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Abstract

It is usually hard for a learning system to predict cor-
rectly on rare events that never occur in the training data,
and there is no exception for segmentation algorithms.
Meanwhile, manual inspection of each case to locate the
failures becomes infeasible due to the trend of large data
scale and limited human resource. Therefore, we build an
alarm system that will set off alerts when the segmentation
result is possibly unsatisfactory, assuming no correspond-
ing ground truth mask is provided. One plausible solution
is to project the segmentation results into a low dimensional
feature space; then learn classifiers/regressors to predict
their qualities. Motivated by this, in this paper, we learn a
feature space using the shape information which is a strong
prior shared among different datasets and robust to the ap-
pearance variation of input data. The shape feature is cap-
tured using a Variational Auto-Encoder (VAE) network that
trained with only the ground truth masks. During testing,
the segmentation results with bad shapes shall not fit the
shape prior well, resulting in large loss values. Thus, the
VAE is able to evaluate the quality of segmentation result on
unseen data, without using ground truth. Finally, we learn
a regressor in the one-dimensional feature space to predict
the qualities of segmentation results. Our alarm system is
evaluated on several recent state-of-art segmentation algo-
rithms for 3D medical segmentation tasks. Compared with
other standard quality assessment methods, our system con-
sistently provides more reliable prediction on the qualities
of segmentation results.

1. Introduction
Segmentation algorithms often fail on rare events, and

it is hard to fully avoid such issue. The rare events may
occur due to limited number of training data. The most in-
tuitive way to handle this problem is to increase the number
of training data. However, the labelled data is usually hard
to collect especially in medical domain, e.g., fully annotat-
ing a 3D medical CT scan requires professional radiology
knowledge and several hours of work. Meanwhile, even
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Figure 1. The visualize on an NIH CT data for pancreas segmen-
tation. The Dice between GT and Prediction is 47.06 (real Dice)
while the Dice between Prediction and Prediction(Reconstruction)
from VAE is 47.25 (fake Dice). Our method uses the fake Dice to
predict the former real Dice which is usually unknown at inference
phase of real applications. This case shows how these two Dice
scores are related to each other. In contrast, the uncertainty used
in existing approaches (introduced in section 2) mainly distributes
on the boundary of predicted mask, which makes it a vague infor-
mation when detecting the failure cases.

large number of labelled data is usually unable to cover all
possible cases. Previously, various methods have been pro-
posed to make better use of the training data, like sampling
strategies paying more attention to the rare events [25]. But
still they may fail on rare events that never occur in the train-
ing data. Another direction is to increase the robustness of
the segmentation algorithm to rare events. [10] proposed the
Bayesian neural network that models the uncertainty as an
additional loss to make the algorithm more robust to noisy
data. These kinds of methods make the algorithm insensi-
tive to certain types of perturbations, but the algorithms may
still fail on other perturbations.

Since it is hard to completely prevent the segmentation
algorithm from failure, we consider detecting the failure in-
stead: build up an alarm system cooperating with the seg-
mentation algorithm, which will set off alerts when the sys-
tem finds that the segmentation result is not good enough.
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It is assumed that there is no corresponding ground truth
mask, which is usually true after the model deployment due
to the trend of large data scale and limited human resource.
This task is also called as quality assessment. Several works
have been proposed in this field. [9] applied Bayesian neu-
ral network to capture the uncertainty of the segmentation
result and set off alarm based on its value. However, this
system also suffers from rare events since the segmentation
algorithms often make mistakes confidently on some rare
events [27], shown in Figure 1. [12] provided an effective
way by projecting the segmentation results into a feature
space and learn from this low dimension space. They man-
ually designed several heuristic features, e.g., size, intensity,
and assumed such features would indicate the quality of
the segmentation results. After projecting the segmentation
results into a low-dimensional feature space, they learned
a classifier to predict its quality which distinguishes good
segmentation results from bad ones directly. In a reason-
able feature space, the representation of the failure output
should be far from that of the ground truth when the seg-
mentation algorithm fails. So the main problems is what
these “good” features are and how to capture them. Many
features selected in [12] are actually less related to the qual-
ity of segmentation results, e.g., size.

In our system, we choose the shape feature which is
more representative and robust because the segmented ob-
jects (foreground in the volumetric mask) usually have sta-
ble shapes among different cases even though their image
appearance may vary a lot, especially in 3D. So the shape
feature could provide a strong prior information for judg-
ing the quality of segmentation results, i.e., bad segmenta-
tion results tend to have bad shapes and vice versa. Fur-
thermore, modeling the prior from the segmentation mask
space is much easier than doing it in the image space. The
shape prior can be shared among different datasets while
the features like image intensity are affected by many fac-
tors. Thus, the shape feature can deal with not only rare
events but also different data distributions in the image
space, which shows great generalization power and poten-
tial in transfer learning. We propose to use the Variational
Auto-Encoder(VAE) [11] to capture the shape feature. The
VAE is trained on the ground truth masks, and afterwards
we define the value of the loss function as the shape feature
of a segmentation result when it is tested with VAE net-
work. Intuitively speaking, after the VAE is trained, the bad
segmentation results with bad shapes are just rare events to
VAE because it is trained using only the ground truth masks,
which are under the distribution of normal shapes. Thus
they will have larger loss value. In this sense we are utiliz-
ing the fact that the learning algorithms will perform badly
on the rare events. Formally speaking (detailed in Sec. 3.1),
the loss function, known as the variational lower bound, is
optimized to approximate the function logP (Y ) during the

training process. So after the training, the value of the loss
function given a segmentation result Ŷ is close to logP (Ŷ ),
thus being a good definition for the shape feature.

In this paper, we proposed a VAE-based alarm system for
segmentation algorithms, shown in Figure 2. The qualities
of the segmentation results can be well predicted using our
system. To validate the effectiveness of our alarm system,
we test it on multiple segmentation algorithms. These seg-
mentation algorithms are trained on one dataset and tested
on several other datasets to simulate when the rare events
occur. The performance for the segmentation algorithms on
the other datasets (rather than the training dataset) varies a
lot but our system can still predict their qualities accurately.
We compare our system with several other alarm systems
on the above tasks and ours outperforms them by a large
margin, which shows the importance of shape feature in the
alarm system and the great power of VAE in capturing the
shape feature.

2. Related Work

Quality Assessment: [10] employed Bayesian neural
network (BNN) to model the aleatoric and epistemic uncer-
tainty. Afterwards, [13] applied the BNN to calculate the
aleatoric and epistemic uncertainty on medical segmenta-
tion tasks. [9] utilized the BNN and model another kind of
uncertainty-based on the entropy of segmentation results.
They calculated a doubt score by summing over weighted
pixel-vise uncertainty.

Other methods like [24][20] used registration based ap-
proach for quality assessment. It registered the image of
testing case with a set of reference image and also transfer
the registration to the segmentation mask to find the most
matching one. However it can be slow to register with all
the reference image especially in 3D. Also the registration
based approach can hardly be transferred between datasets
or modalities. [4] and [7] used unsupervised methods to es-
timate the segmentation quality using geometrical and other
features. However their application in medical settings is
not clear. [12] introduced a feature space of shape and ap-
pearance to characterize a segmentation. The shape features
in their system contain volume size and surface area, which
are not necessarily related with the quality of the segmen-
tation results. Meanwhile, [19] tried a simple method using
image-segmentation pairs to directly regress the quality. [3]
used the feature from deep network for quality assessment.

Anomaly Detection: Quality assessment is also related
with Out-of-Distribution (OOD) detection. Investigation re-
lated research papers can be found in [17]. Previous works
in this field [8] [14] made use of the softmax output in the
last layer of a classifier to calculate the out-of-distribution
level. In our case, however, for a segmentation method,
we can only get a voxel-wise out-of-distribution level us-
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Figure 2. The architecture of our alarm system. In train step 1, the VAE is trained to reconstruct the ground truth masks. In train step 2,
the parameters of VAE are fixed and a regressor is trained to predict the real Dice score. F represents a preparation segmentation algorithm
which is used to generate prediction masks for training the regressor. During testing, F is replaced with the target segmentation algorithm
to be evaluated. On the right side we show the structure of VAE used. (Conv: convolution layers with stride 1. Down: convolution layers
with stride 2. Deconv: transpose convolution layers with stride 1. Up: transpose convolution layers with stride 2. FC: fully connected
layers. kkk: convolution kernel numbers.) Further details about the structure are presented in section 4.3.

ing these methods. How to calculate the out-of-distribution
level for the whole mask as an entity becomes another prob-
lem. In addition, the segmentation algorithm can usually
predict most of background voxels correctly with a high
confidence, making the out-of-distribution level on those
voxels less representative.

Auto-Encoder: Auto-Encoder(AE), as a way of learning
representation of data automatically, has been widely used
in many areas such as anomaly detection [30], dimension
reduction, etc. Unlike [26] which needs to pre-train with
RBM, AE can be trained following an end-to-end fashion.
[18] learned the shape representation from point cloud form,
while we choose the volumetric form as a more natural way
to corporate with segmentation task. [16] utilizes AE to
evaluate the difference between prediction and ground truth
but not in an unsupervised way. [28] explored shape fea-
tures using AE. [2] utilized the reconstruction error of brain
MRI image by AE and [22] used GAN for anomaly detec-
tion but it is sometimes hard to generate a realistic image
e.g. abdominal CT scan. [23] used AE and a one-class SVM
to identify anomalous regions in OCT images through un-
supervised learning on healthy examples. Variational au-
toencoder(VAE) [11], compared with AE, adds more con-
straint on the latent space, which prevents from learning a
trivial solution e.g. identity mapping. [1] applied VAE for
anomaly detection on MNIST and KDD datasets. In this pa-

per we employ VAE to learn the shape representation for the
volumetric mask and use that for quality assessment task.

3. Our VAE-based Alarm System
We first define our task formally. Denote the datasets as

(X ,Y), where Y is the label set of X . We divide (X ,Y)
into training set (Xt,Yt) and validation set (Xv,Yv). Sup-
pose we have a segmentation algorithm F trained on Xt.
Usually we validate the performance of F on Xv using Yv .
Now we want to do this task without Yv . Formally, we try
to find a function L such that

L(F (X), Y ) = L(F,X;ω) (1)

where L is a function used to calculate the similarity of the
segmentation result F (X) respect to the ground truth Y ,
i.e., the quality of F (X). How to design L to take valuable
information from F and X , is the main question. Recall
that the failure may happen when X is a rare event. But
to detect whether an image X is within the distribution of
training data is very hard because of the complex structure
of image space. In uncertainty-based method [9] and [13],
the properties of F are encoded by sampling its parameters
and calculating the uncertainty of output. The uncertainty
does help predict the quality but the performance strongly
relies on F . It requires F to have Bayesian structure, which



is not in our assumption. Also for a well-trained F , the
uncertainty will mainly distribute on the boundary of seg-
mentation prediction. So we change the formulation above
to

L(F (X), Y ) = L(F (X);ω) (2)

By adding this constraint, we still take the information from
F and X , but not in a direct way. The most intuitive idea
to do is directly training a regressor on the segmentation re-
sults to predict the quality. But the main problem is that the
regression parameters trained with a certain segmentation
algorithm F highly relate with the distribution of F (X),
which varies from different F .

Following the idea of [12], we develop a two-step
method. Firstly we encode the segmentation result F (X)
into the feature space, denoting as S(F (X); θ). Secondly
we learn from the feature space to predict the quality of
F (X). Finally it changes to

L(F (X), Y ) = L(S(F (X); θ);ω) (3)

3.1. Shape Feature from Variational Autoencoder

In the first step we learn a feature space of shape from
Variational Autoencoder (VAE) trained with the ground
masks Y ∈ Yt, i.e. using S(Y ; θ) to indicate how perfect
the shape of Y is. Here we define the shape of the segmen-
tation masks as the distribution of the masks in volumetric
form. We assume the normal label Y obeys a certain distri-
bution P (Y ). For a predictive mask ŷ, its quality should be
related with P (Y = ŷ). Our goal is to estimate the function
P (Y ) using S(Y ; θ). Recall the theory of VAE, we hope to
find an estimation function Q(z) minimizing the difference
between Q(z) and P (z|Y ), where z is the variable of the
latent space we want encoding Y into, i.e. optimizing

KL[Q(z)||P (z|Y )] = Ez∼Q[logQ(z)− logP (z|Y )] (4)

KL is Kullback-Leibler divergence. By replacing Q(z)
with Q(z|Y ), finally it would be deduced to the core equa-
tion of VAE [6].

logP (Y )−KL[Q(z|Y )||P (z|Y )]

= Ez∼Q[logP (Y |z)]−KL[Q(z|Y )||P (z)] (5)

where P (z) is the prior distribution we choose for z,
usually Gaussian, and Q(z|Y ), P (Y |z) correspond to en-
coder and decoder respectively. Once Y is given, logP (Y )
is a constant. So by optimizing the RHS known as
variational lower bound of logP (Y ), we optimize for
KL[Q(z|Y )||P (z|Y )]. Here however we are interested in
P (Y ). By exchanging the second term in LHS with all
terms in RHS in equation (5), we rewrite the training pro-
cess as minimizing

EY∼Yt KL[Q(z|Y )||P (z|Y )]

= EY∼Yt | logP (Y )− S(Y ; θ)| (6)

We choose Ez∼Q[logP (Y |z)] − KL[Q(z|Y )||P (z)] to
be S(Y ; θ). S(Y ; θ) is the loss function we use for training
VAE and the training process is actually learning the param-
eters θ to best fit logP (Y ) over the distribution of Y . So
after training VAE, S(Y ; θ̂) becomes a natural approxima-
tion for logP (Y ) where θ̂ is the learned parameter. So we
can just use S(Y ; θ̂) as our shape feature. In this method
we use Dice Loss [15] when training VAE, which is widely
used in medical segmentation task. The final form of S is

S(Y ; θ) = Ez∼N (µ(Y ),Σ(Y ))
2|g(z) · Y |
|Y |2 + |g(z)|2

− λ KL[N (µ(Y ),Σ(Y ))||N (0, 1)] (7)

where encoder µ,Σ and decoder g are controlled by θ, and
λ is a coefficient to balance the two terms. The first term is
the Dice’s coefficient between Y and g(z), ranging from 0
to 1 and equal to 1 if Y and g(z) are equal.

3.2. Shape Feature for Predicting Quality

In the second step we regress on the shape feature to pre-
dict the quality. We assume that the shape feature is good
enough to obtain reliable quality assessment because intu-
itively thinking, for a segmentation result F (X), the higher
logP (F (X)) is, the better shapeF (X) is in, thus the higher
L(F (X), Y ) is and vice versa. Formally, taking the shape
feature in section 3.1, we can predict the quality by learning
ω such that

L(F (X), Y ) = L(S(F (X); θ̂);ω) (8)

Here the parameter θ̂ is learned by training the VAE, using
labels in the training data Yt, and is then fixed during train
step two. We choose L to be a simple linear model, so the
energy function we want to optimize is

E(S(F (X); θ̂); a, b) = ||aS(F (X); θ̂)+b−L(F (X), Y )||2
(9)

We only use linear regression model because the experi-
ments show strong linear correlation between the shape fea-
tures and the qualities of segmentation results. L is the
Dice’s coefficient, i.e. L(F (X), Y ) = 2|F (X)·Y |2

|F (X)|2+|Y |2 .

3.3. Training Strategy

In step one, the VAE is trained only using labels in train-
ing data. Then in step two θ is fixed as θ̂. To learn a, b, the
standard way is to optimize the energy function in 3.2 using
the segmentation results on the training data, i.e.

arg min
a,b

∑
(X,Y )∈(Xt,Yt)

||aS(F (X); θ̂)+b−L(F (X), Y )||2.

(10)
Here the segmentation algorithm F we use to learn a, b is
called the preparation algorithm. If F is trained on Xt, the
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Figure 3. This figure shows our predictive Dice score (x axis) vs
real Dice score (y axis). For each row, the segmentation algorithm
is tested on the left most dataset. The four figures in each row show
how the segmentation results are evaluated by 4 different methods.

quality of F (X) would be always high, thus providing less
information to regress a, b. To overcome this, we use jack-
knifing training strategy for F onXt. We first divideXt into
X 1
t and X 2

t . Then we train two versions of F on Xt \ X 1
t

and Xt \ X 2
t respectively, say F1 and F2. The optimizing

function is then changed to

arg min
a,b

∑
k=1,2

∑
(X,Y )∈(Xk

t ,Yk
t )

||aS(Fk(X); θ̂) + b− L(Fk(X), Y )||2. (11)

In this way we solve the problem above by simulating
the performance of F on the testing set. The most accu-
rate way is to do leave-one-out training for F , but the time
consumption is not acceptable, and two-fold split is effec-
tive enough according to experiments. When the training
is done, we can test on any segmentation algorithm G and
dataX to predict the qualityQ = âS(G(X); θ̂)+ b̂where â
and b̂ are the learned parameters for step 2 using the above
strategy.

4. Experimental Results
In this section we test our alarm system on several re-

cent algorithms for automatic pancreas segmentation that
are trained on a public medical dataset. Our system achieves
reliable predictions on the qualities of segmentation re-
sults. Furthermore, the alarm system remains effective
when the segmentation algorithms are tested on other un-
seen datasets. We show better quality assessment capability
and transferability compared with uncertainty-based meth-
ods and direct regression method. The quality assessment
results are evaluated using mean absolute error (MAE),

standard deviation of residual error (STD), Pearson corre-
lation (P.C.) and Spearman’s correlation (S.C.) between the
real quality (Dice’s coefficient) and predictive quality.

4.1. Dataset and Segmentation Algorithm

We adopt three public medical datasets and four recently
published segmentation algorithms in total. All datasets
consist of 3D abdominal CT images in portal venous phase
with pancreas region fully annotated. The CT scans have
resolutions of 512×512×h voxels with varying voxel sizes.

• NIH Pancreas-CT Dataset (NIH) The NIH Clinical
Center performed 82 abdominal 3D CT scans[21] from
53 male and 27 female subjects. The subjects are se-
lected by radiologists from patients without major ab-
dominal pathologies or pancreatic cancer lesions.

• Medical Segmentation Decathlon (MSD)1 The med-
ical decathlon challenge collects 420 (281 Training
+139 Testing) abdominal 3D CT scans from Memorial
Sloan Kettering Cancer Center. Many subjects have
cancer lesions within pancreas region.

• Synapse Dataset2 The multi-atlas labeling challenge
provides 50 (30 Training +20 Testing) abdomen CT
scans randomly selected from a combination of an on-
going colorectal cancer chemotherapy trial and a ret-
rospective ventral hernia study.

The testing data of the last two datasets is not used
in our experiment since we do not have their annotations.
The segmentation algorithms we choose are V-Net [15],
3D Coarse2Fine [29], DeepLabv3 [5], and 3D Coarse2Fine
with Bayesian structure [13]. The first two algorithms are
based on 3D networks while the DeepLab is 2D-based. The
3D Coarse2Fine with Bayesian structure is employed to
compare with the uncertainty-based method, and we denote
it as Bayesian neural network (BNN) afterwards.

4.2. Baseline

Our method is compared with three baseline methods.
Two of them are based on uncertainty and the last one di-
rectly applies regression network on the prediction mask to
regress quality in equation (2):
• Entropy Uncertainty. [9] calculated the pixel-vise

predictive entropy using Bayesian inference. Then, the
uncertainty is summed up over the whole image to get
the doubt score which would replace the shape feature
in (8) to regress the quality. The sum is weighted by
the distance to predicted boundary, which somehow
alleviates the bias distribution of uncertainty. Their
method is done in 2D image and here we just trans-
fer it to 3D image without essential difficulty.

1http://medicaldecathlon.com/index.html
2https://www.synapse.org/#!Synapse:syn3193805/wiki/217789



NIH Dataset MSD Dataset Synapse Dataset
MAE STD P.C. S.C. MAE STD P.C. S.C. MAE STD P.C. S.C.

Direct Regression 6.30 7.93 -18.36 -1.50 14.47 12.50 72.26 70.17 8.22 10.82 78.29 71.39
Direct Regression+Image 11.74 13.67 2.13 3.16 21.87 20.83 5.53 9.22 13.80 17.65 36.83 39.80
Jungo et al. [9] 3.51 3.98 82.21 61.95 11.86 16.31 71.24 77.71 9.45 20.61 73.32 79.93
Kwon et al. [13] 4.07 4.71 82.41 75.93 12.68 18.31 70.42 77.77 9.77 22.30 74.80 81.13
VAE-2 (53.93) 5.31 6.45 56.66 57.14 14.86 10.73 81.21 77.63 9.63 11.23 79.66 68.19
VAE-16 (72.46) 4.39 4.84 62.10 76.69 9.83 9.56 84.86 83.93 6.29 8.30 89.57 82.56
VAE-128 (76.00) 2.89 3.60 81.08 82.86 8.14 9.14 86.23 85.02 4.93 7.20 90.92 86.07
VAE-1024 (79.65) 3.50 4.15 73.78 80.90 8.42 9.24 85.81 85.17 5.71 8.00 88.61 85.98

Table 1. Comparison between our method and baseline methods. The target segmentation (i.e. BNN) algorithm is evaluated automatically
without using ground truth. We have tried different structures for VAE (e.g. VAE-128 for 128-dimensional latent space). Of all the
methods, VAE-128 achieves the highest performance. The numbers in brackets following the VAE methods are the average Dice score of
reconstructing the ground truth masks on validation data. Usually with more accurate reconstruction of ground truth masks, the evaluation
result is better but too accurate reconstruction may harm the evaluation capability (thinking of the identity mapping).

• Aleatoric and Epistemic Uncertainty. [13] divided
the uncertainty into two terms called aleatoric uncer-
tainty and epistemic uncertainty. We implement both
terms and calculate the doubt score in the same way as
[9] because the original paper does not provide a way.
The two doubt scores are used in predicting the quality.

• Direct Regression. A regression neural network is
employed to directly learn the quality of predictive
mask. It takes a segmentation mask as input and output
a scalar for the predictive quality.

4.3. Implementation Detail

The structure of VAE is shown in Figure 2. We apply in-
stance normalization on each convolution layer. The ReLU
activation is applied on each layer except for the fully con-
nected layer for mean value and the output layer is activated
using the sigmoid function. The structure we use in the di-
rect regression method is the encoder part of the VAE so
that they are fair for comparison.

For data pre-processing, since the voxel size varies
from case to case, which would affect the shape of pan-
creas and prediction of segmentation, we first re-sample
the voxel size of all CT scans and annotation mask to
1mm×1mm×1mm. For training VAE, we apply simple
alignment on the annotation mask. We employ a cube
bounding box which is large enough to contain the whole
pancreas region, centered at the pancreas centroid, then crop
both volume and label mask out and resize it to a fixed size
128 × 128 × 128. We only employ a simple alignment
because the human pose is usually fixed when taking CT
scans, e.g. stance, so that the organ will not rotate or de-
form heavily. For a segmentation prediction, we also crop
and resize the predictive foreground to 128×128×128 and
feed it into VAE to capture the shape feature.

During the training process, we employ rotation for−10,
0, and 10 degree along x,y,z axes(27 conditions in total) and
random translation for smaller than 5 voxel on annotation

mask as data augmentation. This kind of mild disturbance
can enhance the data distribution but keep the alignment
property of our annotation mask. We tried different dimen-
sion of latent space and finally set it to 128. We found that
VAE with latent space of different dimension will have dif-
ferent capability in quality assessment. The hyper param-
eter λ in object function of VAE is set to 2−5 to balance
the small value of Dice Loss and large KL Divergence. We
trained our network by SGD optimizer. The learning rate for
training VAE is fixed to 0.1. Our framework and other base-
line models are built using TensorFlow. All the experiments
are run on NVIDIA Tesla V100 GPU. The first training step
is done in total 20000 iterations and takes about 5 hours.

4.4. Primary Results and Discussion

We split NIH data into four folds and three of them are
used for training segmentation algorithms and VAE; the re-
maining one fold, together with all training data from MSD
and Synapse datasets forms the validation data to evaluate
our evaluation method. First we learn the parameter of VAE
using the training label of NIH dataset. Then we choose
BNN as the preparation algorithm mentioned in section 3.3.
The training strategy in section 3.3 is applied on it to learn
the parameters of regression. For all the baseline methods,
we employ the same training strategy of jackknifing as in
our method and choose the BNN as preparation algorithm
for fair comparison. Finally we predict the quality of seg-
mentation mask on the validation data for all the segmenta-
tion algorithms. Note that all segmentation algorithms are
trained only on the NIH training set.

Table 1 compared our method and three baselines by as-
sessing the BNN segmentation result of validation datasets.
In general, our method achieves the lowest error and vari-
ance on all datasets. In our experiment, the preparation
algorithm BNN achieves 82.15, 57.10 and 66.36 average
Dice score tested on NIH, MSD and Synapse datasets re-
spectively. The segmentation algorithm trained on NIH



3D Coarse2Fine 3D VNet
MAE STD P.C. S.C. Dice MAE STD P.C. S.C. Dice

NIH 3.46 4.09 89.95 85.41 79.38 2.57 3.24 91.35 84.51 81.21
MSD 10.02 9.45 89.67 87.54 51.88 9.34 9.60 86.52 82.50 55.90
Synapse 6.24 9.00 92.39 84.29 62.10 5.67 7.28 91.65 80.11 64.93

DeepLabV3 BNN
MAE STD P.C. S.C. Dice MAE STD P.C. S.C. Dice

NIH 5.35 5.83 63.34 78.80 81.53 2.89 3.60 81.08 82.86 82.15
MSD 9.34 9.60 86.52 82.50 54.96 8.14 9.14 86.23 85.02 57.10
Synapse 5.67 7.28 91.65 80.11 61.03 4.93 7.20 90.92 86.07 66.36

Table 2. Results of different target segmentation algorithms are evaluated by our alarm system on different datasets. The Dice column
means the average Dice score for the segmentation algorithm tested with groundtruth on different datasets, provided for reference. Our
system achieves comparable performance as in Table 1 (see also in the right bottom cell) although the segmentation performance differs a
lot between datasets. Without tuning parameters, our alarm system can be directly applied to evaluate other segmentation algorithms

caseID 03 14 40 09 41 23 60

Real Dice 0.32 0.44 0.47 0.62 0.73 0.85 0.89

Fake Dice 0.57 0.50 0.47 0.65 0.72 0.85 0.83

Ground Truth 
Mask

Prediction 
Mask

Reconstruction 
Mask

Figure 4. We visualize the performance of our evaluation system on different qualities of segmentation results. The real Dice score
increases from left to right. The fake Dice score is highly correlated with the real Dice so that we can get good prediction of real Dice by
applying simple regressor on the fake Dice.

will fail on some cases of other datasets, and our alarm
system still works well without tuning the parameters of
VAE and regressor on other datasets. More detailed result
is as shown in Figure 3. We can clearly observe that our
method provides more accurate quality assessment result.
For uncertainty-based methods, as shown in Figure 1, the
uncertainty often distributes on the boundary of predicted
masks but not on the missing parts or false positive parts
and the transferability is not strong since it relies on the seg-
mentation algorithm. For direct regression method, we use
the encoder part of VAE-1024 followed by a 2-layer fully
connection. The training data of direct regression method is
the augmentated testing data of F1, F2 on X 1

t , X 2
t respec-

tively as in section 3.3. So the number of training data for
direct regression method is the same as ours but our method
shows better capability of predicting the quality.

Table 2 shows the quality assessment results of our
method for 4 different segmentation algorithms. The re-
sult of BNN is better because the preparation algorithm we
use for training the regressor is also BNN. Without tuning
parameters, our method remains reliable when the segmen-

tation algorithms to be evaluated and the dataset to be tested
on are changed, which shows strong transferability.

Why it works: In the experiments we use S(F (X); θ̂) as
the input of regressor. However we find the second term of
S(F (X); θ̂) is less related with the real Dice (So in Figure
2 we only put the fake Dice there, which is the first term
of S(F (X); θ̂)). That means VAE can encode masks with
bad shape into normal points in the latent space so that the
reconstructions are of normal shape, which makes the fake
Dice low. We visualize some cases in Figure 4 for showing
this property of VAE. For bad segmentation predictions, the
reconstruction masks from VAE indeed look more like a
pancreas.

4.5. Ablation Experiments

We also run ablation experiments for different structures
of VAE and for evaluating foreground without strong shape
prior, i.e. tumor region.

Different VAE Structures: Table 1 also shows results of
VAE with latent space of different dimensions. With bigger
latent space, VAE can reconstruct the ground truth masks



MSD Dataset Pancreas MSD Dataset Tumor
MAE STD P.C. S.C. MAE STD P.C. S.C.

Direct Regression 7.48 8.64 56.48 44.49 23.20 29.81 45.50 45.36
Jungo et al. [9] 7.24 8.79 54.38 49.29 26.57 29.78 -23.87 -20.23
Kwon et al. [13] 6.94 8.54 62.15 61.20 26.14 29.24 14.61 14.70
VAE-1024(Ours) 6.03 7.63 68.40 59.65 20.21 23.60 60.24 63.30

Table 3. Results for evaluating both pancreas and tumor segmentation. The MAE number for pancreas is better than those in Table 1 since
there are more training samples in the MSD dataset. For tumor evaluation, all the methods are not doing well but our method reveal the
strongest correlation between the real quality and the predictive quality. Since detecting tumor itself is a very hard task, the segmentation
prediction for tumor is often with more variance. The alarm system needs more careful design to deal with that big variance.

better which generally indicates stronger evaluation capa-
bility. But for VAE-1024, the reconstruction is the best but
the prediction result is not as good as VAE-128. We have
also tried larger latent space like VAE-10000, and it can re-
construct the ground truth masks almost perfectly. But it is
more like an identity mapping, making it impossible for the
evaluation task.
Combine With Texture: Since our alarm system only
uses the information of segmentation masks, the texture in-
formation, which can be important in evaluating the seg-
mentation quality, is missing. We tested it with a very intu-
itive setting, i.e., for the direct regression method, we con-
catenate the image and segmentation masks together and
use that as input for training the regression network. The re-
sult is shown in Table 1 “Direct Regression+Image”. We see
that with the same number of training data, the performance
is even worse than only taking the segmentation mask as in-
put. We think it is because the complex structure of image
will confuse the regression network for learning the quality.
[22] and [2] developed textured based methods on OCT and
brain MRI data respectively, while in our experiments, it is
hard to generate realistic abdominal CT scans. So how to
better combine the texture with the segmentation mask is
another direction worth exploring.
Evaluate Object With Large Shape Variance: We also
compare baseline methods and our method on evaluating
segmentation of object with less stable shape e.g. tumor.
The MSD dataset also provides voxel-wised label of pan-
creatic tumor. Instead of only evaluating the tumor pre-
diction (requires accurate localization of tumor bounding
boxes which is a hard task already), we evaluate both the
tumor and pancreas segmentation at the same time so that
we can use the bounding box of pancreas. Since this is a
multi-class problem now, we adapt the VAE to take the one-
hot encoding segmentation masks as input and change the
original Dice loss to multi-class Dice loss. Similarly, we
adapt the baseline methods so that they can fit in this multi-
class evaluating problem. For direct regression method, it
is trained to regress pancreas Dice score and tumor Dice
score at the same time. For uncertainty-based method, un-
certainty for both pancreas and tumor are calculated. We
randomly split the MSD dataset into two parts and one is
used for training while the other one for validation. For

the training process we still apply the strategy as in section
3.3. We also train a BNN for pancreas and tumor segmenta-
tion as the target algorithm to evaluate and it reaches 72.52
and 35.34 average Dice score on pancreas and tumor re-
spectively. The detailed comparison is shown in Table 3.
For the uncertainty-based method, the tumor segmentation
evaluation is quite bad because the segmentation algorithm
often wrongly segments the tumor confidently, which also
proves the limitation of uncertainty-based method on qual-
ity assessment. For the direct regression method, as there
are more training data (60 → 140 before augmentation),
the number is better than that in Table 1, which is common
for a learning system. Our method still performs the best
although it is not satisfactory, as there are many cases with
0 Dice score on tumor segmentation which are hard to pre-
dict the quality only from the segmentation mask. Note that
the correlation between the real quality and predictive qual-
ity of our method is much stronger, which means even with
weak shape prior, our method can still capture some useful
information from the segmentation mask.

5. Conclusion
In the paper we presented a VAE based alarm system for

segmentation algorithms which predicts the qualities of the
segmentation results without using ground truth. We claim
that the shape feature is useful in predicting the qualities of
the segmentation results. To capture the shape feature, we
first train a VAE using ground truth masks. We utilize the
fact that rare events usually achieve larger loss value, and
successfully detect the out-of-distribution shape according
to the loss value in the testing time. In the second step we
collect the segmentation results of the segmentation algo-
rithm on the training data, and extract the shape feature of
them to learn the parameters of regression. By applying
jackknifing training on the preparation algorithm we can ob-
tain more accurate regression parameters.

Our proposed method outperforms the standard
uncertainty-based methods and direct regression methods,
and possesses better transferability to other datasets and
other segmentation algorithms. The reliable quality assess-
ment results prove both that the shape feature capturing
from VAE is meaningful and that the shape feature is useful
for quality assessment in the segmentation task.
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