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Abstract

In order to bring artificial agents into our lives, we will
need to go beyond supervised learning on closed datasets
to having the ability to continuously expand knowledge. In-
spired by a student learning in a classroom, we present an
agent that can continuously learn by posing natural lan-
guage questions to humans. Our agent is composed of three
interacting modules, one that performs captioning, another
that generates questions and a decision maker that learns
when to ask questions by implicitly reasoning about the un-
certainty of the agent and expertise of the teacher. As com-
pared to current active learning methods which query im-
ages for full captions, our agent is able to ask pointed ques-
tions to improve the generated captions. The agent trains on
the improved captions, expanding its knowledge. We show
that our approach achieves better performance using less
human supervision than the baselines on the challenging
MSCOCO [15] dataset.

1. Introduction

Imagine a child that sees a crocodile for the first time.
She may likely ask what the animal is called, or where it can
be encountered outside the zoo, but probably does not need
to be told that it is green or has four legs, and that its sharp
teeth can pose danger. Children (and even adults) learn from
teachers in an active way: asking questions about concepts
that they are unfamiliar or uncertain about. In doing so, they
make learning more efficient — the child who acquires ex-
actly the information they are missing — and the teacher who
answers the question instead of needing to explain many as-
pects of a concept in full detail. As A.I. becomes more and
more integrated in our everyday lives, be it in the form of
personal assistants or household robots [30} |18} 25], they
too should actively seek out missing information from hu-
mans — by asking questions in the form of natural language
which non-experts can understand and answer.

Most existing work on scene understanding tasks such as
VQA [5/ 127,131} 16] and captioning [15} 23| 3] have focused
on a closed world setting, i.e. consuming the knowledge
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Figure 1. Learning to describe images by asking questions. Our
model learns in a lifetime learning setting, by actively seeking for
missing information. We jointly learn when and what to ask, and
learn from the teacher’s answers. Our model poses questions in
natural language.

provided by a labeled dataset. On the other hand, the goal
of active learning is to be able to continuously update the
model by seeking for the relevant data to be additionally la-
beled by a human [24]. Most active learning approaches,
however, ask the human to provide a full labeling of an ex-
ample, and the main challenge is in identifying the exam-
ples to be labeled, to ensure annotation efficiency. In our
work, we go beyond this, by endowing the model with the
ability to ask for a particular aspect of a label, and do so
in natural language in order to unambiguously identify the
missing information.

Lifetime learning In this paper we define lifetime learn-
ing as open world learning over multiple sessions. At the
beginning of its lifetime, the agent pretrains in a super-
vised way. It is assumed that data labels are expensive,
and therefore only a small portion of the underlying data
distribution is represented by the pretraining data. In life-
time learning, the agent is exposed to data sequentially, one
batch per session. Unlabelled data arrives from the world
and the agent has the ability to query a teacher for full or
partial labels to learn new concepts. However, the agent of-
ten has a fixed budget for asking and therefore must train in
a self-supervised manner by intelligently deciding what to
be labelled.

We focus on the task of image captioning as a proxy task



for scene understanding. In order to describe an image, a
model needs to generate words describing the objects, its
attributes, actions, and possibly relationships and interac-
tions between objects. This is inherently a multi-task prob-
lem. In this paper, our goal is to allow a captioning agent
to actively ask questions about the aspects of the image it
is uncertain about, in a lifetime learning setting in which
examples arrive sequentially and continually. Thus, instead
of having humans provide captions for each new image, our
agent aims to ask a minimal set of questions for the human
to answer, and learn to caption from these answers.

Our model consists of three modules: a captioning mod-
ule, a decision making module that learns whether to ask
and what to ask about, and a question generation module.
At training time when the captioner produces each word,
the decision module decides for which concept, if any, to
ask about. If the agent decides to ask, the question module
produces a question, which the teacher answers. All three
modules are implemented as neural networks. They are
updated continuously with the data arriving in batches: the
captioning module is updated using the captions improved
by the answers from the teacher, while the decision module
is updated based on the current uncertainty of the caption-
ing module. For efficiency reasons, our teacher to answer
questions is a QA bot. At test time the captioning model
describes new images without asking questions.

In summary, our contributions are:

e A new Learning by Asking Questions paradigm in
which captioning, question generating, and decision
modules interact in order to learn in over a lifetime.
The advantage of LBAQ is it improves the efficiency
of data collection.

e A novel decision maker module, trained with rein-
forcement learning (RL) that decides whether and what
to ask a question about by implicitly reasoning about
the uncertainty of the agent and knowledge of the
teacher.

We showcase our method on the challenging MSCOCO
dataset [15]. We provide insights into the behavior of our
approach, and discuss open challenges ahead. To the best
of our knowledge, this is the first time that natural language
question asking has been explored in a lifetime learning set-
ting with real-world images. For reproducibility, we have
released our code https://github.com/shenkev/
Caption-Lifetime-by—-Asking—-Questions.

2. Related Work

We provide a short overview of active and interactive
learning approaches, and outline our main contributions
with respect to existing work.

Active learning. The goal of active learning is to intel-
ligently seek labels for unlabelled data from an oracle in
order to maximize learning while reducing the annotation
cost. An agent predicts which sample, if labelled, will
give the most useful learning signal as measured by per-
formance on the test set. Strategies for active learning in-
clude uncertainty sampling, query by committee and ex-
pected model change [24]]. Unlike the typical active learn-
ing setting where an agent asks the oracle for a full data
label (which would be a full caption in our scenario), our
method learns to ask pointed questions to retrieve partial la-
bels, i.e. missing key words that compose a caption. Our
model thus needs to not only learn when to ask, but also
what to ask, and how to distill the received answer into a
complex multi-task module (captioner).

Learning by Asking Questions is an exciting direction
with notable contemporary work. Prior approaches typi-
cally differ in task, methodology (are questions natural or
templated? how does the agent utilize the feedback?) and
environment (synthetic vs real). [19]] learns to answer ques-
tions by asking questions. Image and the generated question
are treated as an unlabelled sample and an oracle provides
an answer to form a novel training pair. This simplifies the
learning by asking framework by bypassing the challenges
of free-form conversation and interpreting the teacher’s an-
swer, because QA can be directly used as training data. Our
work generalizes over this framework by using question-
asking as a support task to the main task, in our case image
captioning, which leads to a more general, and significantly
more challenging scenario. Furthermore, [19] operates in
CLEVR [8]], a synthetic environment and questions are lim-
ited to programs rather than natural language.

[33]] explores question asking for visual recognition.
Given an image, a graph of objects, attributes and relation-
ships is continually updated as the agent asks questions.
However, questions are limited to templates, and training
is done in synthetic environments with a limited set of ob-
jects and relationships. [28]] uses questions to explore new
object classes for image classification. However, [28]] does
not retrain their classifier. Our work differs from [33} 28] by
proposing a way for the agent to learn in a lifetime setting.

In [12], the agent learns whether to ask questions to the
teacher to efficiently solve dialogue tasks. The student’s
goal is to maximize the accuracy of answering the teacher’s
questions while reducing the cost (to the teacher) of asking
for hints. We extend this line of thinking by letting the agent
learn what to ask about in addition to whether to ask.

Vision and Language. Our work tackles captioning [32,
231131, visual question answering (VQA) [27,16,110], and vi-
sual question generation (VQG) [13}20]. However, most of
these works have focused on a closed dataset setting. Our
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main goal here is not in designing a novel architecture for
each module (captioning, VQG, VQA), but rather focusing
on the interaction of the modules and the teacher in order
to learn in a continual, active setting. Related to us is [16],
where a teacher observes the captioning agent in a contin-
ual setting, and gives natural language feedback when errors
occur. The agent then learns to improve based on this sig-
nal. In our work, the agent is the one seeking advice, thus
making the teaching process more efficient.

3. Our Approach

Our goal is to train an image captioning model in the ac-
tive learning setting with minimal human supervision. We
approach the problem by endowing the agent with the abil-
ity to ask questions, and learn from the teacher’s answers.
However, question asking is only a tool for retrieving in-
formation during training; at test time, the captioner oper-
ates without needing to ask questions. We first provide an
intuitive overview of our interactive training procedure, de-
scribing the lifetime learning setting, namely how the agent
learns from data arriving in a sequence of batches. Next,
we provide details of how the agent queries for, and learns
from, answers and feedback from the teacher. Finally, we
describe the implementation of our agent’s modules.

3.1. Lifetime learning

We imagine a lifetime learning setting where data arrives
in chunks. This is analogous to a student who learns over
multiple classes in a semester. The first chunk D,, has com-
plete ground truth (GT), i.e. human written captions. We re-
fer to it as the warmup chunk. The agent learns from the re-
maining K unlabelled chunks D,, = [Dy1, Dya, ..., Dyxk]
with partial supervision from the teacher. We first train the
question generator and pretrain the captioner on the warmup
chunk. For each K*" unlabelled chunk, the agent iterates
between two phases: querying the teacher, and learning
from the collected information.

In the (caption) collection phase, the agent interacts
with the teacher using two modules: a decision maker, and a
question generator. The agent looks at each image in an un-
labelled chunk, attempts to caption, and decides whether to
replace words with answers obtained by asking questions.
The agent collects the improved captions and uses them to
train the captioner in the (captioner) update phase. In the
collection phase, the feedback from the teacher is also used
to train the decision maker to make better decisions about
whether and what to ask. This process is illustrated in Fig-
ure 2] and summarized in Algorithm

3.2. Notation

Letw = (w1, ws, ..., wy) denote a caption of length L,
and I an image. The captioning module C'(w|I) computes
a probability distribution over the words in a sentence, i.e.

po.. (W|I). We further compute ¢ = (¢1, ¢a, . .., cr), denot-
ing an array of contexts computed by the captioner (details
in Sec [3.5). The context helps the decision maker decide
what concepts to ask about, and the question generator to
ask relevant questions. Let the context used by the decision
maker and question generator be called ¢ and ¢, respec-
tively. The decision module DM (t|c) computes a multino-
mial distribution pg , ,, (t|c?*) indicating the probability of
a word position ¢ in the caption at which the question should
be asked. We allow ¢ to index a special <eos> position
representing the case where no question should be asked.
The question generation module Q(q|I, c) computes the
probability distribution pg_ (q|I, ¢f) over a question q. The
details about the modules are presented in Sec

3.3. Caption collection phase

In the collection phase, the agent attempts to improve
captions generated from its own policy by querying the
teacher. For each round, the agent makes multiple passes
over a chunk. Given an image, the agent generates a cap-
tion, and the decision maker decides whether and when (at
which word) to ask a question to the teacher. The teacher
answers the question, which the agent uses to create a new
caption (details in Section [3.3.1). The teacher scores both
new and old captions and the agent stores the captions in a
buffer D.. At the same time, the agent uses the scores from
the teacher to make online updates to the decision maker to
pick better time steps for asking questions (Section[3.3.2).

The collected captions will be used in the update phase
by the agent to distill the teacher’s knowledge back into
the captioner. However, the agent could encounter diffi-
cult images that cannot be improved by asking questions.
Empirically we find the agent cannot improve on images
containing objects in unusual settings, or if the caption gen-
erated from the captioner’s policy is missing multiple key
concepts. Therefore, we allow the agent to “give up” if the
improved caption is bad, and the teacher writes a new cap-
tion. This is analogous to a student asking for a full expla-
nation from the teacher after class if he did not understand
a concept. For every image, the agent considers the top m
captions from the buffer D, for training. It keeps the top
H% of images-caption tuples based on the average caption
reward over m captions. For the other 100-H % images, the
agent “gives up” and is given m GT captions. In practice,
we choose m = 2 out of the 5 MSCOCO captions. The
KeepBestAndGiveUp subroutine in Algorithm [I] sum-
marizes how the agent selects training data for the captioner.

3.3.1 Interacting with the Teacher Details

Given an image, the captioner produces the complete ini-
tial caption w® and context ¢’ by a greedy rollout from
poe (-|I). The decision module then makes a decision by
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Figure 2. Modules being updated (green), modules being held fixed (grey), teacher (yellow). Writer is a teacher that produces full GT
captions. The captioner begins by warming up on the first chunk containing all GT captions (left panel). Learning by asking questions
(right panel) occurs in two phases: collection and update. In the collection phase, the captioner generates a caption, the decision maker
choose when to ask a question, the question generator generates a question and the teacher provides an answer. The answer is used to
create two new captions. Captions are collected and used to train the captioner in the update phase.

sampling from py,,,, (.|cP*). Words other than nouns,

verbs, and adjectives are masked out. Let w; be the word
for which the decision module decides to ask a ques-
tion. The question generator produces a question and
the agent receives an answer a. The agent then replaces
word w; in w” with a and predicts a new caption w}, =
(wi...wi—1,a,wi,q,...wy), by rolling out the rest of the
caption from position ¢ using the previous hidden state h;_
of the captioner and a. If the teacher’s answer is a rare
word for the agent, the agent may diverge from any sen-
sible trajectory. For this reason, we give the agent the op-
tion of doing a one-word-replace of the expert’s answer, i.e.
wl, = (wy...w_1,a,W1,.. . wL).

Finally the teacher scores both the original and the two
improved captions, by giving each a numeric reward r. The
process can be repeated by asking a second question and
replacing another word at step ¢’ > t. In general, the agent
can ask up to IV questions for a single caption. In practice,
we observe N = 1 to work best in our experiments. We
keep N in the following for the generality of exposition.
The interaction process is summarized in Algorithm 2]

3.3.2 Learning When to Ask Questions

As the agent queries the teacher, it trains the decision maker
online to ask better questions. The teacher provides a
scalar, non-differentiable reward. Hence the decision maker
is updated using REINFORCE [26]]. We baseline the re-
ward with the greedy decision reward (r*) (that is, what
the improved-caption would have been had DM sampled
greedily), following the self-critical policy gradient [23].
See line 11 in Algorithm [I] In the general case where N
questions are asked, the gradient for the parameters of the

Algorithm 1 Lifetime learning

1: procedure LIFETIME(D.,, D)
: train: C, Q,V > train captioner, question generator, QA-bot
> initialize decision maker

2

3 initialize: DM

4: D <~ Dy,

S5: Dy = [D1L17Du27~--DuK]

6: for D, in D, do > begin lifetime learning
7 D. +[] > collection phase
8 for epoch = 1 to Number of Passes over Chunk do

9

for I in D, do

10: W, r < SeekTeacher([)
11: w*,r* < SeekTeacher(/, greedy=True)
12: D. += (w,r,w*,7*) > collect caps. and rewards
13: QDIM<—GDM/+(T—T*)v10gpgDM(t|CDM)

> update decision maker
14: D <+ KeepBestAndGiveUp(De, H)
15: train: C on D using L(6¢) > update phase

Algorithm 2 Interacting with the teacher
1: procedure SEEKTEACHER(I, GREEDY=FALSE)

2: w?, e « C(|D) > compute caption and context
3: 70 <~ TeacherScore(w?)

4: forn = 1to N do

5: t" < DM (-|cPM:n=1 greedy) > DM samples step
6: q < QU ekt > generate question
7: a<+V(|I,q) > teacher provides answer
8: wl, e +— [wg;nl_l,a7C(~\I,htn_1,a)] > roll new cap.
9: Wi Wi, a, Wi ]
10: r, < TeacherScore(wl,) > teacher scores caption
11: r?, < TeacherScore(w}.)
12: W, r™ — max{r" "1 r2 r}
13: return Y, wi

decision maker 0p )y is:

N
[ = (r")"]V log pop, ("™ 1) M

n=1



In this work we did not update the question generator in
lifetime learning because jointly training the decision maker
and question generator is a hierarchical RL problem. Re-
ward accreditation is challenging because the agent needs
to learn to differentiate DM choosing a bad time step from
DM choosing a good time step but question generator gen-
erating a bad question.

3.4. Captioner update phase

After the collection phase, the agent trains the caption-
ing module on the collected captions. We assume the agent
has full access to past data D and is retrained from scratch.
We retrain from scratch to avoid the added complexity of
applying learning-without-forgetting techniques since our
model has many moving parts already. Future works can
look at how to efficiently learn on the new data. D contains
warmup GT captions, collected captions, and GT captions
from “giving up”. The captioner is retrained using a joint
loss over the captions stored in D,

L(0c) ==Y rwlogpec(wW|I) =X Y logpo. (w*|I)
weD w*eD
(2)

where w are collected captions, w* are GT captions, 7,
is the score given by the teacher for w, and A is a tuned
hyperparameter. In practice, we set \ to the 90" percentile
reward of the collected captions, assuming that ground truth
captions are generally better than collected captions.

3.5. Implementation Details

Captioning module. C(w|I) is implemented as an atten-
tion CNN-RNN model [32]]. We additionally predict a part-
of-speech (POS) tag at each time step to inform the question
generator what type of question should be asked and the
decision maker whether to ask. Captioner is trained using
MLE with teacher forcing and scheduled sampling.

Question generation module. Q(q|I,c}) is also imple-
mented as a CNN-RNN and conditions on the context at
time ¢. Specifically, ¢f consists of: POS distribution which
determines the “question type”, the attention weights pre-
dicted by the captioner which guide the question generator
to look, an encoding of the caption which provides global
context and prevents asking for redundant concepts, and the
position encoding for ¢t. We found it helpful to allow the
question generator to re-attend rather than fully rely on the
captioner’s attention. We train the question generator on a
novel dataset, using MLE with teacher forcing and sched-
uled sampling similar to the captioner (details in Appendix).

Decision module. The decision maker DM (t|c) is im-
plemented as a multilayer perceptron (MLP) with Softmax
output. Context cP?™ consists of the POS distribution, an
encoding of the caption, and uncertainty metrics computed
from top-k words predicted by the captioner:

e Cosine similarity between the embedding of the top-1
word and all other k£ — 1 words.

e Cosine similarity between each top-k word and the
embedding of the entire sentence (implemented as the
sum of word embeddings).

e Minimum distance of each top-k word to another word.

Entropy is a natural way to measure the uncertainty of the
captioner. However, the model can predict synonyms which
increase entropy but do not suggest that the model is un-
certain. Therefore, for each time step we take the word
embeddings of the top-k words and compute their relative
distances as a secondary measure of uncertainty. We use
k = 6. In ablation studies, we show that these statistics
alone can capture the uncertainty of the cap. Training a neu-
ral network on these stats further improves performance.

Teacher module. We imagine our agent in a human-in-
the-loop setting where a teacher answers natural language
questions, chooses the best caption out of a few alternatives,
scores it, and writes GT captions if necessary. The teacher
consists of two parts: a VQA bot V' (a|l,q) implemented
following [27]] and a caption scorer composed of a linear
combination of BLEU [21], ROUGE [14], METEOR [2],
and CIDEr [29]. We call the reward from the caption scorer
the Mix score, and denote it by . We discuss challenges to
using a synthetic teacher in Sections[4.3|and [4.6]

4. Experiments

We evaluate our approach on the challenging MSCOCO
dataset [15], and compare it to intelligent baselines. We
perform detailed ablation studies that verify our choices and
give insight into how our model behaves.

We follow the standard Karpathy split [9]] that contains
117,843 training, 5K validation and 5K test images. We ran-
domly split the training set into warmup and lifetime learn-
ing chunks. In our experiments, we vary the size of the
warmup, and the number of lifetime chunks, to analyze the
model behavior under different regimes. There are 5 GT
captions for each image in the warmup set. At the end of
lifetime learning, there are m = 2 collected or GT captions
for each image in the lifetime set.

Image features are extracted with ResNet-101 trained on
ImageNet [4] [[7]. Vocabulary sizes for the captioner, ques-
tion generator and VQA are 11253, 9755 and 3003, respec-
tively. We use the Stanford NLP parser to get GT POS la-
bels [[17]. The decision maker only considers a subset of
tags (listed in Appendix) for asking questions.

4.1. Training Details

The synthetic teacher (VQA bot) was trained on the
VQAZ2.0 dataset [1], following a simplified implementation



Method H% GT% Supervision% Mix CIDEr METEOR ROUGE BLEU4 BLEU2
Equal GT - 452%  452% 989 9L 247 523 280 534
_allgT - 100% - 100% 1017 964 251 529 288 549
Inquisitive Student  70% 452% 735 % 1039~ 98.0 254 538 305 571
Mute Student 0% 452%  126% 1022 959 25.2 534 293 559

Table 1. Evaluation on fest. Our model was trained with 10% warmup and 3 unlabelled chunks. Methods see all images at least once for
fairness. Note: (Best of 3 runs) 100% GT corresponds to 46% of the MSCOCO training captions because only 2 (out of 5) captions are

used for each image in the lifetime chunks.

1% warmup 3% warmup

90 92
e~ Inq. Stud. .
851 Mute Stud. 90
88 :
80 e o
— ’ 4 86
as ”
o 84
70 821«
651 80
78
60

5% warmup 10% warmup

944 ; 971

92 « 961 f
954

90] g -
94 ”

88
931

861, 921

% GT captions % GT captions

0 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 45

84 T v v v v y . 01 v v v v v v g
10 15 20 25 30 35 40 45 20 25 30 35 40 45 50 55
% GT captions % GT cantions

Figure 3. Caption quality on test. Both models are decoded greedily.For each plot, GT % is varied by changing the percentage of captions
H% collected by the agent. % GT captions is reported relative to All GT.

of [27]] using a multi-answer binary cross entropy loss func-
tion. The VQA model achieves 64.2% on the VQA2.0 val
split without ensembling. We train the question generator
by combining data from MSCOCO and VQA2.0. (Imple-
mentation details in App.) A natural concern is that train-
ing the question generator on images the captioner sees dur-
ing lifetime learning will cause the que. gen. to “lookup”
GT questions. We find this to not be the case (see Fig-
ure [8). In general, the questions generated for an image
are diverse, generic and rarely match GT questions (see
Appendix for more examples). The entire training process
takes 2.5 longer than supervised learning baselines, mostly
because we retrain the captioner from scratch. This slow-
down can be overcome in future works by using learning-
without-forgetting techniques.

4.2. Cost of Human Supervision

We first perform a human study to understand human
cost associated with every interaction type with the agent.
We choose to measure “human effort” as the time taken for a
task. In our experiment, a human teacher has three possible
tasks: produce a full caption, answer a question, and score
a caption. Table ] shows that on average it takes 5.2 and
4.6 times longer to caption than score a caption or answer
a question. To compute the cost of human supervision, we
normalize the cost of each task to caption scoring. Hence
the agent incurs one point of supervision for each caption
scored, 1.13 for each question answered, and 5.2 for each
caption written. In practice, we assume no cost when the

VQA module answers a question. A human teacher would
charge the agent for answers but would also give better an-
swers. In the experiments to follow, we use Human Super-
vision as a metric for cost incurred by querying a human.

4.3. Learning by Asking Questions

In Table|l| we evaluate our lifetime learner, aka “inquis-
itive student” (IS), against training only on GT data on the
test split. All results are reported using greedy decoding.
Our model was trained with a 10% warmup chunk, 3 unla-
belled chunks and 70% collect percentage. For each setting
we report the best model out of three with different ran-
dom seeds. We report two GT baselines: Equal GT — the
same number of GT captions as our model but fewer total
captions, and All GT — the same number of captions as our
model but only GT captions.

In order to evaluate the benefits of asking questions, we
introduce Mute Student (MS), a lifetime learner that inter-
acts with the teacher by only receiving feedback on whether
captions are good (does not ask questions). MS is trained in
exactly the same lifetime setting as IS, but samples multi-
ple captions from the captioner’s current distribution rather
than ask questions to construct new captions to be rated by
the teacher. The best captions are still collected and used to
train for the next round. All models have the same hyper-
parameters and captioning architecture and are trained on
all images to ensure fairness. GT and Supervision % are
reported relative to All GT.

Compared to Equal GT, our lifetime model achieves 5
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Figure 4. T5C: top-5 words predicted by captioner at the word when question is asked. Rewards are in square brackets. Colors in OC
indicate probability the decision maker will ask about a word (scale is on right). Left 4 are positive examples, right is failed (pointing to
weaknesses of auto-eval metric). NC is the “rollout” caption. Even when one word (answer) is replaced, multiple words can be updated

because the captioner samples the rest of the sentence conditioned on the answer.
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Figure 5. Num. of unique words used by cap-
tioner evaluated on val at the end of lifetime
learning. Models trained with 10% warmup

and 3 chunks. chunks.

Mix and 6.5 CIDEr higher which shows that for an agent
with a fixed budget of GT captions, additionally learning
from collected captions can significantly improve perfor-
mance. Compared to All GT, our model achieves 2.2 Mix
or 1.6 CIDEr higher score while using only 45.2% of GT
captions and 73.5% of human supervision. This means that
training on teacher-improved captions not only achieves
greater efficiency but also leads to higher performance than
training on GT captions. We find this to be a particularly
strong and interesting result.

IS also beats MS, which demonstrates that question-
asking is beneficial. This is investigated further in Fig. [3]
We vary the amount of GT captions by adjusting the per-
centage H of collected captions. We call an agent that trusts
its teacher-improved captions often (and rarely gives up)
a “confident” learner. Confident learners use less human
supervision. An agent that begins lifetime learning earlier
with only a small warmup set is an “eager” learner.

IS outperforms MS in almost all settings but the differ-

Verbs Adjectives Counts

Figure 6. Distribution of teacher answer
types over rounds. The model was trained
using 10% warmup, H = 70% and 3

—©—lqu. stud.
—=—Mute stud.

1 2 3 4
Rounds of training

Figure 7. Performance on val vs the num-
ber of total chunks (plus the warmup).
Models were trained using 10% warmup
and H = 70%.

ence is greater if the agents are eager. Fig. [3] shows that
at 10% warmup the gap is 1.4 CIDEr (97 vs 95.6) but as
we reduce to 1% warmup, the gap becomes 12.7 CIDEr (77
vs 64.3). This supports the intuition that asking questions
benefits learners with less experience. In addition, a more
eager learner ultimately reaches lower performance for the
same amount of supervision. For about 30% supervision IS
achieves 93.9 CIDEr in the 10% warmup setting and 83.5
CIDEr in the 1% warmup setting. We hypothesize this is
because the quality of sentence continuations, or rollouts af-
ter receiving the teacher’s answer, worsens if the agent pre-
trains on less data. Furthermore, a very eager learner may
make too many mistakes to fix by asking only one question.

Selected examples are shown in Fig @] The first four
examples are positive and show asking questions helps fix
incorrect words and retrieve novel concepts. In the fifth ex-
ample, the reward is lower for the new caption even though
it is good according to human judgment. Auto-eval met-
rics do not reward the agent for relevant, novel captions



that don’t match words in the reference captions. A hu-
man teacher with more flexible scoring could encourage the
agent to learn more diverse captions and a larger vocabulary.

4.4. Learning New Concepts

1%, 3% and 10% warmup datasets contain only 30%,
47%, and 70% of the captioning vocabulary respectively.
The remaining words/concepts are explored in lifetime
learning. Fig. [5] shows the number of unique words used
by a captioner evaluated on the val split at the end of life-
time learning. We found a dependency between training
epochs and vocabulary size and therefore took all models at
the same epoch. We baseline against mute student. IS has a
larger knowledge base than MS at all % GT as it uses more
unique noun, verb and total words than MS, showing IS is
able to learn new vocabulary.

In Table [3| we compare the vocabulary of lifetime learn-
ers to All GT. All GT has a larger vocabulary than lifetime
learners. This is intuitive because All GT has more GT cap-
tions and therefore sees more varied data. IS only receives
a single word answer given an image, whereas All GT re-
ceives a complete caption label containing on average 10.5
words. For the same reason, in Fig. [5 the agents’ vocabu-
lary decreases as % GT decreases.

Another way to measure the usefulness of teacher’s an-
swers is to compute how often it repeats a concept the cap-
tioner already knows. Table[2]shows how frequently the an-
swer from the teacher appears in the top-k words predicted
by the captioner at the time step where the question is asked
(ATopk). Note that this is approximate because the cap-
tioner may predict the answer at a different step. In the first
round of lifetime training, 26.3% of teacher answers ap-
peared in the top-5 words predicted by the captioner. Hence,
73.7% of the time, the agent is sees an unfamiliar or novel
concepts. Over the lifetime, ATopk increases as the stu-
dent’s knowledge catches up to that of the teacher.

4.5. Analyzing the Modules

Question Generator. We conducted a human study
(Fig. [TT) using Amazon Mechanical Turk (AMT) to eval-
uate the quality of generated questions. Annotators rated
500 images-question pairs by answering questions if they
were good or flagging questions as “not understandable”
or “irrelevant to the image”. The questions were randomly
selected questions that the question generator asked while
trying to caption. The images were not seen by the question
generator during its training. 82.4% of questions were rated
“good” and answered. This is a promising result and sug-
gests that learning by asking can be adapted to use human
teachers instead of a QA bot.

Fig. [§ shows generated questions at different time steps
in a caption. In general, generated questions tend to be di-
verse, and generic. It’s important for questions to be generic

so that the teacher can answer with a wide range of possible
concepts and possibly new concepts. We also rarely observe
the generated questions to be the same as the GT questions.
More examples in Appendix.

Decision Maker. To test the decision maker, we look di-
rectly at the scores of the refined captions it produces, rather
than those of the final captions after retraining the captioner.
This lets us to precisely observe the ablated performance of
the DM. Table [9 evaluates different decision maker strate-
gies. We first train captioning and question generation mod-
ules. The baseline is the performance of the captioner with-
out asking questions. The other settings use various deci-
sion maker models to ask a question to improve captions.
Learned models are trained using RL on a single chunk of
unlabelled data. Scores are shown for the val split.

The full model gives 6.5 CIDEr improvement over no
question asking. Picking the time step with maximum en-
tropy is not a very good strategy. It is only 0.3 CIDEr bet-
ter than picking a random step. This is because the model
can predict synonyms which increase the entropy but do
not indicate the model is uncertain. Adding closeness met-
rics yields 1.0 CIDEr improvement over maximum entropy,
showing that taking into account the closeness of words
in embedding space gives a better measure of uncertainty.
In all cases, learning improves performance, with the best
learned model achieving 3.1 CIDEr higher than the best
non-learned model. We use the full model as our decision
maker for all experiments.

4.6. Understanding the Model

Number of chunks. Fig. [7|shows that as the number of
chunks increases, performance increases (for similar human
supervision). This is intuitive because more chunks means
the agent sees fewer images before adapting the captioner.
The number of chunks cannot be too large because we re-
train the captioner from scratch after every chunk.

Catching up to the teacher. Fig.[I0[shows the percent of
collected captions that improved by asking questions (left
axis) and average reward of collected captions (right axis)
versus num. consumed chunks. Over time, the agent is
able to improve fewer and fewer captions by querying the
teacher. Furthermore, the largest increase in collected re-
ward occurs in the first round. These observations suggest
that the teacher’s knowledge is exhausted over time. This
is a limitation of using a static, synthetic, and noisy QA-bot
(which only achieves 64% accuracy). Learning may benefit
from human teachers over more rounds, because they are
more accurate and have a much wider pool of knowledge.

Types of answers. In Fig.[§| we see the distribution of an-
swer types from the teacher. Over time, the student asks for



y BN URE|
C: A cat laying on a bed with a pillow and
a pillow.
Q1: What is on top of the suitcase? A: cat
Q2: Is the cat inside or inside? A: inside

gy
- 7
C: Three people are playing with a large frisbee.
Q1: Who is holding the frisbee? A: boy
Q2: What kind of game are they playing?
A: frisbee

C: A train sitting on the tracks.

Q1: What is the yellow object? A: train

Q2: Is this train moving or coming? A: going
Q3: Is the train in or outside? A: outside

C: Two cats sit in a room with a cat.

Q1: What animal is in the photo? A: cat

Q2: What are the cats doing? A: looking out
window

Q3: Are these cats sitting or outside? A: inside Q4: Where is the train? A: station Q3: What is the man in the blue shirt holding? Q3: What kind of cat is on the leftg A: gray
Q4: What are the cats looking at2 A: window GTQ: What color are the frain doors on the  A: frisbee Q4: Where is the cat? A: suitcase

GTQ: What animals are shown? right? Q4: What color is the frisbee? A: blue Q5: What is on the left of the suitcase?
GTQ: How many cats are there? GTQ: What shape are the windows?2 A: cat

Figure 8. Questions generated from different words in the generated caption (colors match words to questions). Highlighted questions
retrieve answers that are novel to the caption. Left 2 images are seen by question gen. during training (GTQ are GT questions used for
training), right 2 are not. Generated questions tend to be diverse and different from GT ones.

Round ATop3 ATop5 AToplO Model Nouns Verbs Adj. Task Avg. time (s) Std. (s) Time ratio
1 177 263 374 1S 527 97 53 Captioning 344 21.8 1.0
2 24.1 342 46.9 MS 491 86 48 Scoring 6.6 22 52
3 274 383 50.7 AlGT 680 127 47 Answering 7.6 3.7 4.6

Table 3. Number of unique words
used by each model on val. Life-
time learners are trained with
10% warmup, H = 60%, 3

Table 4. Time taken by humans to perform tasks: caption-
ing, scoring a caption, answering a question. Time ratio is
relative to captioning. /N = 27 humans surveyed, n. = 270
captions written, ny = 675 questions answered, ns; = 675

Table 2. Frequency (in %) of teacher
answers that occur in captioning mod-
ule’s predictions during lifetime train-
ing. Calculated from agent’s collected

captions in each round. chunks. captions scored.
Method Mix C B4
No questions 86.4 74.1 22.1
Random 88.3 762 222 5°° 16 §
Entropy 889 765 224 3 E
Unc. metrics 89.6 775 225 gSO % 0 20 40 ©0 80_ 100
Unc. metrics learned 90.8° 79.3 232~ § ey Percentof questons | ElGood questons
Full learned 91.9 80.6 23.7 & 2 ot relevant
45
Figure 9. Ablating the decision maker. En- 1 2 3 P Figure 11. AMT stgdy to jgdge the.quality of
Round the generated questions. Given an image and

tropy is picking the time step with highest top-
k word entropy. Unc. metrics includes entropy
and words closeness (Sec. [3:3). Unc. metrics
learned adds a MLP to predict the best time step
for asking. Full learned additionally includes
POS and an encoding of the caption as input.

a question, annotators were asked to answer
the question if it is good, or flag it as “not un-
derstandable” or “not relevant”. Generally the
questions were good.

Figure 10. Changes to collected
captions over rounds. Model trained
with 10% warmup, H = 70%, 3
chunks.

more nouns, and less verbs and adjectives. We hypothesize
this is because the agent is learning verbs and adjectives
early on before moving onto nouns.

5. Conclusion

In this paper, we addressed the problem of active learn-
ing for the task of image captioning. In particular, we allow
the agent to ask for a particular concept related to the image
that it is uncertain about, and not require the full caption
from the teacher. Our model is composed of three modules,
i.e. captioning, decision making and question posing, which

interact with each other in a lifetime learning setting. Done
this way, the learning and teaching efficiency is shown to be
improved on the challenging MS-COCO dataset.

Our work is the first step towards a more natural learning
setting in which data arrives continuously, and robots learn
from humans through natural language questions and feed-
back. There are many challenges ahead in making the life-
time model learning more efficient, and incorporating real
humans in the loop.
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6. Supplementary Material

This supplementary contains details of the modules in
our model, the training procedure, as well as additional
qualitative examples. In Section [6.1] we discuss implemen-
tation details of the captioner, question generator, decision
maker and VQA teacher. Furthermore, we describe the in-
quisitive student and mute student in the lifetime setting. In
Section [6.2] we discuss the challenges with asking N > 1
questions. In Section [6.3] we provide more detail on how
human supervision is calculated for our experiments. In
Section [6.4| we show an ablation study on the question gen-
erator. Our study highlights the importance of each feature
in the context used by the question generator. In Section[6.3)]
we show more qualitative examples and describe the failure
modes of our model.

6.1. Implementation Details
6.1.1 Lifetime Learning

In lifetime learning, data arrives in chunks. In the collection
phase, the agent attempts to improve generated captions by
querying the teacher. In the update phase, the captioning
module is updated on collected captions.

In our experiments, we vary the collection percentage
H% and the size of the warmup chunk. Note: the size of
the warmup chunk is reported relative to the entire training
split whereas % GT (reported in tables and figures) is rel-
ative to the total number of captions the baseline All GT is
trained on. For example 10% warmup refers to a dataset
with 11.3K/113K images and 57K/567K captions. We ex-
plored the following settings.

o H%: 60, 70, 80, 90, 100%
e warmup: 1, 3,5, 10%

In the update phase, we train the captioner with ADAM
[11l], 1r=2e—4, batchsize=20, scheduled sampling,
and learning rate (Ir) decay. Scheduled sampling and learn-
ing rate decay are described in[6.1.2] We now outline details
of inquisitive student (IS) and mute student (MS) in the col-
lection phase.

Inquisitive student The inquisitive student samples cap-
tions and questions greedily. We found it helpful to put the
captioner and question generator into eval mode so that
dropout is still applied. This introduces a small amount of
stochasticity and the agent generates more varied captions.
QE makes 8 passes over each image in a chunk. However,
because the captioner and question generator are sampled
greedily, later rounds only produce a few novel captions.
We found that 4 passes worked almost as well; more passes
produces diminishing returns. We train the decision maker

online using policy gradient. We use ADAM, 1r=2e—5 and
batchsize=20

Mute student Mute student has the same captioning ar-
chitecture and hyperparameters as QE. There are some dif-
ferences in the collection phase. Instead of asking ques-
tions, ME samples from the captioning module to explore
new captions. Specifically, ME samples captions with tem-
perature 1.0. ME makes 4 passes over each image in a
chunk. This is to ensure that QE and ME use similar amount
of human supervision.

6.1.2 Captioning Module

The captioning module is implemented as an attention
encoder-decoder. It predicts both the next word and the next
POS given the previous word. In our implementation, the
CNN encoder is fixed. However, we project image features
using a fully connected (FC) layer before passing it to the
decoder. The decoder is implemented as a single layer GRU
with 512 units. We use dropout=0.5 in all layers.

POS prediction The hidden state of the GRU is used to
compute the next word and POS. More specifically, we first
predict the POS distribution then condition the next word
on either the predicted POS or ground truth POS. Sched-
uled sampling is used to control how often the predicted or
GT POS is used. Words are embedded into 512 dimensional
latent space and POS are embedded into 50 dimensional la-
tent space. If the predicted POS is used to predict the next
word, we embed the entire POS distribution and concate-
nate this embedding with the decoder hidden state. The re-
sulting vector is passed into a FC layer to predict the next
word. If the GT POS is used, we embed the one-hot vector
and similarly predict the next word. The captioner is trained
using a joint loss over next word and POS.

L = Lyowu + aLpos 3)

We tune « and find 0.5 to work the best. We limit the
length of captions to 16 plus the end-of-sentence symbol.

Getting ground truth POS We use the Stanford NLP
parser to get ground truth POS for both GT and collected
captions. On rare occasions, the Stanford NLP parser re-
turns errors when parsing generated captions. In these
cases, the agent collects the GT caption for the image rather
than the generated one.

Training Training is the same for both the warmup chunk
and update phase in lifetime learning. Specifically, we train
the captioner using MLE with teacher forcing, scheduled
sampling (on both the words and POS) and learning rate



decay. We start the learning rate at 2e—4 and decays it by
0.8 every 3 epochs. The probability of predicting the next
word using the previous predicted word (rather than the GT
word) starts at 0 and increases by 0.05 every 5 epochs. The
probability of predicting the next word using the previous
predicted POS (rather than the GT POS) starts at 0.2 and
increases by 0.05 every 3 epochs.

6.1.3 Question Generating Module

The question generator generates a question given a context
vector computed by the captioner. More specifically, the
context consists of the full caption and the POS and atten-
tion weights (of the captioner) at a particular time step. The
time step is determined by the decision maker.

Encoding the caption The caption is used by the ques-
tion generator in two ways. First, a pretrained (and fixed)
captioning module is used to encode the caption. The hid-
den state of the captioner GRU (aka cap-hid) is used as a
feature. Second, the question generator encodes the caption
with its own single layer Bidirectional-GRU (BiGRU). The
BiGRU has 256 units. Caption words are represented as 256
dimensional latent vectors. Finally, the time step computed
by the decision maker is encoded as a 256 dimensional vec-
tor of 1’s. It is fed alongside the caption word embeddings
into the BiGRU.

Architecture The question generator’s decoder is also a
single layer GRU with 512 units. We embed the POS and
use it along with cap-hid to initialize the decoder hidden
state. We use the entire POS distribution rather than the
max POS. The BiGRU encoded caption is passed into the
decoder along with image features at every time step. We
limit the length of questions to 14. Question words are em-
bedded into 512 dimensional latent space.

Re-attention We allow the question generator to re-attend
to the image. Specifically, the question generator first com-
putes its own attention weights independent of the cap-
tioner’s weights. The attended image features are then con-
catenated with features computed from the captioner’s at-
tention. Finally a FC layer is used to compute the final im-
age features.

Training We train the question generator with MLE,
teacher forcing, learning rate decay and scheduled sam-
pling. We use a batch size of 20 and the same schedules
as for training the captioner: Ir decay 0.8 every 3 epochs,
scheduled sampling increase 0.05 every 5 epochs.

6.1.4 Dataset for Training Question Generator

We combine the MSCOCO and VQAZ2.0 datasets to train
the question generator. The two datasets share images.
Therefore, we can form training samples by matching an-
swers from QA pairs of VQA2.0 to words in the MSCOCO
captions. A training sample is a (caption, answer, question)
tuple. We pass the caption through a pretrained captioner
to compute the context vector. The “time step” is chosen
to be the index of the word in the caption that matches the
QA answer. The question generator is trained to predict the
GT question given the context. Doing this gives us 135K
samples for training and 6K for validation. We call this the
“answer-matched” set. We make a second “pos-matched”
dataset to increase the diversity of questions by taking
the answer from QA and instead matching its POS to a
random word in MSCOCO captions with the same POS.
The pos-matched dataset contains 108K samples. When
we train the question generator, we sample from both the
answer-matched and pos-matched datasets (equally) in
every minibatch.

To make the VQA vocabulary match the captioning vo-
cabulary better, we convert numbers from digits to words
(e.g. 7 — “seven”). For every image in the answer-matched
dataset, we allowed at most 2 questions with the same an-
swer. This is to prevent the model from overfitting and ask-
ing questions about only a single concept in an image.

6.1.5 Decision Making Module

The decision maker predicts which word in the generated
caption the agent should ask about. It does so given a con-
text vector from the captioner. The context vector consists
of: the full caption, POS, attended image features, and the
top-k words. The attended image features are computed by
weighting the output of the CNN encoder by the captioner’s
attention weights. The top-k words are the top-k words pre-
dicted by the captioner at every time step. They are used
to compute closeness metrics which capture the captioner’s
uncertainty. We use k = 6.

Encoding the caption The decision maker encodes the
full caption the same way as the question generator. First we
pass the caption through a pretrained captioner. The hidden
state of the GRU is used as a feature. Second, we encode
the caption with a BiGRU with 256 units.

Masking out invalid POS We mask out invalid POS (cor-
responding to words the agent can never ask questions
about). We do this by computing the maximum of the POS
distribution at each time step and comparing it to a prede-
fined list of valid POS. See table 3] for the full list.



POS Description

NN noun, singular

NNS noun, plural

NNP proper noun

NNPS proper noun, plural

VB verb

VBG verb, gerund/present participle
VBD verb, past tense

VBN verb, past participle
VBP verb, singular present
VBZ verb, 3rd person singular present
1 adjective

JIS adjective, superlative

JIR adjective, comparative

RB adverb

RBS adverb, superlative
RBR adverb, comparative

RP particle

CD cardinal number

Table 5. List of valid POS for the decision maker. All other POS are
classified as “other”.

Closeness metrics The top-k words predicted by the cap-
tioner are used to compute word closeness metrics. First
words are embedded using the embedding layer from the
captioner. Then, we compute the following features.

e Cosine similarity between the embedding of the top-1
word and all other £ — 1 words.

e Cosine similarity between each top-k word and the
embedding of the entire sentence (implemented as the
sum of word embeddings).

e Minimum distance of each top-k word to another word.

The result is a B x T x X X k tensor where B is the
batch size, 7' the number of time steps, X the number of
channels/features. and k = 6. We combine the features
along the k axis using a 1D CNN. The final feature vector
isa B x T x 512 tensor.

Computing the probability of asking questions We em-
bed the POS distribution with an embedding layer. We
project the image features with a FC layer. Finally we pass
the POS, image, caption and closeness features through a
MLP to compute logits. We apply a Softmax across time to
find the probability of asking a question at each time step.

6.1.6 VOQA

We use a VQA model as a synthetic teacher-answerer. We
remove yes/no questions from the VQA dataset as they
would not be useful for our captioning regime. This leaves
277K/444K questions in the training set and 133K/214K
questions in the validation set.

Architecture We use a similar architecture to [27] but
with PReLU activations instead of gated Tanh. We use
dropout=0.5 in all layers. Question words are encoded
using an embedding layer of 300 dimensions. The word
embedding is initialized using glove embeddings [22] but
we did not find significant difference versus training from
scratch. We limit questions to 14 words. The full question
is passed through a single layer GRU with 512 units to get
a vector representation. We use the final hidden state (step
14) of the GRU (padding short sentences) without sequence
trimming or dynamic unrolling. Captions are used as sup-
porting evidence to increase the performance of the VQA
model. Captions are also embedded using an embedding
layer with 300 units and then encoded using a GRU.

To fuse the question, image, and caption, we do an
element-wise product between their vector representations.
Specifically, we multiply question and image together, as
well as question and caption together. The two feature vec-
tors are concatenated and fed through a MLP to predict the
logits.

Training We use batchsize=256, lr=1le—3 and
ADAM to train the VQA model. Batch normalization is
used to normalize image features. We use a multianswer
loss. The loss for a single sample is shown below.

M
L==Y pilog(p) — (1—pi)log(1—p;) ()

Here ¢ indexes over the answer vocabulary. M is the
size of the vocabulary. p; is the ground truth probability of
answer ¢. p; is the probability predicted by the model. Each
question in the VQAZ2.0 dataset is answered by 10 humans.
This loss takes the full empirical human answer distribution
as the target rather than only the most common answer.

6.2. Asking Multiple Questions

In our reported experiments, the agent asked N = 1
questions for each generated caption in the collection phase.
We experimented with asking N > 1 questions. However,
this is challenging because the teacher’s answer is directly
inputted into the captioner to roll out the rest of the new sen-
tence. If the answer is a rare or out of vocabulary word, the
final words of the sentence may not follow a sensible tra-
jectory. This problem is worsened when multiple questions
are asked. One possible solution is to exploit hypernyms to
keep the captioner on a sensible trajectory while inserting
novel words. Another solution may be to learn an answer
“absorption” module to utilize the teacher’s answer better.
We leave these directions to future works.



Method a@1 | a@3 | a@5 | a@10
Baseline 37.8 | 50.2 | 553 | 62.7
+CE 459 | 60.2 | 65.5 72
+PE 492 | 639 | 693 | 754
+PE+CE | 52 | 672 | 73 79.4

Table 6. Comparing question generation models using different
context inputs. (+PE) with position encoding, (+CE) with RNN
encoding of the caption.

6.3. Calculating Human Supervision

In our reported experiments, we computed the cost of hu-
man supervision by considering the completion time of var-
ious tasks. More specifically, every GT caption a model has
access to costs 5.2 units of supervision and every caption
scored during lifetime learning costs 1 unit of supervision.
We make some other assumptions when calculating human
supervision.

First, we filtered out repeated captions and questions.
Furthermore, we assume no cost when the VQA module an-
swers a question. A human teacher would charge the agent
for answers but would also give better answers. Finally, we
only charge the agent once for picking the caption with the
highest reward from the three alternatives: rollout, replace,
and original and then scoring it. This assumption can be
relaxed by training a caption discriminator in future works.

6.4. Ablating the Question Generator

In table [6] we show how including various features af-
fects the accuracy of the question generator. We use accu-
racy as a proxy to question quality. Accuracy is measured
by passing a generated question through the VQA module
and comparing the teacher’s answer with the ground truth
answer. a@n means the GT answer appears in the top-n
teacher answers. The baseline is a model trained only with
POS and an attention maps as context. Results are reported
on the validation split of the dataset used to train the ques-
tion generator. Both position and caption encoding give a
boost to the accuracy. Using both achieves 14.2% accuracy
over baseline. We use the full model as our question gener-
ator in experiments.

6.5. Qualitative Examples

More qualitative examples are shown in the following
pages. Fig. [[2]shows the agent interacting with the teacher
in the collection phase of lifetime learning. Figs. [I3]and[T4]
show generated questions.

6.5.1 Failure Modes

Fig. [15] shows failure modes of our model. In the first im-
age, the decision maker chooses a bad time to ask a ques-
tion, and the agent gains no new information. In the second

image, the question generator produces a bad question. The
VQA teacher gives a nonsensical answer and the final cap-
tion is bad. The auto-eval metrics give the new caption a
higher score than the original even though both captions are
bad and it’s unclear which one is better. In the third im-
age, the captioning module is not able to utilize the answer
from the expert. It ignores the answer in rolling out the rest
of the sentence. In the last image, the agent is rewarded
for identifying the orange juice in the image. However, the
final sentence doesn’t make grammatical sense. This is a
limitation of using auto-eval metrics as the reward.
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GT: A little boy sitting in a large piece of
luggage.

OC: A boy laying down in a bed with a bed.
[1.06]

Q: What is the child laying on?
A: suitcase , luggage , bed
IT5C: bed , suitcase , room, hospital , chair

INC: A boy laying down in a suitcase on a
bed. [1.8]

GT: A brown bear swimming in a body of
water.

OC: A brown bear standing in a body of
ater. [2.02]

Q: What is the bear doing?

IA: swimming , fishing , drinking

IT5C: standing, playing , is, in, on

INC: A brown bear swimming in a body of
lwater. [2.91]

GT: A couple of guys flying a kite at waters
edge.

OC: A man holding a skateboard on a
beach with a person. [0.78]

Q: What is the man holding?

A: kite , parachute , sail

IT5C: skateboard, bag, skate, kite , frisbee

NC: A man holding a kite on a beach with a
person. [1.21]

GT: A yellow and blue train stationary at a
ltrain station.

OC: A train station with people on the
platform. [1.11]

Q: What is the train doing?

A: stopping , stopped , waiting

IT5C: station, pulling, moving , arriving,
traveling

NC: A train stopping at a train station.
[1.67]

GT: A small boat leaning to its side is on
the beach.

OC: A couple of boats sitting on a beach.
[0.9]

Q: What is on the boat?

A: luggage , people, boat

IT5C: couple, group, bunch, row, boat
NC: A luggage on a beach with a large boat
in the background. [1.44]

GT: This is a man walking a horse on a
track.

OC: A man standing on top of a baseball
ffield holding a stick. [0.77]

Q: What is the man doing?

IA: walking , riding , riding horse

IT5C: standing , riding , wearing , holding , is}
INC: A man walking on a baseball field with
a horse. [1.4]

GT: Carrots are sitting on the stand
outside in a bunch.

OC: A bunch of bananas that are sitting on
a table. [1.91]

Q: What fruit is on the table?
A: carrots, carrot, orange
IT5C: bananas,

INC: A bunch of carrots that are sitting on a
table. [2.25]

GT: A black dog is running on a beach.
OC: A small woman is standing on the
beach. [1.2]

Q: What is the dog doing?

IA: running , walking , jumping

[T5C: standing , riding , walking , flying ,
holding

NC: A small woman is running on the
beach. [1.67]

GT: Large adult cat lying in white sink in
residential bathroom.

OC: A cat sitting on a bathroom with a
white floor. [1.0]

Q: What is the cat sitting on?

A: sink , counter, bathtub

ITSC: floor , dog , bear, toilet, pillow
NC: A cat sitting on a bathroom with a
white sink. [1.22]

Figure 12. Examples of the agent interacting with the teacher in the collection phase. T5C: top-5 words predicted by captioner at the word when question is
asked. Rewards are in square brackets. First two rows show warmup dataset size of 10%. The last row shows warmup dataset size of 1%. For 1% warmup,
some generated captions (OC) have too many errors to fix with a single question.



C: A man sitting on a couch with luggage on
his back.

QO0: What is sitting on the bed? A: luggage
Q1: What is the man doing? A: packing
Q2: Is the man sitting on or off? A: on

Q3: What is the man sitting on? A: bed
Q4: Where is the man sitting? A: bed

Q5: What is the man sitting on? A: bed
GTQ: What color is the man 's shirt?

GTQ: What is the mirror leaning against?

C: A man on a snowboard jumping over a
ave.

QO: What is in the water? A: surfer

Q1: What is the man doing? A: surfing

Q2: What kind of outfit is the man wearing?

A: wetsuit

Q3: What is the man wearing? A: swim trunks|

Q4: What is the man doing? A: surfing

GTQ: What is the man doing?

C: A tray of food that is in a glass case.
Q0: What kind of food is the food on? A:
plastic

Q1: What is the name of the sandwich? A:
ham and cheese

Q2: What kind of drink is in the background?
A beer

Q3: What are the sandwiches inside? A:
refrigerator

Q4: Where is the sandwich placed? A:
refrigerator

GTQ: What kind of store is shown here?

C: A group of people playing a video game
on a wall.

Q0: What animal is on the wall? A: cat

Q1: Who is in the room? A: students

Q2: What are they doing? A: reading

Q3: What are they looking at? A: camera

Q4: What are the people sitting on? A: chairs
GTQ: Who put a table and chairs in here?

C: A man standing next to a snow board.
QO0: What is in the picture? A: polar bear
Q1: Is the man 's hair straight or flat? A: flat
Q2: What is the only part of the picture? A:
snow

Q3: What is the man standing on? A: snow
GTQ: What type of bear is this?

GTQ: What color is the bear?

C: A person that is standing in a field.
QO0: Who is in the photo? A: woman

Q1: What is this person doing? A: frisbee
Q2: Where is this picture taken? A: park
GTQ: Which hand is raised to catch the
frisbee?

GTQ: What is this woman playing?

C: A man standing next to a man in a white
hat.

QO0: Who is wearing a hat? A: man

Q1: What are the people doing? A: shearing

Q2: What type of fence is in the picture? A:
ooden

Q3: What kind of pants is the man wearing?

A: jeans

Q4: What is the man wearing? A: uniform

GTQ: What procedure has this animal

recently gone through?

GTQ: How many sheep are in the picture?

C: A small elephant is hanging from a tree
with leaves in the background.

QO0: What kind of trees are in the picture? A:
banana

Q1: What is this animal doing? A: eating

Q2: What kind of tree is this? A: banana

Q3: What kind of tree is this? A: banana

Q4: What type of plant is this? A: banana
Q5: What color of the leaves are the leaves?
A: green

GTQ: What color are the bananas?

C: A man sitting on a table holding a laptop
computer.

QO: What is the man reading? A: laptop
Q1: What is the man doing? A: typing

Q2: What is the man sitting on? A: lap

Q3: What is the man playing? A: computer
Q4: What is the man holding? A: mouse
GTQ: Where are the magazines in this
picture?

GTQ: What animal is on the man 's lap?

Figure 13. Examples of generated questions at different time steps of a generated caption. The images were used to train the question generator. Not all
generated questions are useful. This shows the importance of learning the decision maker to decide when and whether to ask questions. Up to six generated
questions are shown. GTQ are ground truth questions used to train que. gen. Generated questions are almost always different from GT ones. Questions are
asked for bolded words in the caption. The order of questions corresponds to the order of bolded words. i.e. QO corresponds to the first bolded word, Q1
corresponds to the second bolded word, and so on. The caption is generated from a model trained on 10% warmup data.



C: Three skiers on a ski slope with ski poles
land a ski board.

Q0: How many people are in the photo? A:
ffive

Q1: What are the people doing? A: skiing
Q2: What color is the man 's jacket? A: black
Q3: What are the people sitting on? A: skis
Q4: What are the people doing? A: skiing
Q5: What color are the skiers? A: white

C: A sign on a corner of a busy street.

QO0: What does the sign say? A: no left turn
Q1: What does the red sign say? A: do not
enter

Q2: What does the sign say? A: no left turn
Q3: What sign is on the sign? A: no parking
Q4: What color is the traffic sign? A: red
Q5: What street is this? A: 47

C: Aman riding a skateboard on aramp at a
skate park.

QO0: What kind of park are in the
background? A: skate park

Q1: Is this a man or a woman? A: man

Q2: What is the man skating on? A:
skateboard

Q3: Is the man going up or down? A: down
Q4: What color is the man 's shirt? A: black
Q5: What is the man skateboarding on? A:
ramp

C: A cat is standing in front of a tv.

QO: What is the cat looking at? A: tv

Q1: What is on tv? A: cat

Q2: Where is the cat looking? A: tv

Q3: What is the television on? A: tv stand
Q4: What is the cat sitting on? A: tv

Q5: What is the tv screen for? A: cooking

C: Two brown horses standing in a grassy
larea.

Q0: How many cows are in the photo? A: two
Q1: What color is the cows? A: brown

Q2: Where are the cows? A: field

Q3: What are the cows standing around? A:
lgrass

Q4: What color is the grass? A: green

Q5: What are the animals standing in? A:
lgrass

C: Aman riding a wave on a wave.

QO: What is the man in the background? A:
surfer

Q1: Is this a man or woman? A: man

Q2: What is the person standing on? A:
surfboard

Q3: Is the water coming or on? A: down
Q4: What color is the surfboard? A: white
Q5: What is the person riding on? A:
surfboard

C: A couple of scissors are sitting on a beach.
Q0: What are these two objects used for? A:
surfing

Q1: What is on the beach? A: surfboards

surfboards

Q3: What are these people doing? A: surfing
Q4: Are the legs on or off? A: on

Q5: What are the colors on the ground? A:
lgreen

Q2: What are the two things on the beach? A:

C: A baseball player swings his bat at a
baseball game.

QO0: What is the player 's name? A: john

Q1: What is the man holding in his right
hand? A: bat

Q2: What is the man holding in his hand? A:
bat

Q3: What is the man holding in his right
hand? A: bat

Q4: What is the man about to do? A: hit ball
Q5: What team is the batter on? A: detroit

C: A group of children standing in a lot of a
crowd.

QO: How many people are in the picture? A:
20

Q1: What are the men standing in? A: gym
Q2: What are the children doing? A: shaking
hands

Q3: Are the people in front or standing? A:
standing

Q4: What are the men standing on? A: carpet
Q5: What are these people wearing? A: suits

Figure 14. Random examples of generated questions at different time steps of a generated caption. The images were (unseen) not used to train the question
generator. Questions tend to be diverse and generic. Up to six generated questions are shown. Questions are asked for bolded words in the caption. The
order of questions corresponds to the order of bolded words. i.e. QO corresponds to the first bolded word, Q1 corresponds to the second bolded word, and
so on. The caption is generated from a model trained on 10% warmup data.



GT: A toddler playing with toy trains on a
toilet.

OC: A young boy sitting on a toilet in the

toilet . [1.12]

Q: What is the baby doing?
A: sitting, playing, smiling
T5C: sitting, is, holding, standing, on

NC: A young boy sitting on a toilet in the
toilet. [1.12]

GT: A sign on a wall with a clock in the
background.

OC: A clock that has a clock onitin a
room. [0.92]

Q: What is the word on the clock?
A: smiley face, time, 6:05
T5C: has, is, reads, says, looks

NC: A clock that smiley face is on a table in
aroom. [1.10]

GT: An old woman in a flowered dress is
holding a plate of bananas.

OC: A woman in a pink dress is holding a
green plate of bananas. [1.89]

Q: What is the woman doing?
A: smiling, posing, standing
T5C: is, holding, holds, poses, has

NC: A woman in a pink dress smiling a
plate with bananas. [1.25]

GT: Two donuts on a plate and a glass of
orange juice on a table.

OC: A plate of food sitting on a plate.
[0.93]

Q: What is in the glass?
A: orange juice, juice, beer
T5C: food, coffee, milk, bread, wine

NC: A plate of orange juice sitting on a
plate. [1.31]

0.75

0.5
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0.0

Figure 15. Failure modes of our model. From left to right these images highlight the failures of: the decision maker, the question generator
and VQA teacher, the captioner rolling out the rest of the sentence after receiving the answer, using auto-eval metrics as reward.
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