showed
the effectiveness of the proposed methods and achieved the
state-of-the-art performance. In the future, we plan to add
human annotation to the training-mining iterations. We be-
lieve a combination of human annotation and accuracy box
mining can further improve the detector performance.
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