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Abstract

Subspace clustering methods based on expressing each
data point as a linear combination of other data points have
achieved great success in computer vision applications such
as motion segmentation, face and digit clustering. In face
clustering, the subspaces are linear and subspace cluster-
ing methods can be applied directly. In motion segmenta-
tion, the subspaces are affine and an additional affine con-
straint on the coefficients is often enforced. However, since
affine subspaces can always be embedded into linear sub-
spaces of one extra dimension, it is unclear if the affine
constraint is really necessary. This paper shows, both the-
oretically and empirically, that when the dimension of the
ambient space is high relative to the sum of the dimensions
of the affine subspaces, the affine constraint has a negligi-
ble effect on clustering performance. Specifically, our anal-
ysis provides conditions that guarantee the correctness of
affine subspace clustering methods both with and without
the affine constraint, and shows that these conditions are
satisfied for high-dimensional data. Underlying our analy-
sis is the notion of affinely independent subspaces, which
not only provides geometrically interpretable correctness
conditions, but also clarifies the relationships between ex-
isting results for affine subspace clustering.

1. Introduction
An important feature of modern data in computer vi-

sion is high-dimensionality. Images taken with mega-pixel
cameras, for example, can be regarded as data points in a
space of several million dimensions. Despite their high-
dimensionality, data that correspond to the same group,
such as facial images of a subject, can usually be described
by a few generating factors. Such data is said to have an
intrinsic dimension that is much smaller than the ambient
space. When several such groups exist in the data, each one
lying in a low-dimensional structure that is approximately
linear, the data can be modeled as samples drawn from a

union of linear subspaces. The problem of learning such a
union of linear subspaces from unlabeled data is known as
subspace clustering [37] and has drawn a lot of attention in
areas such as computer vision [3, 38, 23], system identifica-
tion [1, 34], and bioinformatics [20].

In recent years, subspace clustering methods based on a
self-expressiveness property of the data [4] have achieved
great success. The self-expressiveness property states that
each data point can be expressed as a linear combination of
some other points from the data set. That is,

xj = Xcj for each j, or equivalently, X = XC, (1)

where X = [x1, · · · ,xN ] ∈ IRD×N is the data matrix
and C = [c1, · · · , cN ] ∈ IRN×N is the matrix of coef-
ficients. A matrix C that satisfies the equations in (1) is
usually not unique, but there always exists solutions whose
entries satisfy cij 6= 0 only if xi and xj are from the
same subspace. Such representations are called subspace-
preserving [25, 48, 37]. A subspace-preserving C produces
an affinity matrix W = |C| + |C>| with correct connec-
tions, i.e., wij 6= 0 only if xi and xj are from the same
subspace. Spectral clustering [39] can then be applied to
W to cluster the data X.

To find subspace-preserving solutions, many papers have
proposed to solve the optimization problem

min
C

f(C) s.t. X = XC, C ∈ Ω, (2)

where f(·) is a regularizer and Ω ⊆ IRN×N . Existing meth-
ods make different choices for the regularizer f(·). For ex-
ample, the sparse subspace clustering (SSC) method [4, 5]
uses f(C) = ‖C‖1 :=

∑
i,j |cij | to seek a sparse so-

lution C; the low-rank representation (LRR) [16, 15] and
low-rank subspace clustering (LRSC) [6, 35] methods use
f(C) = ‖C‖∗ to encourage C to be low-rank; and the
least squares regression (LSR) [19] and efficient dense sub-
space clustering (EDSC) [8] methods use f(C) = ‖C‖2F ,
as the optimization problem (2) with this regularization has
a closed form solution. These methods have achieved ex-
cellent performance in many practical applications [5, 46,
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12, 9, 45, 50, 14, 49] and have accompanying theoreti-
cal support to justify their correctness in subspace detec-
tion [25, 19, 42, 15, 26, 40, 41, 44, 47, 46, 32, 33, 51, 24].
In particular, it has been proven that all of these methods
produce a subspace-preserving C when the subspaces are
independent (Definition 1) and f(·) satisfies the enforced
block diagonal (EBD) conditions on Ω (Definition 2) [19].
Affine subspace clustering. Despite the great success of
subspace clustering methods based on (2), the assumption
that the subspaces are linear is often too restrictive because
in many applications the subspaces do not pass through the
origin, i.e., they are affine. For example, in motion seg-
mentation, feature point trajectories corresponding to the
same rigid moving object lie approximately in a three di-
mensional affine subspace [27]. Properly exploiting such
affine structure is expected to boost clustering performance.
Indeed, [5, 8, 10] address the motion segmentation problem
by the following optimization problem in lieu of (2):

min
C

f(C) s.t. X = XC, 1>C = 1>, C ∈ Ω. (3)

Here, 1 is a vector of length N whose entries are all ones.
The additional constraint 1>C = 1> imposes that the self-
expressions use affine combinations rather than linear com-
binations, which is motivated from the observation that each
point in an affine subspace can be expressed as an affine
combination of other points in this affine subspace.

The effectiveness of methods based on (3) demonstrated
in [4, 5, 8] calls for the following theoretical question:

What conditions on the affine subspaces ensure
that solutions to (3) are subspace-preserving?

While this question has received a lot of attention in the case
of linear subspaces, where one analyzes solutions to (2), ex-
isting results for affine subspaces are surprisingly scarce.
For instance, [30] provides an algebraic-geometric analysis
of algebraic subspace clustering (ASC) [36] for affine sub-
spaces, but the analysis does not extend to methods based on
(3). Then, while [4] provides a condition for SSC in terms
of the homogeneous embedding of the affine subspaces, the
condition does not provide a clear insight about the geom-
etry of the original subspaces. Finally, while [13] presents
an analysis of SSC that has clear geometric interpretations,
the analysis is restricted to SSC and it is unclear whether it
is applicable to more general regularizers f(·) in (3).
Is the affine constraint needed? It is tempting to conclude
that one should always use the formulation in (3) rather than
(2) in dealing with affine subspaces. Surprisingly, the ma-
jority of papers in the existing literature [19, 15, 18, 26, 46]
adopt (2) in their experiments, even when datasets are
affine. This calls for an explanation as to why the formu-
lation in (2) may work well for affine subspaces at all, and
whether the affine constraint in (3) is really needed. The

former question may be answered by arguing that any d-
dimensional affine subspace can be regarded as a subset
of the d + 1-dimensional linear subspace that contains the
affine subspace, which justifies the application of linear sub-
space clustering methods to affine subspaces. Nonetheless,
the following theoretical question has not been answered:

What conditions on the affine subspaces ensure
that solutions to (2) are subspace-preserving?

The answer to this question may help demystify the role of
the affine constraint in (3) and answer the question of when,
and whether, it is needed for affine subspace clustering.

Contributions. In this paper, we show that if the dimen-
sion of the ambient space is high enough, then both (2) and
(3) are guaranteed to produce subspace-preserving solutions
under the model that the data points are drawn from a union
of affine subspaces that are generated at random from the
ambient space. This result justifies the usage of both (2) and
(3) for affine subspace clustering. It also suggests that the
affine constraint in (3) may not be needed when dealing with
high-dimensional data, thus explaining the popularity of (2)
in the existing literature. To verify that high-dimensionality
plays a key role in drawing this conclusion, we conduct ex-
periments on applications with both low-dimensional and
high-dimensional ambient spaces, and show that the gap in
performance between (2) and (3) is usually prominent in the
former case and often negligible in the latter case.

Our discovery is important for practitioners seeking to
choose an appropriate formulation for their problem. Solv-
ing the formulation with the affine constraint in (3) is some-
times not as easy as solving the one without. For exam-
ple, while an algorithm that can handle a million data points
for SSC without the affine constraint has been developed in
[46], it cannot be easily adapted to handle the affine con-
straint for which existing solvers can only handle ∼10,000
data points [5, 22]. Moreover, some of the methods, such
as SSC-OMP [47] and `0-SSC [44], cannot explicitly han-
dle the affine constraint at all. For such methods, our result
suggests that the affine constraint may not be needed at all
and that the simpler model in (2) may be equally good.

Our theoretical analysis is based on a novel approach to
analyzing the affine subspace clustering problem that uti-
lizes the notion of affinely independent subspaces developed
in [13]. This notion characterizes the arrangement of a col-
lection of affine subspaces and has a clear geometric inter-
pretation. Our results based on this notion provide geomet-
ric insights into the regimes where affine subspace cluster-
ing is easy for self-expressiveness based methods. Besides,
our analysis establishes several properties of affinely inde-
pendent subspaces (e.g., Lemma 3 and 5), which makes it
possible to compare several existing conditions [4, 30, 13]
for the correctness of affine subspace clustering.



2. Background
This section provides the background for our theoretical

analysis of formulations (2) and (3) for affine subspace clus-
tering, including a review of existing theoretical results for
linear subspace clustering (Section 2.1) as well as the basics
of affine geometry (Section 2.2).

2.1. Subspace clustering under the independent
subspace model

A well-known result for linear subspace clustering is
that the solution to (2) is subspace-preserving when the
subspaces are independent and f(·) satisfies the Enforced
Block Diagonal (EBD) conditions, as defined next.

Definition 1 (Independent linear subspaces [37]). A collec-
tion of linear subspaces {S`}n`=1 is said to be independent
if dim(span(∪n`=1S`)) =

∑n
`=1 dim(S`).

Definition 2 (EBD conditions [19]). Let Ω ⊂ IRN×N . A
function f : Ω→ IR is said to satisfy the EBD conditions if
• Ω is closed under permutations and f is permutation in-

variant, i.e., for any C ∈ Ω we have P>CP ∈ Ω and
f(C) = f(P>CP) for any permutation matrix P, and

• for any partition C =

[
C1 C3

C4 C2

]
of any matrix C ∈ Ω

such that C1 and C2 are square matrices we have[
C1 0
0 C2

]
∈ Ω and f

([
C1 C3

C4 C2

])
≥ f

([
C1 0
0 C2

])
with equality holding if and only if C3 = C4 = 0.

More formally, the main result for subspace clustering
under the independent subspace model is the following.1

Theorem 1 ([19]). Let X be the data matrix whose columns
are drawn from a union of independent linear subspaces
{S`}n`=1. If f satisfies the EBD conditions, then any solu-
tion to (2) is subspace-preserving.

2.2. Affine geometry and affinely independent sub-
spaces

Here, we review some basic concepts in affine geometry.
• Affine subspace. A nonempty set A ⊆ IRD is an affine

subspace if and only if every affine combination of points
from A lies in A. Equivalently, an affine subspace is a
nonempty subset A ⊆ IRD of the form A = x0 + S :=
{x0 + x : x ∈ S}, where S ⊆ IRD is a linear subspace
and x0 ∈ IRD is a point. The subspace S associated
withA is denoted by T (A) and called the direction sub-
space.2

1Several recent works [17, 43] show that the theorem holds for a
broader range of f . All of our results hold with all such f as well.

2Note that any linear subspace is also an affine subspace. In particular,
given an affine subspace A, the following three statements are equivalent:
(i) A is a linear subspace; (ii) 0 ∈ A; and (iii) T (A) = A.

• Affine hull (affine span). The affine hull/span of a setX ∈
IRD, denoted as aff(X ), is the intersection of all affine
subspaces containing X . Equivalently, aff(X ) is the set
of all affine combinations of points in X .

• Affine independence. A set of points {xj ∈ IRD}mj=1 is
affinely independent if and only if

∑m
j=1 cjxj = 0 and∑m

j=1 cj = 0 implies cj = 0 for all j ∈ {1, · · · ,m}.

• Affine basis. A set of points {xj ∈ IRD}mj=1 is an affine
basis of A if and only if it is affinely independent and its
affine hull is A.

• Affine dimension. The dimension of an affine subspace
A, denoted as dim(A), is defined as the dimension of its
direction subspace, i.e., dim(A)

.
= dim(T (A)).3

We now introduce the concepts of affine disjointness of
two affine subspaces.

Definition 3 (Affinely disjoint subspaces [13]). Two affine
subspaces A and A′ are said to be affinely disjoint if and
only if A ∩A′ = ∅ and T (A) ∩ T (A′) = {0}.

Equivalently, two affine subspaces A and A′ are affinely
disjoint if and only if dim(aff(A ∪ A′)) = dim(A) +
dim(A′) + 1 [13]. For example, two 1-dimensional affine
subspaces in IR3 are affinely disjoint if and only if they are
skewed (i.e., neither parallel nor intersecting).

Definition 4 (Affinely independent subspaces [13]). A col-
lection of affine subspaces {A`}n`=1 is said to be affinely in-
dependent if dim(aff(∪n`=1A`)) + 1 =

∑n
`=1 dim(A`) + n.

For an arbitrary collection of affine subspaces {A`}n`=1,
it has been shown in [13] that

dim(aff(∪n`=1A`)) + 1 ≤
n∑
`=1

dim(A`) + n. (4)

Therefore, the collection {A`}n`=1 is affinely independent
if and only if the affine subspaces are in an arrangement
such that the dimension of the affine hull of their union is
maximized.

The concepts of affinely disjoint and affinely indepen-
dent are closely related. Specifically, the set of affine sub-
spaces {A`}n`=1 is affinely independent if and only if for
any subsets I ′, I ′′ ⊆ {1, · · · , n} with I ′ ∩ I ′′ = ∅ it holds
that the affine subspaces aff(∪κ∈I′Aκ) and aff(∪κ∈I′′Aκ)
are affinely disjoint. From this result, if the collection
{A`}n`=1 is affinely independent then they are pairwise
affinely disjoint. The converse of this statement is not true.

3Note that if dim(A) = m, then any basis of A has m + 1 elements.
Note also that this definition of dimension for affine subspaces generalizes
the definition of dimension for linear subspaces. Specifically, any linear
subspace can also be considered as an affine subspace, and its dimension
as an affine subspace is equal to its dimension as a linear subspace.



3. Affine Subspace Clustering Under the
Affinely Independent Subspace Model

In this section, we establish geometric conditions under
which the solutions to the optimization problems in (2) and
in (3) are subspace-preserving. The problem of affine sub-
space clustering is formally defined as follows.

Definition 5 (Affine subspace clustering). Given a data ma-
trix X = [x1, · · · ,xN ] ∈ IRD×N whose columns lie in a
union of unknown affine subspaces {A` ⊆ IRD}n`=1 of di-
mension {d` < D}n`=1, affine subspace clustering is the
problem of segmenting the data points into groups such that
each group contains points from the same affine subspace.

Since linear subspaces are a particular case of affine sub-
spaces, the affine subspace clustering problem is a general-
ization of the linear subspace clustering problem. Through-
out our theoretical analysis, we assume that the optimiza-
tion problems (2) and (3) are always feasible. This assump-
tion does not impose stringent restrictions. For example,
this is satisfied for arbitrary f(·) and X when Ω = IRN×N .

3.1. Affine subspace clustering via formulation (3)

We will show that the solutions to (3) are subspace-
preserving under the affinely independent subspace model.
Our analysis is based on the observation that applying (3)
to data X is equivalent to a two-step approach of first
computing the homogeneous embedding of X as ~(X) :=
[~(x1), · · · , ~(xN )], where ~ : IRD → IRD+1 is the homo-
geneous embedding defined as

~(x) := [x>, 1]>, (5)

and then solving the optimization problem in (2) but with
X replaced by ~(X). Therefore, applying (3) to data ly-
ing in affine subspaces {A`}n`=1 is equivalent to applying
(2) to data lying in embedded spaces {~(A`)}n`=1, where
~(A`) := {~(x) : x ∈ A`}. The next result shows that
each embedded space ~(A`) is an affine subspace of dimen-
sion d` in IRD+1. Also, the linear subspace span(~(A`))
that contains ~(A`) as a subset has dimension d` + 1.

Lemma 1. Let A be an arbitrary affine subspace in IRD.
Then, a) ~(A) is an affine subspace with dim(~(A)) =
dim(A), and b) dim(span(~(A)) = dim(A) + 1.

By this result, the embedded data ~(X) lies in a union of
linear subspaces {span(~(A`))}n`=1 whose dimensions are
one more than the dimensions of the corresponding affine
subspace. This allows us to derive a correctness condition
for (3) by applying Theorem 1 to this collection of linear
subspaces. Specifically, we have the following result.

Lemma 2. Let X be the data matrix in Definition 5. If
{span(~(A`))}n`=1 is linearly independent and f satisfies

the EBD conditions, then any solution to (3) is subspace-
preserving.

We note that the same correctness condition is provided
in [4] for the case of f(C) = ‖C‖1. However, the condition
that {span(~(A`))}n`=1 is linearly independent is character-
ized by the span of the embedded affine subspaces in the
homogeneously embedded ambient space, which makes it
very difficult to interpret. We establish the following result,
which shows that this condition is equivalent to the condi-
tion that the affine subspaces are affinely independent.

Lemma 3. Let {A`}n`=1 be a collection of affine subspaces.
The subspaces {span(~(A`))}n`=1 are linearly independent
if and only if {A`}n`=1 are affinely independent.

By combining Lemma 2 and Lemma 3 we get the fol-
lowing result that gives conditions under which the solution
to (3) is subspace-preserving.

Theorem 2. Let X be the data matrix in Definition 5. If
{A`}n`=1 is affinely independent and f satisfies the EBD
conditions, then any solution to (3) is subspace-preserving.

The condition that {A`}n`=1 is affinely independent has
a clearer geometric interpretation since it is defined directly
in the original data space rather than in the homogeneously
embedded space. Moreover, it is verifiable when the ar-
rangement of affine subspaces is known, which helps us un-
derstand when (3) is applicable. Besides, it also allows us
to compare it with subspace-preserving conditions for the
formulation in (2) as we will see in the next subsection.

Finally, we point out that for a collection of affine sub-
spaces to be affinely independent, the ambient dimension
needs to be large enough relative to the individual subspace
dimensions and the number of subspaces. This is formally
stated as our next result.

Proposition 1. Let {A` ⊆ IRD}n`=1 be a collection of affine
subspaces. If {A`}n`=1 is affinely independent, then

D ≥ dim(span(∪n`=1A`)) ≥
n∑
`=1

dim(A`) + n− 1. (6)

3.2. Affine subspace clustering via formulation (2)

It may not be surprising that the formulation in (2), al-
though designed for linear subspaces, may also work for
affine subspaces, since each affine subspace A` can be re-
garded as a subset of the linear subspace span(A`). In
other words, clustering data in the affine subspaces {A`}n`=1

can be regarded as clustering data in the linear subspaces
{span(A`)}n`=1. It is easy to see that the dimension of the
linear subspace span(A`) is related to the dimension of the
affine subspace A` for each ` = 1, · · · , n. Specifically, if
0 ∈ A (i.e., ifA is a linear subspace), then dim(span(A)) =
dim(A); otherwise, dim(span(A)) = dim(A) + 1. From



this result, each linear subspace span(A`) has dimension
either d` (when 0 ∈ A`) or d` + 1 (when 0 /∈ A`). Note
that if D = d` + 1 and 0 /∈ A` for some `, then the lin-
ear subspace span(A`) becomes the ambient space IRD. In
such cases, the problem of clustering data drawn from the
linear subspaces {span(A`)}n`=1 is ill-posed. In all other
cases, the subspaces {span(A`)}n`=1 are proper linear sub-
spaces of IRD. By applying Theorem 1 to this collection of
linear subspaces, we get the following result.

Lemma 4. Let X be the data matrix in Definition 5.
If {span(A`)}n`=1 is linearly independent and f satisfies
the EBD conditions, then any solution to (2) is subspace-
preserving.

Although Lemma 4 establishes the correctness of
(2) for affine subspace clustering, the condition that
{span(A`)}n`=1 is linearly independent is not particularly
insightful in terms of the geometry of the affine subspaces.
The next result shows that under the affinely independent
subspace model, the condition in Lemma 4 can be expressed
in a form that has a clearer geometric interpretation.

Lemma 5. Let {A`}n`=1 be a collection of affine subspaces
such that 0 /∈ ∪n`=1A`. Then, the collection of linear sub-
spaces {span(A`)}n`=1 is linearly independent if and only if
the following two conditions hold:
• {A`}n`=1 is affinely independent; and

• 0 /∈ aff(∪n`=1A`).

The conditions that {A`}n`=1 is affinely independent and
that 0 /∈ aff(∪n`=1A`) are both needed in Lemma 5. In Fig-
ure 1(a) we show an example of two 1-dimensional affine
subspacesA1,A2 in IR3 for which the first condition is sat-
isfied (i.e., {A`}2`=1 is affinely independent), but the second
condition is violated (i.e., 0 ∈ aff(∪2`=1A`)). In Figure 1(b)
we show an example where the first condition is violated
and the second condition is satisfied. In both of these exam-
ples we can easily see that span(A1) and span(A2) are not
independent subspaces. In fact, it is impossible to find two
1-dimensional affine subspaces in IR3 that satisfy both con-
ditions in Lemma 5. More generally, the following result
shows that the ambient dimension needs to be sufficiently
large in order for both conditions to hold.

Proposition 2. Let {A` ⊆ IRD}n`=1 be a collection of
affine subspaces. If {A`}n`=1 is affinely independent and
0 /∈ aff(∪n`=1A`), then

D ≥ dim(span(∪n`=1A`)) =

n∑
`=1

dim(A`) + n. (7)

Finally, Figure 1(c) gives an example of a 1-dimensional
subspace A1 and a 0-dimensional subspace A2 for which
the conditions that {A`}2`=1 is affinely independent and that

A1

A2

(a)

A1

A2

(b)

A1

A2

(c)

Figure 1. Illustration of the conditions in Theorem 5.

0 /∈ aff(∪2`=1A`) are both satisfied. Note that in this partic-
ular example, the inequality in (7) holds with equality.

We now combine Lemma 4 and Lemma 5 to get the
following important result, which gives conditions under
which the solution to (2) is subspace-preserving.

Theorem 3. Let X be the data matrix in Definition 5. If
{A`}n`=1 is affinely independent, 0 /∈ aff(∪n`=1A`) and f
satisfies the EBD conditions, then any solution to (2) is
subspace-preserving.

From this result, we can easily compare the subspace-
preserving conditions for (3) and (2), as discussed next.

3.3. Comparison and discussion

Theorem 2 and Theorem 3 establish conditions un-
der which the solutions to (3) and (2), respectively, are
subspace-preserving for affine subspace clustering. To com-
pare the conditions in these two results, we see that both of
them require the affine subspaces to be affinely indepen-
dent, while Theorem 3 imposes an additional requirement
that 0 /∈ aff(∪n`=1A`). As illustrated in Figure 1, there exist
cases where the affine subspaces are affinely independent
but the condition 0 /∈ aff(∪n`=1A`) is not satisfied. There-
fore, the theoretical guarantees for (3) apply to a broader
range of problems than those for (2).

The difference between the conditions in Theorem 2
and Theorem 3 can also be seen in terms of the regime
where they can be satisfied. Specifically, Proposition 1
shows that the conditions in Theorem 2 may be satisfied
only if D ≥

∑n
`=1 d` + n − 1, while Proposition 2 shows

that the conditions in Theorem 3 may be satisfied only if
D ≥

∑n
`=1 d` + n. This again suggests that subspace-

preserving recovery by (3) may be easier than by (2). This
conclusion also aligns with our intuition: (3) should work
better than (2) as it is explicitly modeling the affine structure
by means of the affine constraint in its formulation.

So far, we have understood that the formulation in (3)
is advantageous over the formulation in (2). However, for
practical applications we would like to understand how sig-
nificant this advantage is. In the next section, we show
that both (3) and (2) produce subspace-preserving solutions
when the dimension of the ambient space is high enough
relative to subspace dimensions, suggesting that the differ-
ence in their performance for such data may be negligible.



4. Affine Subspace Clustering Under a Ran-
dom Affine Subspace Model

In this section, we study the conditions under which the
solution to (2) and (3) are subspace-preserving when the
affine subspaces are generated according to the following
random affine subspace model.

Definition 6 (Random Affine Subspace Model). A collec-
tion {A`}n`=1 of n affine subspaces of IRD of dimensions
{d` < D}n`=1 is said to be drawn from the random affine
subspace model if A` = w0,` + span{w1,`, · · · ,wd`,`},
where {w0,`,w1,`, · · · ,wd`,`}n`=1 are drawn indepen-
dently and uniformly at random from the unit sphere of IRD.

The random affine subspace model given by Definition 6
is equivalent to drawing n linear subspaces {S`}n`=1 =
{span{w1,`, . . . ,wd`,`}}n`=1 (i.e., the direction subspaces
for the affine subspaces {A`}n`=1) independently and uni-
formly at random from the ambient space of IRD and then
adding to each subspace S` a random vector w0,` that is
drawn independently and uniformly at random from the unit
sphere of IRD. Each subspace S` has dimension d` with
probability 1, as does the corresponding affine subspace A`
since dim(A`) = dim(S`). As long as D > d`, A` is an
affine (not linear) subspace with probability 1, which can be
seen from the fact that w0,` is drawn independently from the
subspace span{w1,`, · · · ,wd`,`}.

Recall from Proposition 1 and Proposition 2 that the di-
mension of the ambient space needs to be large enough in
order for the geometric conditions in Theorem 2 and Theo-
rem 3 to be satisfied. The following two results show that
such conditions are not only necessary but also sufficient
under the random affine subspace model.

Lemma 6. If D ≥
∑n
`=1 d` + n − 1, then the collection

of affine subspaces {A` ⊆ IRD}n`=1 drawn according to
the random affine subspace model in Definition 6 is affinely
independent with probability 1.

Lemma 7. IfD ≥
∑n
`=1 d`+n, then the collection of affine

subspaces {A` ⊆ IRD}n`=1 drawn according to the random
affine subspace model in Definition 6 is affinely independent
with 0 /∈ aff(∪n`=1A`) with probability 1.

By combining Lemma 6 and Lemma 7 with Theorem 2
and Theorem 3 we get the following result.

Theorem 4. Let {A`}n`=1 be a collection of n affine sub-
spaces of IRD of dimensions {d` < D}n`=1 drawn accord-
ing to the random affine subspace model in Definition 6.
Let X be an arbitrary data matrix whose columns lie in
∪n`=1A`. Assume that f satisfies the EBD conditions.

(i) If D ≥
∑n
`=1 d` + n − 1, then any solution to (3) is

subspace-preserving with probability 1.

(ii) If D ≥
∑n
`=1 d` + n, then any solution to (2) is

subspace-preserving with probability 1.

Theorem 4 justifies our claim in the introduction that
both (3) and (2) produce subspace-preserving solutions
when the dimension of the ambient space is large enough.
In our experiments on synthetic data, we will show that the
thresholds on the dimension D as stated in Theorem 4 are
tight for the case where f(·) = ‖ · ‖2F (i.e.the LSR method).
That is, the solution to LSR with and without the affine
constraint is observed to be not subspace-preserving when
the ambient dimension D is smaller than

∑n
`=1 d` + n− 1

and
∑n
`=1 d` + n, respectively. This suggests that high-

dimensionality of the ambient space is necessary for the so-
lution to (3) and (2) to be subspace-preserving in general.

For real data, the affine subspaces usually do not satisfy
the random affine subspace model, therefore the solution
may not necessarily be subspace-preserving even if the am-
bient dimension is high enough. Nonetheless, we still ob-
serve that the difference in performance between (3) and (2)
is often small or negligible for high-dimensional data. We
present such an investigation in the next section.

5. Experiments

We conduct experiments on synthetic datasets to verify
our theoretical results and to further understand the behav-
ior of formulations (3) and (2) for affine subspace cluster-
ing. We also perform experiments on real datasets that in-
clude both low-dimensional and high-dimensional settings
to better understand the difference in their performances.

The formulations (3) and (2) encompass a wide range
of methods that have been studied in the existing literature.
For the purpose of this study, we restrict our attention to the
SSC method (i.e., f(·) = ‖ · ‖1 and Ω = {C ∈ IRN×N :
diag(C) = 0}) and LSR method (i.e., f(·) = 1

2‖ · ‖
2
F and

Ω = IRN×N ). For both of them, the function f(·) satisfies
the EBD conditions. To distinguish between (3) and (2), we
will refer to the methods corresponding to (3) as A-SSC and
A-LSR, and the methods corresponding to (2) as SSC and
LSR. In our experiments on synthetic data, we use CVX
[7] to solve the optimization problems associated with A-
SSC and SSC, and use the closed form solutions given by[
X

1>
]† [

X

1>
]

and X†X, respectively, for A-LSR and LSR,

where X† denotes the pseudoinverse of X.
For experiments on real data, we penalize the self-

expressive residual instead of imposing the equality con-
straint to account for noise in the data. That is, for a chosen
parameter λ > 0, instead of (3) we use

min
C

f(C) + λ
2 ‖X−XC‖2F s.t. 1>C = 1>, C ∈ Ω, (8)



and instead of (2) we use

min
C

f(C) + λ
2 ‖X−XC‖2F s.t. C ∈ Ω. (9)

For A-SSC and SSC, we follow [5] and set λ = α/µz
where α is a parameter and µz is defined in [5], and solve
the associated optimization problems via the alternating di-
rection method of multipliers (ADMM) algorithm. For A-
LSR and LSR the optimization problems have closed form
solutions that can be found in [19] for LSR and given
for A-LSR by C = λWX>X + (1>v)−1vv>, where
W = (λX>X + I)−1 and v = W · 1.

5.1. Experiments on synthetic data

We verify Theorem 4 by generating affine subspaces ac-
cording to the random model in Definition 6 and sampling
data points on the affine subspaces at random. Specifically,
we first sample n linear subspaces of dimension d indepen-
dently and uniformly at random from IRD. Then, we sam-
ple N/n data points from the unit sphere of each subspace
independently and uniformly at random. Finally, we gener-
ate n vectors on the unit sphere of the ambient space, and
add each one of them to all data points in the corresponding
subspaces. This gives N points lying in a union of ran-
domly generated affine subspaces. In our experiments, we
fix d = 4, n = 5, and N = 100 and vary the ambient
dimension D in {5, 6, · · · , 30}.

To evaluate the degree to which the subspace-preserving
property is satisfied, we use the subspace-preserving rate
(SPR) defined as 1

N

∑N
j=1(

∑N
i=1(wij ·|cij |)/‖cj‖1), where

wij ∈ {0, 1} is the ground truth affinity that takes value 1
when xi and xj are from the same subspace and 0 other-
wise. SPR takes values in the range of [0, 1], and SPR = 1
if and only if C is subspace-preserving. In addition, we also
report the clustering accuracy (ACC) of subspace cluster-
ing, which is defined as max

π

1
N

∑N
j=1 1{π(pj)=p̂j}, where

p, p̂ ∈ {1, · · · , n}N are the groundtruth and estimated as-
signment of the columns in X to the n subspaces, and π is
the set of all permutations of n groups.

The results in our experiments are reported in Figure 2.
From Figure 2(a) we see that A-LSR and LSR produce
subspace-preserving solutions when D satisfies the con-
ditions specified in Theorem 4(i) and Theorem 4(ii), re-
spectively, thus verifying the correctness of these two re-
sults. Moreover, the solutions are not subspace-preserving
as soon as the conditions in Theorem 4 are violated. That
is, A-LSR and LSR do not give subspace-preserving solu-
tion whenever D <

∑n
`=1 d` + n − 1 = 24 and whenever

D <
∑n
`=1 d` + n = 25, respectively. This indicates that

these two conditions are tight. In addition, the gap between
the curves for A-LSR and LSR whenD < 25, both in terms
of SPR (see Figure 2(a)) and ACC (see Figure 2(b)), indi-
cates that the affine constraint in A-LSR does play an impor-
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Figure 2. Performance evaluation on synthetic data. 5 affine sub-
spaces of dimension 4 are generated according to the random sub-
space model, and 20 points are randomly sampled on each affine
subspace. The ambient dimension D is varied on the x-axis. The
results are averages over 20 independent trials.

tant role in boosting the performance when the dimension of
the ambient space is relatively low.

The range of D for which subspace-preservation is
achieved by A-SSC and SSC, on the other hand, extends
to significantly smaller values than those that are predicted
by Theorem 4(i) and Theorem 4(ii), respectively, indicating
the possibility of deriving tighter bounds for these meth-
ods by exploiting special properties of the `1 regularizer.4

Nonetheless, we still observe a pattern that is consistent
with that for A-LSR and LSR, namely that the affine con-
straint in A-SSC improves the performance in terms of SPR
and ACC when the ambient space is low-dimensional.

5.2. Experiments on real data

The literature on subspace clustering usually reports
clustering performance of methods with the affine con-
straint (e.g., [5, 8]) or without the affine constraint (e.g.,
[15, 19, 46, 18, 9]), thus making it unclear whether the affine
constraint is helpful. To complement existing studies with
the goal of understanding the effect of the affine constraint,
we conduct experiments on three commonly used datasets.

The Hopkins 155 [28] is a motion segmentation database
that consists of 155 video sequences with 2 or 3 rigid-body
motions each. We report the average clustering accuracy
over the 35 sequences that have 3 motions. The ambient
dimension of the data ranges from 30 to 122 for different
sequences with an average of 57. The MNIST [11] dataset
contains 70, 000 images of handwritten digits. Each im-
age is of size 32 × 32. Following [47], we extract features
of dimension 3,472 from each image using the scattering
transform network [2] and then project to dimension 500
via PCA. We randomly choose 1,000 images in each trial
to perform clustering and report the average clustering ac-
curacy over 10 trials. The Coil-100 dataset [21] contains
7,200 images of 100 different objects. Each image is of

4The work [13] presents a theoretical study that is dedicated to A-SSC,
but that work only considers the deterministic case and does not provide
such a bound under a random subspace model.
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Figure 3. Performance evaluation on real datasets. We report clus-
tering accuracy (y-axis) versus model parameter value (x-axis).

size 128× 128, which is downsampled to size 32× 32 and
then concatenated column-wise into a vector of dimension
1,024. We apply mean image subtraction as data prepro-
cessing. We report the average clustering accuracy over 10
trials where in each trial we pick 10 classes at random and
perform subspace clustering on all images from them.

The clustering performance of SSC, A-SSC, LSR and A-
LSR is reported in Figure 3. We observe from Figure 3(a)
and 3(b) that on the Hopkins 155 dataset, A-SSC and A-
LSR consistently improve over SSC and LSR, respectively,
over a wide range of parameters, indicating the effective-
ness of the affine constraint on this dataset. This may be ex-
plained by the low-dimensionality of the ambient space in
which different subspaces (determined by the motions) are
not sufficiently separated. On the other hand, on both the
MNIST and Coil-100 datasets the difference in clustering
accuracy between SSC and A-SSC as well as between LSR
and A-LSR is very small. Specifically, in Figure 3(c), 3(d)
and 3(f) the two curves corresponding to methods with and
without the affine constraint are almost overlapping, and in
Figure 3(e) there is no consistent pattern of any method be-
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Figure 4. Performance on Coil-100 with various ambient dimen-
sion. Images in Coil-100 are downsampled to size p-by-p, with p
varied on the x-axis, and clustering accuracy shown on the y-axis.

ing better than the other one. This result confirms our earlier
theoretical justification that the affine constraint may not be
needed for data with a low intrinsic dimension relative to
the dimension of the ambient space.

To further evaluate the effect of the ambient dimension,
we perform subspace clustering on images from Coil-100
that are downsampled from 32 × 32 to p × p for p ∈
{2, 3, 4, 6, 8, 12, 16}. This simulates the effect of varying
the ambient dimension caused by varying the image reso-
lution. The clustering performance is reported in Figure 4.
The model parameters α (for (A-)SSC) and λ (for (A-)LSR)
are set to 3.9 and 0.001, respectively. We can see that the
affine constraint in both the cases for SSC and LSR plays a
more important role for clustering images with lower reso-
lutions, which are of lower ambient dimension.

6. Conclusion

We have studied the problem of affine subspace cluster-
ing with a focus on understanding the role of the affine con-
straint in self-expression based subspace clustering meth-
ods. Based on the geometric conditions derived in Sec-
tion 3, we have shown that the affine constraint may have a
negligible effect in improving clustering performance when
the ambient dimension is large enough relative to the sum
of subspace dimensions and the number of subspaces. This
theoretical finding was confirmed by our experiments on
synthetic data as well as three real datasets commonly used
in the subspace clustering literature. Our discovery provides
important guidance for practitioners when picking the best
model for their specific subspace clustering tasks.
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Appendices
The appendices are organized as follows. In Section A, we
present the proofs to the technical results in the paper. In
Section B, we compare our theoretical results with existing
theoretical results for affine subspace clustering. Section C
provides a pictorial illustration of several concepts associ-
ated with an affine subspace.

A. Proofs
In this section, we present proofs for our main theoretical

results in Section 3 and Section 4.

A.1. Technical lemmas

We present three lemmas that are used for proving our
main theoretical results. These lemmas can be established
from the definition of span, affine hull and dimension of an
(affine) subspace. We omit their proofs.

Lemma 8. Let H ⊆ IRD be an arbitrary set. We have
span(H) = span(aff(H)).

Lemma 9. Let {H` ⊆ IRD}m`=1 be an arbitrary collection
of sets. We have

span(∪m`=1H`) = span(∪m`=1span(H`)), and

aff(∪m`=1H`) = aff(∪m`=1aff(H`)).
(A.1)

Lemma 10. Let A be an arbitrary affine subspace. If 0 ∈
A (i.e., if A is a linear subspace), then dim(span(A)) =
dim(A); otherwise, dim(span(A)) = dim(A) + 1.

A.2. Proof of Lemma 1

Proof. Let A be an affine subspace and {xj}mj=1 be an
affine basis ofA. It can be verified from definition that ~(A)
is an affine subspace and that {~(xj)}mj=1 is an affine basis
of ~(A). It follows that dim(~(A)) = dim(A) = m− 1.

From Lemma 10 and the fact that 0 /∈ ~(A), we have
dim(span(~(A)) = dim(~(A)) + 1 = dim(A) + 1.

A.3. Proof of Lemma 3

Proof. From Definition 1, the collection of subspaces
{span(~(A`))}n`=1 is linearly independent if and only if

dim(span(∪n`=1span(~(A`)))) =

n∑
`=1

dim(span(~(A`))).

(A.2)
From Definition 4, the collection of subspaces {A`}n`=1 is
affinely independent if and only if

dim(aff(∪n`=1A`)) + 1 =

n∑
`=1

dim(A`) + n. (A.3)

To prove the lemma, we only need to show that (A.2) and
(A.3) are equivalent. Note that

dim(span(∪n`=1span(~(A`))))
= dim(span(∪n`=1~(A`))) (by Lemma 9)
= dim(span(~(∪n`=1A`)))
= dim(span(aff(~(∪n`=1A`)))) (by Lemma 8)
= dim(span(~(aff(∪n`=1A`))))
= dim(aff(∪n`=1A`)) + 1 (by Lemma 1).

(A.4)

In addition, from Lemma 1 we have

n∑
`=1

dim(span(~(A`))) =

n∑
`=1

dim(A`) + n. (A.5)

It follows from (A.4) and (A.5) that (A.2) and (A.3) are
equivalent.

A.4. Proof of Proposition 1

Proof. From Definition 4, Lemma 10 and Lemma 8 we
have

n∑
`=1

dim(A`) + n− 1 = dim(aff(∪n`=1A`))

≤ dim(span(aff(∪n`=1A`))) = dim(span(∪n`=1A`)),

which finishes the proof.

A.5. Proof of Lemma 5

Proof. From Definition 1, {span(A`)}n`=1 is linearly inde-
pendent if and only if

n∑
`=1

dim(span(A`)) = dim(span(∪n`=1span(A`))). (A.6)

Furthermore, from Lemma 10, Lemma 9 and the fact that
0 /∈ ∪n`=1A`, (A.6) holds if and only if

n∑
`=1

dim(A`) + n = dim(span(∪n`=1A`)). (A.7)

Therefore, we only need to show that (A.7) holds if and
only if both 1) {A`}n`=1 is affinely independent and 2) 0 /∈
aff(∪n`=1A`).

To prove the “only if” direction, suppose that (A.7)
holds. From (4), (A.7), Lemma 8 and Lemma 10, we have

dim(aff(∪n`=1A`)) + 1 ≤
n∑
`=1

dim(A`) + n

= dim(span(∪n`=1A`))
= dim(span(aff(∪n`=1A`)))
≤ dim(aff(∪n`=1A`)) + 1.

(A.8)



It follows that equality is achieved for all inequalities in
(A.8). In particular, equality in the first line of (A.8) im-
plies that {A`}n`=1 is affinely independent, and equality in
the last line of (A.8) implies that 0 /∈ aff(∪n`=1A`).

To prove the “if” direction, we assume that {A`}n`=1 is
affinely independent and that 0 /∈ aff(∪n`=1A`). By Defini-
tion 1, Lemma 10 and Lemma 8, we have

n∑
`=1

dim(A`) + n = dim(aff(∪n`=1A`)) + 1

= dim(span(aff(∪n`=1A`)))
= dim(span(∪n`=1A`)),

(A.9)

therefore (A.7) holds. This completes the proof.

A.6. Proof of Proposition 2

Proof. From the proof for the “if” direction of Lemma 5, if
{A`}n`=1 is affinely independent and 0 /∈ aff(∪n`=1A`) then
(A.7) holds, which is the desired result.

A.7. Proof of Lemma 6

Proof. For each ` ∈ {1, · · · , n}, let w̃i,` := wi,` for i = 0
and w̃i,` := w0,` + wi,` for i ∈ {1, · · · , d`}. In addition,
let W̃ = ∪n`=1W̃`, where

W̃` = {w̃0,`, w̃1,`, · · · , w̃d`,`}. (A.10)

Note that aff(W̃`) = A`. By using Lemma 9, we have

aff(W̃) = aff(∪n`=1W̃`)

= aff(∪n`=1aff(W̃`)) = aff(∪n`=1A`). (A.11)

Meanwhile, note that

card(W̃) =

n∑
`=1

d` + n with probability 1. (A.12)

Combining (A.12) with D ≥
∑n
`=1 d` + n− 1, we have

W̃ is affinely independent with probability 1. (A.13)

It follows from (A.11), (A.12) and (A.13) that

dim(aff(∪n`=1A`)) = dim(aff(W̃)) = card(W̃)− 1

=

n∑
`=1

d` + n− 1 =

n∑
`=1

dim(A`) + n− 1, (A.14)

with probability 1. Combining this with Definition 4 com-
pletes the proof.

A.8. Proof of Lemma 7

Proof. From Lemma 6, we know that {A`}n`=1 is affinely
independent with probability 1. In the following, we show
that 0 /∈ aff(∪n`=1A`) with probability 1.

Let W̃, W̃` be defined as in the proof to Lemma 6. Fol-
lowing the same argument as before we know that (A.11),
(A.12), (A.13) and (A.14) hold. In addition, note that

span(W̃) = span(∪n`=1W̃`)

⊆ span(∪n`=1aff(W̃`)) = span(∪n`=1A`). (A.15)

Meanwhile, combining (A.12) withD ≥
∑n
`=1 d`+n gives

W̃ is linearly independent with probability 1. (A.16)

It follows from (A.15) and (A.16) that

dim(span(∪n`=1A`)) ≥ dim(span(W̃)) = card(W̃),
(A.17)

with probability 1. By using Lemma 8, (A.17) and (A.14)
we get

dim(span(aff(∪n`=1A`))) = dim(span(∪n`=1A`))

≥ card(W̃) = dim(aff(∪n`=1A`)) + 1, (A.18)

with probability 1. Combining this with Lemma 10 shows
that 0 /∈ aff(∪n`=1A`), as desired.

B. Comparison with Existing Results
We compare our technical results with those in existing

works. To the best of our knowledge, the only papers that
have provided theoretical guarantees for the correctness of
affine subspace methods are [4, 13] which study the affine
sparse subspace clustering (i.e., A-SSC), and [30] which
study the affine algebraic subspace clustering (i.e., A-ASC).

B.1. Comparison with results for A-SSC

A-SSC refers to the method in (3) with f(·) = ‖ · ‖1
and Ω = {C : diag(C) = 0}. It is originally proposed
in [4], where a theoretical analysis of A-SSC is provided
that states that A-SSC produces subspace-preserving solu-
tions if the collection of subspaces {span(~(A`))}n`=1 is lin-
early independent. This result from [4] is a special case of
Lemma 2. As stated in the discussion following Lemma 2,
such a result does not provide clear geometric insights as it
is characterized by the embedding of the affine subspaces in
the homogeneously embedded ambient space.

In a recent work [13] that provides a dedicated analy-
sis of A-SSC, it is shown that A-SSC provides subspace-
preserving solutions if the collection of affine subspaces
{A`}n`=1 is affinely independent. This result from [13] is
a special case of Corollary 2. In addition, [13] also presents



conditions that guarantee subspace-preserving property of
A-SSC beyond the affinely independent assumption. How-
ever, the derivation of these conditions rely heavily on the
property of f(·) = ‖ · ‖1 in A-SSC and do not apply to the
general formulation in (3) for a broad range of f(·).

The relation between the two previous condition in [4]
and [13] that {span(~(A`))}n`=1 is linearly independent and
that {A`}n`=1 is affinely independent has been unclear, mak-
ing it hard to compare these two results. This has now been
clarified by our Theorem 3, which shows that these two con-
ditions are equivalent to each other.

B.2. Comparison with results for A-ASC

The algebraic subspace clustering (ASC) method, also
known as the generalized principal component analysis
[36, 29, 31], is a subspace clustering method based on fitting
the data with a system of homogeneous polynomials fol-
lowed by factorization of the polynomials. To handle data
drawn from a union of affine subspaces, the A-ASC first
computes the homogeneous embedding of the data, then
apply ASC to the embedded data. A recent work [30] es-
tablishes conditions under which A-ASC is guaranteed to
produce correct clustering. In particular, a core condition is
that the collection of direction subspaces associated with the
affine subspaces is transversal, a mild assumption that holds
with probability 1 under the random affine subspace model
in Definition 6 as long as d` < D for each ` = 1, · · · , n
([30, Proposition 3]). A comparison of this result from [30]
with the results in Theorem 4 suggests that A-ASC may
work for a broader range of problems than methods based
on (3) and (2). Nonetheless, the computational complexity
of A-ASC is exponentially large in the dimension of the am-
bient space, making it only applicable to low-dimensional
data sets.

C. Relation Between A, span(A), ~(A), and
span(~(A)) via an Example

In Figure C.1, we provide an example that illustrates
three concepts associated with an affine subspaceA: the lin-
ear subspace span(A), the homogeneous embedding ~(A),
and the linear subspace span(~(A)). Note that the linear
subspace span(A) is the entire plane of IR2 and the linear
subspace span(~(A)) is a subspace of IR3.
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