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Abstract

Efforts are underway to study ways via which the power of deep neural networks can be extended 

to non-standard data types such as structured data (e.g., graphs) or manifold-valued data (e.g., unit 

vectors or special matrices). Often, sizable empirical improvements are possible when the 

geometry of such data spaces are incorporated into the design of the model, architecture, and the 

algorithms. Motivated by neuroimaging applications, we study formulations where the data are 

sequential manifold-valued measurements. This case is common in brain imaging, where the 

samples correspond to symmetric positive definite matrices or orientation distribution functions. 

Instead of a recurrent model which poses computational/technical issues, and inspired by recent 

results showing the viability of dilated convolutional models for sequence prediction, we develop a 

dilated convolutional neural network architecture for this task. On the technical side, we show how 

the modules needed in our network can be derived while explicitly taking the Riemannian 

manifold structure into account. We show how the operations needed can leverage known results 

for calculating the weighted Fréchet Mean (wFM). Finally, we present scientific results for group 

difference analysis in Alzheimer’s disease (AD) where the groups are derived using AD pathology 

load: here the model finds several brain fiber bundles that are related to AD even when the 

subjects are all still cognitively healthy.

1. Introduction

The classical definition of convolution assumes that the data are scalar or vector-valued and 

lie on discrete equally spaced intervals. This assumption is ideal for natural images and 

central to how we use convolutional filters in deep neural networks but is far less appropriate 

for other domains where the data are structured such as meshes, graphs or measurements on 

a manifold. In computer vision and machine learning, these problems that need deep 

learning models for structured data are studied under the topic called geometric deep 

learning [9], which has led to a number of elegant approaches including convolutional neural 

networks (CNN) on non-Euclidean data [14, 33]. The reason this is important is that 

mathematically, non-Euclidean data violates a number of key properties of Euclidean spaces 

such as a global linear structure and coordinate system, as well as shift invariance/
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equivariance. As a result, the core operations we use in classical statistics and machine 

learning as well as within deep neural network architectures often need to be tailored based 

on the geometry and specifics of the data at hand. When such adjustments are made in 

modern deep learning architectures, a number of authors have reported sizable 

improvements in the performance of the learning algorithms [11, 10, 34, 14, 27, 26, 15].

We should note that specializing learning methods to better respect or exploit the structure 

(or geometry) of the data are not a new development. Time series data are common in 

finance [49], and as a result, has been analyzed using specialized methods in statistics for 

decades. Surface normal vectors on the unit sphere have been widely used in graphics [48], 

and probability density functions, as well as covariance matrices, are common in both 

machine learning and computer vision [45, 16]. In neuroimaging, which is a key focus of our 

paper, the structured measurement at a voxel of an image may capture water diffusion [6, 53, 

36, 31, 2, 13] or local structural change [25, 59, 32]. The latter example is commonly known 

as the Cauchy deformation tensor (CDT) [32] and has been utilized to achieve improvements 

over brain imaging methods such as tensor-based morphometry [37, 43, 4]. When the 

mathematical properties of such data are exploited, one often needs new loss functions and 

specialized optimization schemes. This step often involves first defining an intrinsic metric 

for the underlying geometry (structure) of the data. It is important to note that within 

geometric deep learning for manifolds, two types of settings are often considered. The first 

case is where the data are functions on a manifold. The second case corresponds to the 

setting where data are sample points on a manifold, such as a Riemannian manifold. In this 

paper, we study the second setting, which is not covered in the form described here in 

existing works including [9].

When the structure or geometry of the data informs the formulation of the learning task (or 

algorithm), we obtain differential geometry inspired algorithms where the role of the 

extrinsic or intrinsic metric induced by the data is explicit. Many datasets do not have a 

temporal or sequential component associated with each sample. However, the analysis of 

temporal (or sequential) data is an important area of machine learning and vision, e.g., 

within action recognition [1, 7, 50] and video segmentation [20], the study of analogous 

geometric ideas in this regime, especially within deep learning, is limited. Specifically, there 

are few existing proposals describing deep neural network models for structured (or 

manifold-valued) sequential data. Recently in [12], the authors proposed a recurrent model 

for the manifold of symmetric positive definite (SPD) matrices. This work is interesting and 

replaces a number of blocks within a recurrent model with the “statistical recurrent units”. 

But it is known that training recurrent models is more involved than convolutional 

architectures – shortly, our experiments will show that a 2× speed-up (by using a 

convolutional instead of a recurrent model) can be achieved. While the current consensus, 

within the community, is that sequential data should involve a recurrent network [17], as 

noted by [5], emerging results indicate that convolutional architectures often perform 

superior to recurrent networks on “sequential” applications such as audio synthesis. In fact, 

even historically, convolutional models were used for 1-D sequential data [22, 35]. Now, 

given that most use-cases of learning sequential models on manifold-valued data will not 
require the infinite memory capabilities offered by a recurrent model, it seems natural to 

investigate the extent to which convolutional models may suffice. Notice that in order to get 
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the long effective memory from a CNN model, one needs to increase the depth and/or 

increase the receptive field: this is provided by extensions such as dilated convolutions. We 

find that the two key ingredients in [5] to achieve similar or better performance than a 

recurrent model for sequential tasks involves (a) using dilations to increase the receptive 

field of each convolution and (b) using residual connections to design a deeper but stable 

network. It seems logical that these developments should be an ideal starting point in 

designing models and algorithms for sequential manifold-valued data – the goal of this 

work. Our key contribution is the design of a Dilated CNN model for sequential manifold-

valued data and showing its applicability in performing statistical analysis of brain images, 

specifically, diffusion-weighted MR images. To do so, we (a) define dilation for the 

convolution operator on the manifold of interest (b) define residual connections for our 

architecture (c) define weight normalization/dropout to add regularization/stability for the 

deeper network. We show that this yields an efficient formulation for sequential manifold-

valued data, where few exist in the literature at this time. On the scientific side, we show that 

such a construction gives us the ability to identify structural connectivity changes in 

asymptomatic individuals who are at risk for developing Alzheimer’s disease (AD) but are 

otherwise cognitively healthy.

2. Preliminaries

The motivation of this work is the analysis of sequential manifold-valued data, using deep 

architectures. As described above, our architecture utilizes ideas presented earlier in the 

context of dilated convolutional neural networks (DCNN) on Euclidean spaces [5]. To set up 

our formulation, we review the standard DCNN formulation and then describe our proposed 

manifold-valued DCNN framework.

Dilated Convolutions [5]: Given a 1-D input sequence x : N → Rn and a kernel w : {0, ⋯ , 

k − 1} → R, the dilated convolution function (x ⋆d w) : N → Rn is:

x ⋆d w (s) = ∑
i = 0

k − 1
w(i)x(s − id), (1)

where N is the set of natural numbers, and k and d are the kernel size and the dilation factor 

respectively. Notice that with d = 1, we get the normal convolution operator. In a dilated 

CNN, the receptive field size will depend on the depth of the network as well as on the 

choice of k and d. Thus, the authors in [5] suggested the use of residual connections [21] – 

this was found to provide stability for deeper networks. Notice that, unlike the standard 

residual network connection, here the authors used a 1 × 1 convolution layer in order to 

match the width of the input and the output. Additionally, in order to regularize the network, 

the authors used weight normalization [44] and dropout [46]. The weight normalization was 

applied to the kernel of the dilated convolution layer. The dropout was implemented by 

randomly zeroing out an entire output channel of a dilated convolution layer. Finally, as an 

activation function, the authors used ReLU non-linearity. A schematic diagram of a standard 

dilated CNN is given in Fig. 1.
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Next, we discuss generalizing the operations needed within a DCNN so that they can operate 

on manifold-valued data. Specifically, we will generalize the following operations: (1) 

Dilated convolution (2) Residual connection (3) Weight Normalization (4) ReLU and (5) 

Dropout, to the setting where data are manifold-valued.

Recently in [11], the authors proposed a CNN architecture for manifolds and/or manifold-

valued data. We can utilize some of these ideas towards deriving the dilated convolution 

operation. Before discussing the details of the definition of dilated CNN for manifold-valued 

data, we will first introduce some notations, concepts, and terminology.

Assumptions: We use (ℳ, g) to denote a Riemannian manifold ℳ with the Riemannian 

metric g and dℳ:ℳ × ℳ [0, ∞) denotes the distance induced by the metric g. We assume 

that the samples on ℳ lie inside a regular geodesic ball of radius r centered at p, ℬr(p), for 

some p ∈ ℳ and r = min rcvx(ℳ), rinj(ℳ) . Here, rcvx and rinj are the convexity and 

injectivity radius of ℳ [19].

Weighted Fréchet mean (wFM): Let Xi i = 1
N  be samples on ℳ. The authors in [11] define 

the convolution operation using the weighted Fréchet mean (wFM) [39] of {Xi}. Consider a 

one dimensional kernel w(i) i = 1
N  satisfying the convexity constraint, i.e., (a) ∀i, w(i) > 0 

(b) Σi w(i) = 1. Then, the wFM (uniqueness is guaranteed by the statement above) is defined 

as:

wFM Xi , w = arg min
M

∑
i = 1

N
w(i)dℳ

2 Xi, M , (2)

Group of isometries: The set I ℳ  of all isometries of ℳ forms a group with respect to 

function composition. We will use G to denote this group and for g ∈ G, and X ∈ ℳ, let g.X 
denote the result of applying the isometry g to point X (‘.’ simply denotes the group action).

Key Application focus: Diffusion-weighted imaging (DWI) is a magnetic resonance 

imaging (MRI) technique that measures the diffusion of water molecules to generate contrast 

in MRI, and has been widely applied to measure the loss of structural connectivity in the 

brain. At each voxel in the image, water diffusion can be variously represented: two 

common options are using an elliptical approximation (see Fig. 2(a)) where a 3 × 3 

covariance matrix expresses the diffusivity properties or an orientation distribution function 

where one represents the probability densities of water diffusion over different orientations. 

One can divide the 3D image into anatomically meaningful parcels in Fig. 2(b) and then run 

standard tractography routines to estimate the strength of connectivity between each pair of 

anatomical parcels [42]. The fiber bundles, hence estimated, are shown in Fig. 2(c). For 

analysis, one often focuses on certain important fiber bundles instead of analyzing the full 

set of fibers. Notice that if we specify a starting and ending anatomical region for a fiber 

bundle, we can consider the corresponding covariance matrices encountered on this “path” 

as multi-variate manifold-valued measurements of this function. This is precisely the type of 

sequential manifold-valued data that we will seek to model in this paper.
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3. Dilated convolutions for manifold-valued measurements

We now describe how to obtain the specific components needed in our architecture for 

manifold-valued data.

Dilated convolution operator: Given a 1-D input sequence X:N ℳ and a kernel w : {0, · 

· · , k − 1} → R satisfying the convexity constraint, the dilated convolution function 

X ⋆d w :N ℳ is defined as:

X ⋆d w (s) = arg min
M

∑
i = 0

k − 1
w(i)dℳ

2 X s − id , M , (3)

where as before, k and d are the kernel size and dilation factor respectively. Observe that the 

convexity constraint on the kernel is merely to ensure that the result also lies on the 

manifold. We will use the weighted Fréchet mean (wFM) as a dilated convolution operator. 

This choice is mathematically justified because (1) Eq. (1) is the minimizer of the weighted 

variance which is wFM, if the choice of distance is the ℓ2 distance. (2) We will show in 

Proposition (1) that the dilated convolution operator is equivariant to the action of G. This is 

a direct analog of its Euclidean counterpart. Notice that the dilated convolution operator 

defined in (1) is equivariant to translations, i.e., if x is translated by some amount t, so is the 

result (x ⋆d w). On the manifold ℳ, the analog of translation is the action of G, hence the 

equivariance of (X ⋆d w) with respect to G is a desirable property.

Proposition 1. Using notations in (3) and given w satisfying the convexity constraint, let F : 

X ↦ (X ⋆d w). Then, F is G-equivariant, i.e., F is equivariant to the action of G.

Proof. Observe that, if g ∈ G acts on X, then, X(s−id) ↦ g.X(s − id), for all s, d, i. Since g is 

an element of isometry group, therefore, dℳ g . X s − id , g . M = dℳ X s − id , M , for all 

M ∈ ℳ. So, g.M = (g.X ⋆d w) (s) iff M = (X ⋆d w) (s), which concludes our proof. □

In (3), since (X ⋆d w) is a ℳ valued function, we will use M as a manifold-valued function, 

i.e., M(s) = (X ⋆d w) (s). Similar to the Euclidean dilated convolution layer, we learn 

multiple dilated kernels (given by the number of output channels) for a dilated convolutional 

layer.

Residual connection: Let X and F be the input and output of a dilated convolutional layer 

where the numbers of channels are cin and cout. Then, analogous to the Euclidean residual 

connection, we define the residual connection using two steps: (a) First, concatenate X and F 
(X) to get (cin + cout) number of channels. (b) Use wFM to extract cout number of outputs. 

More formally, let R(X, FX) be the output of the residual connection, then the kth channel of 

the residual connection, Rk(X, F (X)) is given by:

Zhen et al. Page 5

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rk(X, F(X))(s) ≡def arg min
M

∑
i = 1

cin
wk(i)dℳ

2 Xi(s), M

+ ∑
j = 1

cout
wk j + cin dℳ

2 Fj(s), M ,

 s.t. ∑i wk(i) = 1, ∀wk(i) > 0,

(4)

where, k ∈ {1, · · · , cout} and Xi and Fj denotes the ith and jth channel of X and F 
respectively.

Weight normalization, ReLU, and Dropout: The weight normalization in the standard 

Euclidean convolutional network is not needed here since we impose a convexity constraint 

on the kernel. We argue that since Dropout is a regularizer, we will not use dropout for our 

manifold-valued DCNN implementation because of the implicit regularization due to the 

convexity constraint. As argued in [11], wFM is both (a) a contraction mapping [11] and (b) 

a nonlinear mapping and hence ReLU or any other non-linearity is not strictly necessary. 

Here, similar reasoning explains why a ReLU is not needed (since the contraction and non-

linear mapping are provided directly by wFM).

Equivariance and Invariance: A few reasons why convolutional networks are so powerful 

are (a) translational equivariance of a convolution layer and so, weights can be shared across 

an image (b) translational invariance property of the entire convolutional network which is 

the property of the fully connected last layer. As we showed above, the way we defined our 

dilated convolution operator leads to equivariance to the action of G. But we still have not 

shown that the last layer can be designed in a way that the output of the network does not 

change with respect to the action of G. So, we still need an analogous G-invariant last layer.

Invariant last layer: Analogous to the Euclidean recurrent model/ dilated CNN, in the last 

layer we will only consider the output of the last time point of a sequence, i.e., if X is the 

output of the last dilated convolutional layer with c number of channels, then the input of our 

last layer is Xi(N) i = 1
c , where X(N) ∈ ℳ is the value of the last time point. We know 

already that {Xi(N)} are G-equivariant. So, in order to make the entire dilated convolutional 

network G invariant, we need an invariant last layer. This is analogous to the translational 

invariant property of a fully connected (FC) layer in the traditional (Euclidean) dilated CNN. 

We design our last invariant layer as follows: (a) We will first learn nC number of wFM (let 

denoted by μi i = 1
nC ) of Xi(N) i = 1

c  using (2), where nC is a hyperparameter. (b) For all i ∈ 

{1, ⋯ , c}, and for all j ∈ {1, ⋯ , nC}, we compute the distance between Xi(N) and μj, 

denoted by dij. (c) Thus, for each Xi(N), we get nC number of feature representations. (d) 

We will use a standard fully connected (FC) layer with c × nC features as input and the 

desired number of outputs.

Proposition 2. The last layer is G-invariant.
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Algorithm 1: A basic ith DCNN building block with two convolution layers

 function DCNN

 VARIABLES(N, cin1 , cout1 , cout2 , cres, k1, d1, k2, d2, nC, c)

  xi−1 ← Input(cin
1 , N)

  y1 ← Dilated_Conv(xi−1, cin
1 , cout1 , k1, d1)

  y1 ← Dilated_Conv(y1, cout1 , cout2 , k2, d2)

  xi ← Residual(xi−1, y1, cin
1 , cout2 , cres)

  yo ← Inv(xi, nC, c) (For last DCNN block)

 end function

Proof. Observe that dij = dℳ Xi(N), μj . From Proposition 1, we know that μj is G-

equivariant, hence, μj ↦ g.μj, for some g ∈ G if ∀i, Xi(N) ↦g.Xi(N). But, 

dℳ Xi(N), μj = dℳ g . Xi(N), g . μj , which concludes the proof. □

In order to reduce the number of parameters in the last layer, we propose a parameter 

efficient last layer which is defined as using a FC layer on the tangent space, i.e., input 

Log Xi N i = 1
c  as input to the FC layer, where Log is the Riemannian inverse exponential 

map.

Now, we have all components of our dilated CNN on manifold-valued data. A schematic of 

our model is shown in Fig. 3. The building block for a 2-layer manifold DCNN is shown in 

Alg. 1. Note that the network parameters are scalar-valued, with a convexity constraint. In 

order to enforce the convexity constraint, i.e., {w(i)} ≥ 0 and Σi w(i) = 1, we will learn 

w(i) , which can be any real value. We will enforce the sum constraint by normalization. 

Thus we will use SGD to learn w(i) .

4. Experiments

In this section, we apply the manifold DCNN to answer the following questions: (1) By 

replacing a RNN with our DCNN with a manifold constraint, what improvement in terms of 

the number of parameters/time can we achieve, without sacrificing performance? (2) For 

computer vision applications, how much improvement can we get? (3) When using our 

method for scientific analysis of neuroimaging data, can we obtain promising results that 

show that such models can enable discoveries beyond current capabilities?

Next, we will answer the questions above by analyzing the comparative performance of 

manifold DCNN via four experiments: (1) two computer vision applications of classifying 

videos and (2) two neuroimaging experiments for scientific discoveries related to 

Alzheimer’s disease.
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4.1. Improvement in terms of parameters/time on synthetic and real computer vision 
datasets

In this section, we organize two sets of experiments: (1) Classification of different moving 

patterns on the Moving MNIST data (2) Classification of 11 actions on the UCF-11 data. 

Both these experiments serve as empirical evidence of the efficiency of manifold DCNN in 

terms of the number of parameters and time per epoch. We compared our method with five 

state-of-the-art sequential models: SPD-SRU [12], LSTM [24], SRU [40], TT-GRU and TT-

LSTM [54]. For all methods except TT-GRU and TT-LSTM, before the sequence process 

module, we used a convolution block. For manifold DCNN and SPD-SRU (also for 

manifold-valued data), between the convolution block and the sequence process unit, we 

include a covariance block analogous to [58]. The architecture of this experiment is shown 

in Fig. 4.

As one of the key operations of DCNN is wFM, below we will use an efficient recursive 

provably consistent estimator of wFM on the space of covariance matrices (SPD with some 

added small noise along diagonal). Let X(s) be an SPD matrix for all s ∈ N, and then the nth 

recursive wFM estimator, Mn is given as:

M0 = X(s) Mn = ΓMn − 1
X(s − n * d) w(n)

∑j = 0
n w(j)

, (5)

where Γ is the shortest geodesic on the manifold of SPD matrices equipped with the 

canonical affine invariant Riemannian metric [23].

4.1.1 Moving MNIST: Moving pattern classification—We generated the Moving 

MNIST data according to the algorithm proposed in [47]. In this experiment, we classify the 

moving patterns of different digits. For each moving pattern, we generated 1000 sequences 

with length 20 showing 2 digits moving in the same pattern in a 64 × 64 frame. The moving 

speed and the direction are fixed inside each class, but the digits are chosen randomly. In this 

experiment, the difference in the moving angle from two sequences across different classes 

is at least 5°.

Results: In Table 1, the results show that our method not only achieves the best test accuracy 

with the smallest number of parameters but is also 1.5 times faster than the SPD-SRU which 

has the second smallest # of parameters. The kernel of CNN we use has size 5 × 5 with the 

input channel and output channel set to 5 and 10 respectively. All parameters are chosen in a 

way to use the fewest number of parameters without deteriorating the test accuracy.

Scalability: We assess the running time (training and testing) of manifold DCNN with 

respect to the SPD matrix size. From Fig. 5(a), we can see that as the matrix size increases, 

the training time increases, while the testing time remains almost the same. This is a 

desirable property as it indicates that inference time does not depend on matrix size. Also, 

for different orientations differences, manifold DCNN gives almost perfect classification 

accuracy with very small standard deviation, as shown in Fig. 5(b).
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4.1.2 UCF-11: Action classification—The UCF-11 dataset [38] contains 1600 video 

clips of 11 different classes, such as basketball shooting, diving, etc. The video lengths 

(frame sequences) vary from 204 to 1492, with the resolution of each frame being 320 × 

240. We sample every 3 frames, resize each frame to 160 × 120, and clip the frame 

sequences to have the length of 50. For our method, we chose two convolution layers with 

kernels 7 × 7 and output channels 4 and 6 before the DCNN block. Hence, the dimension of 

the covariance matrices is 7 × 7. For the manifold DCNN block, we use three residual 

blocks, with channels set to be [1, 3, 3]; [3, 3, 4] and [4, 4, 4] respectively. The kernel size is 

5 for each residual block with the initial dilation number being 1 (if not specified, the initial 

dilated number is always 1 in this paper.). For TT-GRU and TTLSTM, we follow the same 

setting as given in [54]. For SPD-SRU, SRU, and LSTM, we use the same parameters as in 

[12]. All models achieve > 90% training accuracy.

Results: Test accuracy with the number of parameters and time per epoch is shown in Table 

2. We can see the number of parameters for our method is comparable with SPD-SRU with 

higher test accuracy (≈ 4% improvement) and much faster runtime (≈ 2.5×). Note that 

without residual connections, the accuracy drops to 0.809 ± 0.044: in other words, residual 

connections are useful.

Take-home message: With the above two experiments, we can conclude that manifold 
DCNN (i) is faster, (ii) uses fewer parameters and (iii) gives better or comparable 
classification accuracy compared to the state-of-the-art.

4.2. Group effects in Preclinical Alzheimer’s disease

Cardinal features of Alzheimer’s disease (AD) include the development of beta-amyloid 

plaques (amyloid), neurofibrillary tangles (tau), and progressive neurodegeneration 

(characterized by MRI) [30]. Autopsy studies among individuals with AD dementia indicate 

that degeneration of myelinated axons in the context of amyloid and tau pathology is a 

defining feature of dementia status [41]. Techniques for measuring axonal degeneration in 

vivo include analysis of cerebrospinal fluid, as well as diffusion-weighted imaging; however, 

few studies have tested the extent to which early amyloid accumulation may be associated 

with neural injury. Our goal is to utilize our method to identify white matter fiber bundles 

that are affected early in the preclinical disease process. Positron emission tomography 

(PET) imaging with Pittsburgh compound B (PiB), which identifies amyloid deposition, can 

be used as an indicator of AD pathology [28]. Thus, we compared healthy individuals who 

were positive for AD pathology (PiB+) to healthy individuals who were negative for 

pathology (PiB−). Additionally, we compared individuals who carried a risk gene for AD 

(APOE+) to non-carriers (APOE−).

4.2.1 Diffusion-weighted imaging (DWI)—Data acquisition: Diffusion-weighted 

imaging was completed on a General Electric (GE) 3 Tesla scanner with a 32-channel head 

coil and a spin-echo echo-planar imaging pulse sequence among participants who are 

asymptomatic. Multi-shell DWI data were collected using b-values b = 0, b = 500, b = 800, 

b = 2000, with 2 × 2 × 2mm resolution. The signal was corrected using MRTrix3[51] and 

FSL’s ‘eddy’[3]. Diffusion tensor imaging (DTI) and the orientation distribution functions 
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(ODF), which were used as the representative of the DWI, were performed using the 

Diffusion Imaging in Python (DIPY) toolbox[18]. To generate fiber bundles of interest, the 

data was processed using TRACULA[56, 55, 57]. With this pipeline, we generated 18 major 

fiber bundles [52], as shown in Fig. 2(c). Regions of interest (ROI) in the template space, 

were inversely warped back to the subject space to generate the fiber bundles and each data 

point used in the analysis for each participant.

Analysis: From the previous experiments, we can see that manifold DCNN performs well 

on classification problems with faster computation speed and fewer parameters. Due to the 

fast runtime and the small number of parameters, we can use permutation testing to perform 

group analysis. The statistical testing is performed on each fiber bundle between the two 

groups, to determine if the DCNN model between the two groups is different. To summarize, 

the setup is: (1) Group 1 (PiB+) versus Group 2 (PiB−), (2) Group 1 (APOE+) versus Group 

2 (APOE−). Now, we will give some details of the DCNN models for DTI and ODF 

representations before the statistical analysis.

(i) Diffusion tensor imaging (DTI): Diffusion tensor imaging (DTI) is a method to 

represent the Diffusion imaging with SPD matrices. Since all of the data samples lie on the 

SPD manifold, the model is similar to the classification model above. The only difference 

between classification model and this group analysis model is that instead of the prediction 

of the classes, we are fitting the two groups of data into two trainable models, θ1 and θ2 and 

assessing if the distributions of θ1 and θ2 are statistically different.

(ii) Orientation distribution function (ODF): Orientation distribution function (ODF) 

represents the probability densities of water diffusion over different orientations. In order to 

perform the statistical analysis, we discretized the space of orientations, i.e., S2. We sampled 

724 equally spaced points on the sphere S2 to represent the ODF. Let the ODF be denoted by 

xt, then after the discretization, we have ∑i = 1
724 xti = 1. As ODF is a probability density 

function, we use square root parameterization [8, 45] to represent ODF. Using the square 

root parameterization, we map xt onto the positive orthant of the unit hypersphere of 

dimension 723, i.e., S723. As in Section 3, a key component of DCNN is the definition of 

wFM, which we can define on Sn:

y s = wFM w i , x s − d * k − 1 :d:s

= arg min
M

∑
i = 0

k − 1
w i dS

2 x s − d * i , M ,
(6)

Here dS is the rotation invariant geodesic distance on S723 and x(s) is a sample on S723 for s 
∈ N. Analogous to the SPD manifold, we can define a recursive wFM estimator mn:

m0 = x(s) mn = Γmn − 1
x(s − n * d) w(n)

∑j = 0
n w(j)

, (7)
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where Γ is the shortest geodesic on S723. Using the above-defined estimator of wFM, we can 

define DCNN on S723 as in Section 3. Note: Our baseline model, SPD-SRU cannot deal 

with the Sn manifold as we do here.

4.2.2 Statistical analysis: permutation testing—Suppose we train our model for 

each of the two groups for each fiber bundle fb we have, with parameters θ1
fb and θ2

fb. Our 

goal is to test whether the fiber bundle fb is statistically different between the two groups. 

Thus, we model the manifold-valued data and perform statistical analysis in the parameters 

space. Since the models for each group lie in the same parameter space, the statistical 

analysis can be performed in the parameter space by bootstrapping. We can measure the 

distance between two models as σfb = θ1
fb − θ2

fb  to represent the distance between the 

group-wise fitted models’ distributions in parameter space. Then, we need to evaluate how 

statistically significant the distance is – and if the value is large enough, it is unlikely to 

happen by chance. A simple way to perform the test for statistical significance is via 

permutation testing. If we randomly shuffle (via a random permutation) the group 

information for all our samples (i.e., subjects) and run our model for both “random” groups, 

we will get new parameters θ1
fb

 and θ2
fb

. We define σfb = θ1
fb − θ2

fb
 as a random variable. 

After permuting 5000 times, we can estimate the distribution of the σfb – this is the Null 

distribution (See Fig. 6 as examples). The p-value is defined as the ranking of the σfb among 

the distribution of the σfb. If the p-value is less than the significance threshold α = 0.05, we 

can conclude that this is not likely to happen by chance.

Since the length of different fiber bundles varies from 11 to 73, we construct the DCNN to 

have 3 layers of residual units, with channels being 1, 3, 3; 3, 3, 5 and 5, 8, 10 respectively. 

And the 1-D kernel size is 3. We use all the data we have to pre-train the model. After pre-

training, we fine tune the model during the permutation testing.

4.2.3 Result 1: Group analysis: PiB+ versus PiB−—The study included imaging 

data acquired from 196 cognitively unimpaired (healthy) participants acquired in a local 

cohort at the University of Wisconsin. We provide demographic information from 

participants with PiB and APOE measures in Table 3. Initial analyses were run using single-

shell data, where the model was run on all 18 fiber bundles, one by one, with the parameters 

mentioned above. We performed permutation tests for each fiber bundle individually.

Results for the 18 fibers are shown in Table 4 (column 2). We find that two of the 18 fibers 

satisfied the threshold of 0.05, which means that statistically these fiber bundles are different 

across the two groups. Since the sample sizes were small, the results presented are 

uncorrected p-values (multiple testing correction was not performed).

Fiber bundles evaluated in this analysis included those which are known to be affected in 

AD, including the superior longitudinal fasciculus and cingulum bundle, as well as control 

tracts that are not likely to be affected by AD, such as the corticospinal tract. We found 

significant differences between PiB+ and PiB− groups in fiber bundles that are likely to be 
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affected by AD, including the superior longitudinal fasciculus and Corpus callosum - 

forceps minor.

When compared with the SPD-SRU model, which also reported brain imaging experiments 

in their paper, the results show only one out of 18 fibers survives. And also, we find that our 

model runs much faster (about 5×), which is very important when running permutation 

testing thousands of times. It takes 3.5 days to run permutation testing 5000 times using 

DCNN, while the SPD-SRU takes 18 days. When we keep the number of GPUs fixed, the 

difference between 3.5 and 18 will be even more sizable if we expand the number of 

permutation testing to 10000 or more.

4.2.4 Result 2: Group analysis: APOE+ versus APOE−—The APOE analysis was 

performed using data from 669 subjects with APOE information, with 247 of them being 

positive for APOE4 (a risk factor for AD). Analyses were also conducted using the multi-

shell dMRI to generate ODF information. Similar to the preceding group difference analysis, 

the model was run on all 18 fiber bundles with the parameters described previously on both 

DTI and ODF.

The results for 18 fibers are shown in Table 4 in column 3. It is noteworthy that SPD-SRU 

can only deal with the SPD manifold. So for ODF, which lies on Sn, we can only run our 

DCNN model to do the group analysis.

Here, we found that four of the 18 fiber bundles met the significance threshold of 0.05 with 

DTI, while SPD-SRU only captured one. Five fiber bundles were identified when using 

ODF. We found differences by APOE genotype in the forceps minor, cingulum projecting to 

parietal cortex, anterior thalamic projections, superior longitudinal fasciculus projecting to 

parietal cortex and inferior longitudinal fasciculus. We did not find differences in fiber 

bundles unlikely to be affected by AD, such as the corticospinal tract in both experiments. 

Fiber bundles that were consistently identified in both the DTI and ODF analyses included 

the inferior longitudinal fasciculus and the anterior thalamic projections.

4.2.5 Discussion of preclinical AD analysis results—While amyloid and tau 

pathology are defining features of AD, methods are also needed to detect AD-associated 

neurodegeneration [29]. Neurodegeneration may signal future cognitive decline. However, 

methods for detecting early and subtle neurodegeneration, particularly of myelinated axons, 

are not yet available, especially in preclinical AD. This is why our results here seem 

promising.

The results suggest significant differences in underlying fiber bundle microstructure among 

individuals who meet biological criteria for AD (based on PiB status) as well as differences 

by APOE genotype. Of note, our algorithm identified significant differences in the cingulum 

bundle by PiB status; this white matter fiber bundle connects medial temporal lobe and 

parietal cortices as part of a memory network that is impacted by AD, and is vulnerable to 

degeneration in the early stages of AD. Differences in the cingulum bundle were also 

apparent among carriers of the APOE4 allele, a genetic risk factor for sporadic AD. 

Likewise, superior longitudinal fasciculus differed by AD biomarker status and APOE 
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genotype. Projections identified as being significantly different included fiber bundles 

projecting to parietal cortices. Parietal cortices are significantly impacted by AD pathology 

and are among the first to show amyloid accumulation. The results presented here may 

suggest that amyloid accumulation negatively impacts adjacent white matter fiber bundles. It 

may also be possible that degeneration of fiber bundles is a function of AD pathology 

spreading to anatomically linked brain regions via white matter fiber bundles, although 

further longitudinal evaluation is needed to test the hypothesis. In summary, statistical 

analysis enabled by our proposed algorithm was capable of identifying differences in 

biologically meaningful brain regions.

Take-home message: Our DCNN model was able to capture more fiber differences with 
significant effects compared to the SPD-SRU. It is also noteworthy that our model is much 
more efficient: only 60s for one realization of the permutation test (×# of realizations), while 
the SPD-SRU model > 5× times slower. Compared with the SPD-SRU, which can only 
handle DTI (SPD), our method is more general: handles both DTI (SPD) and ODF (Sn) data.

5. Conclusions

We present a new Dilated CNN formulation to model sequential and spatio-temporal 

manifold data, where few alternatives are available. Compared with the standard sequential 

model (RNN), our method can improve the performance when evaluated on the number of 

parameters and runtime. We show that when using wFM, Weight normalization, ReLU, and 

Dropout are no longer needed in this formulation. On the experimental side, for video 

analysis, we show that improvements can be obtained with fewer parameters and shorter 

running time. Importantly, we show that our algorithmic contributions facilitate scientific 

discovery relevant to AD, and may facilitate early disease detection at the preclinical stage. 

The analysis enabled by our formulation revealed subtle neurodegeneration of white matter 

fiber bundles affected by AD pathology, in brain regions implicated in prior studies of AD. 

The code is available at https://github.com/zhenxingjian/DCNN.
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Figure 1: 
Schematic diagram of dilated CNN and causal CNN (see [5] for definition and additional 

description).
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Figure 2: 
(Left-Right) (a) diffusion MRI, (b) Parcels, (c) Fiber bundles
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Figure 3: 
Schematic diagram of the residual block of manifold DCNN. There’re two DCNN blocks 

and one residual connection in one block. wFM is used to extract the cout = 3 channels from 

the concatenation.
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Figure 4: 
Schematic diagram of the network architecture for vision datasets. We use two CNN to 

extract the features. And we calculate the covariance between feature channels to get the 

SPD matrices. In the last layer, we use G-invariant and a fully connected layer to do the 

classification.
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Figure 5: 
Left: time versus matrix size. As the matrix size increases, the training time inevitably 

increases but the testing time consistently remains extremely small. Right: accuracy versus 

degree difference of orientation in the dataset. Beyond the degree difference as small as 15°, 

the error bar becomes negligible implying our model quickly becomes very robust.
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Figure 6: 
The Null distribution for one fiber bundle with α = 0.05. If the real distance (black line) lies 

in the threshold (red area), that test is believed to not happen by chance.
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Table 1:

Comparative results on Moving MNIST. Our model achieves the highest accuracy (in blue) with the least # of 

parameters in all setups.

Model # params. time (s) / epoch
Test acc.

30°versus 60° 10°versus 15° 10°versus 15°versus 20°

DCNN 1517 ~ 4.3 1.00 ± 0.00 1.00 ±0.01 0.95 ± 0.01

SPD-SRU 1559 ~ 6.2 1.00 ±0.00 0.96 ± 0.02 0.94 ± 0.02

TT-GRU 2240 ~ 2.0 1.00 ±0.00 0.52 ± 0.04 0.47±0.03

TT-LSTM 2304 ~ 2.0 1.00 ±0.00 0.51 ± 0.04 0.37±0.02

SRU 159862 ~ 3.5 1.00 ±0.00 0.75 ± 0.19 0.73±0.14

LSTM 252342 ~ 4.5 0.97 ± 0.01 0.71 ± 0.07 0.57±0.13
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Table 2:

Comparative results on UCF-11 data. Our model achieves the best accuracy and the fastest speed with a small 

number of parameters.

Model # params. time (s)/ epoch Test acc.

manifold DCNN 3393 ~ 33 0.823 ± 0.018

SPD-SRU 3337 ~ 76 0.784 ± 0.014

TT-GRU 6048 ~ 42 0.78

TT-LSTM 6176 ~ 33 0.78

SRU 2535630 ~ 50 0.75

LSTM 14626425 ~ 57 0.70
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Table 3:

Description of data/participant demographics used in the study.

Experiments
PiB APOE

Total Positive Negative Total Positive Negative

Number 196 29 167 669 247 422

Age (years) (mean (SD)) 62.40 (6.33) 66.29 (4.95) 61.75 (6.30) 65.61 (8.68) 64.55 (7.99) 66.23 (9.00)

Sex (female; %) 134 (68%) 21 (72%) 113 (68%) 426 (64%) 159 (64%) 267 (63%)
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Table 4:

p-values (uncorrected) for all fibers in different groups. The highlights are the fiber bundles that satisfy the 

significance threshold. Runtime for DCNN is 5× times faster than SPD-SRU (not included here).

p-value

Fiber Name Experiment 1 Experiment 2

PiB+ versus PiB− APOE+ versus APOE−

DCNN on DTI SPD-SRU DCNN on DTI SPD-SRU DCNN on ODF

fmajor_PP 0.443 0.923 0.207 0.600 0.778

fminor_PP 0.008 0.158 0.035 0.025 N/A

lh.atr_PP 0.323 0.632 0.30 0.991 0.028

rh.atr_PP 0.295 0.143 0.86 0.271 0.563

lh.cab_PP 0.276 0.363 0.76 0.644 0.500

rh.cab_PP 0.311 0.263 0.78 0.848 0.444

lh.ccg_PP 0.230 0.267 0.042 0.609 0.043

rh.ccg_PP 0.093 0.087 0.048 0.532 0.048

lh.cst_AS 0.561 0.143 0.58 0.350 0.800

rh.cst_AS 0.629 0.278 0.35 0.667 0.769

lh.ilf_AS 0.309 0.895 0.47 0.977 0.042

rh.ilf_AS 0.405 0.889 0.46 0.563 0.857

lh.slfp_PP 0.482 0.615 0.68 0.107 0.192

rh.slfp_PP 0.571 0.941 0.047 0.154 0.050

lh.slft_PP 0.005 0.041 0.92 0.649 0.556

rh.slft_PP 0.790 0.462 0.53 0.947 0.333

lh.unc_AS 0.623 0.158 0.23 0.860 0.933

rh.unc_AS 0.298 0.895 0.34 0.324 0.182

*
N/A: This ODF fiber bundle did not pass Quality Check (QC) after pre-processing. Therefore, we left it out of the analysis to avoid 

inconsistencies in the parameters used for pre-processing the full set of fiber bundles.
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