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Abstract

Learning with noisy labels is an important and challeng-
ing task for training accurate deep neural networks. Some
commonly-used loss functions, such as Cross Entropy (CE),
suffer from severe overfitting to noisy labels. Robust loss
functions that satisfy the symmetric condition were tailored
to remedy this problem, which however encounter the un-
derfitting effect. In this paper, we theoretically prove that
any loss can be made robust to noisy labels by restricting
the network output to the set of permutations over a fixed
vector. When the fixed vector is one-hot, we only need to
constrain the output to be one-hot, which however produces
zero gradients almost everywhere and thus makes gradient-
based optimization difficult. In this work, we introduce the
sparse regularization strategy to approximate the one-hot
constraint, which is composed of network output sharpen-
ing operation that enforces the output distribution of a net-
work to be sharp and the ℓp-norm (p ≤ 1) regularization
that promotes the network output to be sparse. This simple
approach guarantees the robustness of arbitrary loss func-
tions while not hindering the fitting ability. Experimental
results demonstrate that our method can significantly im-
prove the performance of commonly-used loss functions in
the presence of noisy labels and class imbalance, and out-
perform the state-of-the-art methods. The code is available
at https://github.com/hitcszx/lnl sr.

1. Introduction

Deep neural networks (DNNs) have achieved remark-
able success on various computer vision tasks, such as im-
age classification, segmentation, and object detection [7].
The most widely used paradigm for DNN training is the
end-to-end supervised manner, whose performance largely
relies on massive high-quality annotated data. However,
collecting large-scale datasets with fully precise annota-
tions (or called clean labels) is usually expensive and time-
consuming, and sometimes even impossible. Noisy labels,
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Figure 1. Visualization of learned representations on MNIST with
0.8 symmetric label noise. The representations learned by the
proposed sparse regularization (SR)-enhanced methods are signif-
icantly discriminative than that learned by original losses, which
are with more separated and clearly bound margin.

which are systematically corrupted from ground-truth la-
bels, are ubiquitous in many real-world applications, such
as online queries [19], crowdsourcing [1], adversarial at-
tacks [30], and medical images analysis [12]. On the other
hand, it is well-known that over-parameterized neural net-
works have enough capacity to memorize large-scale data
with even completely random labels, leading to poor per-
formance in generalization [28, 1, 11]. Therefore, robust
learning with noisy labels has become an important and
challenging task in computer vision [25, 8, 12, 31].

To prevent over-fitting to mislabeled data, many strate-
gies have been presented in the literature, among which
robust loss function design is one of the most popular ap-
proaches since it enjoys simplicity and universality. Ghosh
et al. [6] theoretically proved that a loss function would
be inherently tolerant to symmetric label noise as long as
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it satisfies the symmetric condition. However, the derived
loss functions according to this design principle, such as
MAE [6] and Reverse Cross Entropy (RCE) [27], suffer
from the underfitting effect on complicated datasets [3, 20].
As demonstrated in [29], the robustness of MAE can con-
currently cause increased difficulty in training, leading to
performance drops. On the other hand, the commonly-used
CE and focal loss (FL) [18] enjoy the advantage of suffi-
cient learning where the optimizer puts more emphasis on
ambiguous samples, but they tend to overfit on noisy labels.

How to achieve robustness and learning sufficiency si-
multaneously? This question has motivated a large amount
of work to design new loss functions that are robust to noisy
labels as well as easy to fit clean ones. For instance, Zhang
et al. proposed a generalization of cross entropy (GCE)
[29], which behaves like a generalized mixture of MAE and
CE. Wang et al. proposed the Symmetric Cross Entropy
(SCE) loss [27], which combines RCE with CE. However,
both GCE and SCE just perform the trade-off between sym-
metric loss and CE, which are only partially robust to noisy
labels. Ma et al. [20] theoretically proved that by apply-
ing a simple normalization, any loss can be made robust
to noisy labels. However, the normalization operation ac-
tually changes the form of loss functions, which no longer
preserve the original fitting ability. The authors further pro-
posed the Active Passive Loss (APL) to remedy this prob-
lem, which is the combination of two symmetric losses.

As reviewed above, all existing methods attempt to de-
sign new loss functions that satisfy the symmetric condition
[6] to achieve robustness and achieve learning sufficiency
meanwhile by combining multiple forms of loss function,
such as symmetric loss and CE in [29, 27] and two sym-
metric losses in [20]. In this work, we propose a novel per-
spective to understand the symmetric condition, and prove
in theory that any loss can be made robust through restrict-
ing the hypothesis class. Specifically, we demonstrate that
label noise under risk minimization can be mitigated by re-
stricting the network output to a permutation set of a fixed
one-hot vector instead of modifying the loss function. This
discrete process, however would result in many zero gradi-
ents, making the gradient-based optimization difficult. We
then propose a sparse regularization strategy to approxi-
mate the one-hot constraint, which includes network output
sharpening operation and ℓp-norm (p ≤ 1) regularization
in risk minimization. Experimental results on synthesis and
real-world datasets demonstrate that our method can sig-
nificantly improve the performance of commonly-used loss
functions in the presence of noisy labels, as illustrated in
Fig. 1, and outperform the state-of-the-art robust loss func-
tions. Moreover, we evaluate the sparse regularization strat-
egy on the long-tailed and step-imbalanced image classifi-
cation, which demonstrates that SR can also mitigate class
imbalance well.

The main contributions of our work are highlighted as
follows:

• To the best of our knowledge, we are the first work
in the literature to meet the symmetric condition by re-
stricting the hypothesis class. It offers a novel perspec-
tive of understanding the symmetric condition and an
alternative approach for robust learning.

• We theoretically prove that any loss function can be
made robust to noisy labels by restricting the network
output to the set of permutations over a fixed vector.

• We propose a simple but effective approach for robust
training through sparse regularization.

• We provide a principled approach to simultaneously
achieve robust training and preserve the fitting ability
of commonly-used losses such as CE.

2. The Proposed Method
In this section, we first introduce some preliminaries

about robust learning. Subsequently, we present our finding
in theory that any loss function can achieve noise tolerance
via network output permutation. Furthermore, we offer a
simple but effective approach for robust learning by intro-
ducing sparse regularization in network training. Finally,
we provide analysis about the merit of our scheme—achieve
better tradeoff between robustness and sufficient learning.

2.1. Preliminaries

Risk Minimization. Assume X ⊂ Rd is the feature
space from which the examples are drawn, and Y =
[k] = {1, ..., k} is the class label space, i.e., we con-
sider a k-classification problem. In a typical classifier
learning problem, we are given a training set, S =
{(x1, y1), ..., (xN , yN )}, where (xi, yi) is drawn i.i.d. ac-
cording to an unknown distribution, D, over X × Y . The
classifier is a mapping function from feature space to label
space h(x) = argmaxi f(x)i, where f : X → C denotes an
approximation of p(·|x), and C ⊂ [0, 1]k, ∀c ∈ C, 1T c = 1.
In deep learning, f(x) is usually modeled by a neural net-
work ending with a softmax layer.

The loss function is defined as a mapping L : C × Y →
R+, where argminu∈C L(u, y) = ey , and ey denotes the
one-hot vector. In this work, we consider the loss functional
L, where ∀L ∈ L, L(u, i) = ℓ1(ui) +

∑
j ̸=i ℓ2(uj), and ℓ1

as well as ℓ2 are two basic functions. For example, CE can
be expressed by ℓ1(ui) = − log ui and ℓ2(uj) = 0. Given
any loss function L, and a classifier f , the L-risk of f is

RL(f) = ED[L(f(x), y)] = Ex,y[L(f(x), y)], (1)

where E denotes expectation. Under the risk minimization
framework, the objective is to learn an optimal classifier,
f∗, which is a global minimum of RL(f).



Noise Tolerance. We define the noise corruption process
as that a clean label y is flipped into a noisy version ỹ with
probability ηx,ỹ = p(ỹ|y,x) (more label noise settings can
be found in [6]). The corresponding noisy L-risk is

Rη
L(f) = ED[(1− ηx)L(f(x), y) +

∑
i ̸=y

ηx,iL(f(x), i)],

where ηx =
∑

i̸=y ηx,i denotes the noise rate. Risk
minimization under a given loss function is noise-tolerant
if Rη

L(f) shares the same global minimum as RL(f).
Symmetric Loss Functions. A symmetric loss function
[22, 6] is proved to be noise-tolerant for a k-class classifi-
cation under symmetric noise if the noise rate η < k−1

k and
the loss function satisfies

k∑
i=1

L(f(x), i) = C, ∀x ∈ X ,∀f ∈ H, (2)

where C is a constant, and H is the hypothesis class.
The symmetric condition (2) stated above guarantees the

noise tolerance by risk minimization on a symmetric loss
function, i.e., the classifier trained in noisy case has the
same misclassification probability as that trained in noise-
free case under the specified assumption. Moreover, if
RL(f

∗) = 0, L is also noise-tolerant under an asymmet-
ric noise, where f∗ is a global risk minimum of RL.

2.2. Noise Tolerance via Output Permutation

The symmetric condition (2) theoretically guarantees
that a symmetric loss can lead to robust training. However,
the derived loss functions according to this design principle
usually suffer from underfitting [27, 3, 20]. On the other
hand, the existing methods all pay attention to designing
new loss functions, but never attempt to restrict the hypothe-
sis class H to satisfy the symmetric condition. In this work,
we propose to restrict the hypothesis class H such that any
losses satisfy the symmetric condition (2) and thus become
robust to label noise. Furthermore, we provide a theoretical
analysis to demonstrate the noise tolerance of our scheme.
The proofs can be seen in the supplementary materials.

First of all, we provide the definition of permutation op-
eration, which plays an important role in our derivation.

Definition 1. For a vector v ∈ Rk, the permutation opera-
tion on it is defined as [24]:

vπ = Pπv, (3)

where Pπ = [eπ1
, eπ2

, ..., eπk
]T is the permutation matrix,

and {π1, π2, ..., πk} = [k].

According to this definition, it is easy to find that v
and vπ share the same space, i.e., {vπ1

, vπ2
, ..., vπk

} =
{v1, v2, ..., vk}. For instance, when k = 3, v = {v1, v2, v3}

and π = [3, 1, 2], then Pπ = [e3, e1, e2]
T , and the vector

after permutation operation is vπ = (v3, v1, v2)
T .

More generally, let Pv denote the permutation set over
v, we have

k∑
i=1

ℓ(ui) =

k∑
i=1

ℓ(vi),∀ u ∈ Pv. (4)

According to the above definition and derivation, we ar-
rive at Lemma 1:

Lemma 1. Given a vector v, ∀L ∈ L, we have

k∑
i=1

L(u, i) = C, ∀ u ∈ Pv, (5)

where C =
∑k

i=1 L(v, i) is a constant when v is fixed.

Lemma 1 indicates that, when the network output u is
restricted to belong to a permutation set Pv of a fixed vector
v, any loss functions in L satisfy the symmetric condition.
We further have the following theorems for symmetric and
asymmetric noise that can be proved similarly as [6]:

Theorem 1 (Noise tolerance under symmetric noise). In
a multi-class classification problem, ∀L ∈ L, L is noise-
tolerant under symmetric label noise if η < 1 − 1

k and f :
X → Pv, i.e.,

argmin
f :X→Pv

RL(f) = argmin
f :X→Pv

Rη
L(f), (6)

where v is a fixed vector.

Theorem 2 (Noise tolerance under asymmetric noise). In
a multi-class classification problem, let f : X → Pv,
where v is a fixed vector, and suppose L ∈ L satisfy
0 ≤ L(f(x), i) ≤ C

k−1 , ∀i ∈ [k]. If RL(f
∗) = 0, then

L is noise-tolerant under asymmetric or class-conditional
noise when ηy,i < 1− ηy with

∑
k ̸=y ηy,i = ηy , ∀x.

Theorem 1 and 2 inspire us that label noise under risk
minimization can be mitigated by restricting the network
output to a permutation set instead of changing the loss
function. This offers an alternative principle approach to
achieve robust learning. However, the optimization is non-
trivial when using gradient-based strategy because the con-
straint that Pv is a discrete mapping produces many zero
gradients. Instead, we turn to approximate the constraint by
relaxing the output restriction of the hypothesis class with
an error bound ε, i.e., Hv,ε = {f : minu∈Pv ∥f(x)−u∥2 ≤
ε, ∀x}. We can derive the risk bound as follows:

Theorem 3. In a multi-class classification problem, if
the loss function L ∈ L satisfies |

∑k
i=1(L(u1, i) −

L(u2, i))| ≤ δ when ∥u1−u2∥2 ≤ ε, and δ → 0 as ε → 0,



then for symmetric label noise satisfying η < 1− 1
k , the risk

bound for f ∈ Hv,ε can be expressed as

RL(f
∗
η )−RL(f

∗) ≤ 2cδ,

where c = η
(1−η)k−1 , f∗

η and f∗ denote the global minimum
of Rη

L(f) and RL(f), respectively.

Theorem 3 indicates that when restricting the output of
the network to belong to Hv,ε, the noisy minimum f∗

η , com-
pared to the clean minimum f∗, has a risk error bound 2cδ.
And when ε → 0, the bound also tends to 0. This implies
that, by shrinking Hv,ε, f∗

η = argminf∈Hv,ε
Rη

L(f) con-
verges to f∗.

2.3. Robust Learning via Sparse Regularization

Upon the above theoretical analysis, we propose a simple
but effective approach for robust learning, which can make
any losses robust to noisy labels by introducing sparse reg-
ularization on network output. Specifically, we consider the
fixed vector v as a one-hot vector, i.e., we restrict the net-
work output to one-hot vectors P0−1. This discrete process
would result in many zero gradients, making the optimiza-
tion difficult. To approximate the one-hot constraint, we
propose the sparse regularization strategy, which is com-
posed of two modules: network output sharpening and ℓp-
norm (p ≤ 1) regularization in risk minimization.
Network Output Sharpening. The output sharpening
module is to make the network output closer to a one-hot
vector. One popular way to approximate a one-hot vector by
the continuous mapping is to use a temperature-dependent
softmax function, i.e.,

στ (z)i =
exp(zi/τ)∑k
j=1 exp(zj/τ)

, (7)

where 0 ≤ τ ≤ 1, and στ (z)i is a point in the probabil-
ity simplex. Note that, in the limit situation where τ → 0,
στ (z) converges to a one-hot vector. In other words, with
low temperatures, the distribution spends essentially all of
its probability mass in the most probable state. Meanwhile,
we may limit the value of zi to the range [−1, 1] by per-
forming ℓ2 normalization before the output sharpening to
prevent it from trivial scaling solution.
ℓp-norm Regularization. We further introduce ℓp-norm
regularization into risk minimization to promote the sparsity
of network output. Specifically, we perform the following
constrained risk minimization in network training:

min
f∈H

RL(f) s.t. ∥f∥p ≤ γ, (8)

where 0 ≤ p ≤ 1, and γ is an appropriately selected param-
eter. In practice, we can convert to train a neural network
by minimizing the following form:
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Figure 2. Test accuracy curve of different λ on CIFAR-10 with 0.6
symmetric label noise. Robustness is improved when increasing
the weight of ℓp-norm for both CE and FL.

N∑
i=1

L(f(xi), ỹi) + λ∥f(xi)∥pp. (9)

It is worth noting that, if we define L(u, i) =
−α log ui − λui and p = 1, then Eq. (9) is equivalent to
the Symmetric Cross Entropy (SCE) loss [27]. Thus, SCE
can be regarded as a special case of a loss function with the
ℓp-norm regularization.

For effective learning, the regularization parameter λ in
Eq. (9) cannot be set too large, since the network would
tend to minimize λ∥f(xi)∥pp rather than L(f(xi), ỹi). As
shown in Fig. 2(a), when λ = 25 and 30, although the
curves look robust, they suffer from the underfitting effect.
On the other hand, λ should not be set too small, otherwise
robustness cannot be guaranteed (see λ ≤ 7 in Fig. 2(a)).
We need a large enough λ to maintain robustness. An ef-
fective strategy in practical implementation is to gradually
increase the value of λ during training, i.e., λt = λ0 · ρ⌊t/r⌋
(ρ ≥ 1), where t denotes the training epoch, and r denotes
the updating rate of λ.

2.4. On the Robustness and Learning Sufficiency

In the following, we provide analysis about the robust-
ness and learning sufficiency of the proposed scheme.

To obtain enough robustness, we restrict the output of
the network to be one-hot, which naturally satisfies the sym-
metric condition. As for the output sharpening process, the
derivative of στ (z)j with respect to zi can be derived as

∂στ (z)j
∂zi

=
1

τ
στ (z)i(δij − στ (z)j), (10)

where δij = I(i = j), and I(·) is the identity function.
We can see that the derivative is a scaled derivative of
the original softmax function, so it would not change the
optimization direction but change the step size. A larger
step size in Eq. (10) would speed up the convergence to
one-hot vectors. We can achieve this purpose by choos-
ing an appropriate value for τ . On the other hand, we
have limτ→0+

∂στ (z)j
∂zi

= 0, which shows that the gradient



would disappear if τ is small, so τ cannot be overly small
to prevent underfitting. We fix τ in our implementation for
simplicity, but we suggest to gradually decay τ in training,
which can be regarded as an early-stopping strategy [16].

Moreover, consider the loss L(στ (z), y) =
− log στ (z)y , we have the derivative of − log στ (z)y +
λ∥στ (z)∥pp with respect to z as follows

∂ − log στ (z)y
∂z

+ λ
∂∥στ (z)∥pp

∂z

=− 1

στ (z)y
· ∂στ (z)y

∂z
+ λp

k∑
i=1

1

[στ (z)i]1−p
· ∂στ (z)i

∂z

=−(
1

στ (z)y
− λp

[στ (z)y]1−p
) · ∂στ (z)y

∂z︸ ︷︷ ︸
fitting term

+ λp
∑
i̸=y

1

[στ (z)i]1−p
· ∂στ (z)i

∂z︸ ︷︷ ︸
complementary term

The fitting term denotes the gradient of learning towards
the target y, while the complementary term limits the in-
crease of στ (z)i, ∀i ̸= y. In the early phase of training, we
guarantee enough fitting power by setting λp < 1. As λ
increases, the fitting term becomes weaker to mitigate label
noise, but the complementary term still maintains a certain
amount of fitting power through minimizing στ (z)i, ∀i ̸= y
to passively maximize στ (z)y .
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Figure 3. Sparse rate and test accuracy of different methods on
MNIST with 0.8 symmetric label noise. One-hot constraint signif-
icantly improves the robustness while not hindering fitting ability.

On the other hand, we can regard the ℓp-norm regular-
ized loss function L(u, i) + λ∥u∥pp as a new loss func-
tion. If there exists α > 0, such that L(u, i) + αup

i is
monotonically decreasing on ui, then the new loss can be
divided into the active loss L(u, i) + αup

i and the pas-
sive loss (λ − α)up

i + λ
∑

j ̸=i u
p
j . In fact, α always ex-

ists for commonly-used loss functions, for example, when
L(u, i) = − log ui, we have α < 1

p such that − log ui+αup
i

keeps monotonically decreasing on ui. Therefore, our pro-
posed ℓp-norm regularization coincides with the Active Pas-
sive Loss proposed in [20]. The analysis demonstrates that
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Figure 4. Test accuracy curve of different parameters on CIFAR-
10 with 0.6 symmetric label noise.

our scheme achieves the best of both worlds of robustness
and sufficient learning.

3. Experiments

In this section, we empirically investigate the effective-
ness of sparse regularization on synthetic datasets, includ-
ing MNIST [15], CIFAR-10/-100 [14], and a real-world
noisy dataset WebVision [17].

3.1. Empirical Analysis

One-hot Constraint Means Robustness. We first run
a set of experiments on MNIST with 0.8 symmetric la-
bel noise to analyse the sparse rate and test accuracy
during training, where the sparse rate is formulated as∑N

i=1 I(maxj f(xi)j>1−0.01)

N , and f(xi) is performed by the
output sharpening with τ = 0.1. If maxj f(xi)j > 1−0.01,
then minu∈P0−1

∥f(xi) − u∥2 ≤
√
2 · 0.01 = ε. We add

the sparse regularization strategy to CE, FL and GCE, the
results are shown in Fig. 3. As we can see, with the role
of SR, the sparse rate usually maintains a high value af-
ter several epochs, and the test accuracy curves of CE+SR,
FL+SR and GCE+SR show enough robustness and learning
efficiency for model to mitigate label noise, while the origi-
nal losses have low sparse rate and poor accuracy. This val-
idates that the noise tolerance can be obtained by restricting
the output of a network to one-hot vectors.
Sparse Regularization can Mitigate Label Noise. As
shown in Fig. 2, when we add SR to enhance the perfor-
mance of CE and FL, the training process is increasingly
robust as λ increases while not hindering the fitting ability
(λ ≤ 20). This demonstrates that learning with sparse reg-
ularization can be both robust and effective when mitigat-
ing label noise. The projected representations on MNIST
are illustrated in Fig. 1. Under both settings, the repre-
sentations learned by the SR-enhanced method are of sig-
nificantly better quality than those learned by the original
losses with more separated and clearly bounded clusters.
Parameter Analysis. We choose the different parameters
τ , λ and p for sparse regularization to CE. The experiments
are conducted on CIFAR-10 with 0.6 symmetric noise. We
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Figure 5. Visualization of learned representations on MNIST with different symmetric label noise (η ∈ [0.0, 0.2, 0.4, 0.6, 0.8]).

first tested τ ∈ {0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 0.9, 1} while
λ = 0, and the results can be show in Fig. 4(b). When
τ is small (≤ 0.003), the curve is very robust, but it
also suffer from significant underfitting problem. As τ in-
creases, the curve falls into overfitting. Then we tested
λ ∈ {0.1, 0.3, 1.0, 3.0, 5.0, 7.0, 10, 15, 20, 25, 30} while
p = 0.1 and τ = 1. As shown in Fig. 2, curve gets
more robustness as λ increases, but when λ ≥ 7, it encoun-
ters severe underfitting since the optimization pays more
attention on minimizing λ∥f(x)∥pp. Moreover, we tuned
p ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1} while τ = 1 and
λ = 5. The results in Fig. 4(a) show that both small p and
large p tend to cause more overfitting to label noise, so we
need choose an appropriate value.
Remark. As for parameter tunings, a simple principled ap-
proach for parameter setting is that parameters with strong
regularization are selected for simple datasets, and pa-
rameters with weak regularization are selected otherwise.
Specifically, this can be achieved by setting proper λ: the
larger λ, the stronger regularization effect. However, as
shown in Fig. 2, the large initial λ leads to underfitting since
much attention is paid on minimizing λ∥f(x)∥pp, especially
when λ·p > 1. Instead, we turn to gradually increase λ, i.e.,
λt = λ0 · ρ⌊t/r⌋, where t is the iteration number and r = 1;
p = 0.1 and 0.01, ρ = 501/120 ≈ 1.03 and 501/200 ≈ 1.02
for CIFAR-10 and CIFAR-100 (where 120 and 200 repre-
sent the training epochs). The only parameter that requires
careful tuning is λ0, which is set as λ0 < 1

p . We use the
similar parameter setting strategy for CIFAR-10, CIFAR-
100, WebVision, and all achieve satisfactory results.

3.2. Evaluation on Benchmark Datasets

Experimental Details. The benchmark datasets, noise gen-
eration, networks, training details, parameter settings, more
comparisons, and more experimental results can be found

in the supplementary materials.
Baselines. We experiment with the state-of-the art meth-
ods GCE [29], SCE [27], NLNL [13], APL [20], and two
effective loss functions CE and Focal Loss (FL) [18] for
classification. Moreover, we add the proposed sparse reg-
ularization mechanism to CE, FL and GCE, i.e., CE+SR,
FL+SR and GCE+SR. All the implementations and experi-
ments are based on PyTorch.
Results. The test accuracies (mean ± std) under symmet-
ric label noise are reported in Table 1. As we can see, our
proposed SR mechanism significantly improves the robust-
ness of CE, FL, and GCE, which achieve the top 3 best re-
sults in most test cases across all datasets. In the scenar-
ios of serious noise, our CE+SR, FL+SR have a very ob-
vious improvement over the original losses. For example,
on MNIST with 0.8 symmetric noise, CE+SR outperforms
CE by more than 52%. On CIFAR-10 with 0.8 symmet-
ric noise, CE+SR outperforms CE by more than 31%. As
for CIFAR-100, GCE and APL outperform our method by
a small gap for η = 0.6 and 0.8, but they failed in the cases
with small noise rates. The reason is that the fitting ability
is not enough, which can be derived according to the ex-
periments in the clean case. When APL and GCE meet a
complicated dataset CIFAR-100 in a clean setting, their test
accuracies are worse than the commonly used losses CE and
FL, while the SR-enhanced methods outperform the origi-
nal losses and achieve an improvement of ≥ 0.86. There-
fore, our methods not only have good robustness, but also
guarantee and even improve the fitting ability.

Results for asymmetric noise are reported in Table 2.
Again, our methods significantly improve the robustness of
the original version across all datasets and achieve top 3
best results in most cases. On MNIST, CE+SR and FL+SR
outperform all the state-of-the-art methods over all asym-
metric noise by a clear margin. More Surprisingly, the test



Table 1. Test accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise (η ∈ [0.2, 0.4, 0.6, 0.8]). The
results (mean±std) are reported over 3 random runs and the top 3 best results are boldfaced.

Datasets Methods Clean (η = 0.0)
Symmetric Noise Rate (η)

0.2 0.4 0.6 0.8

MNIST

CE 99.15 ± 0.05 91.62 ± 0.39 73.98 ± 0.27 49.36 ± 0.43 22.66 ± 0.61
FL 99.13 ± 0.09 91.68 ± 0.14 74.54 ± 0.06 50.39 ± 0.28 22.65 ± 0.26

GCE 99.27 ± 0.05 98.86 ± 0.07 97.16 ± 0.03 81.53 ± 0.58 33.95 ± 0.82
SCE 99.23 ± 0.10 98.92 ± 0.12 97.38 ± 0.15 88.83 ± 0.55 48.75 ± 1.54

NLNL 98.85 ± 0.05 98.33 ± 0.03 97.80 ± 0.07 96.18 ± 0.11 86.34 ± 1.43
APL 99.34 ± 0.02 99.14 ± 0.05 98.42 ± 0.09 95.65 ± 0.13 72.97 ± 0.34

CE+SR 99.33 ± 0.02 99.22 ± 0.06 99.16 ± 0.04 98.85 ± 0.02 98.06 ± 0.86
FL+SR 99.35 ± 0.05 99.25 ± 0.01 99.10 ± 0.10 98.81 ± 0.06 97.00 ± 1.28

GCE+SR 99.27 ± 0.06 99.13 ± 0.07 99.06 ± 0.02 98.84 ± 0.09 98.37 ± 0.26

CIFAR-10

CE 90.48 ± 0.11 74.68 ± 0.25 58.26 ± 0.21 38.70 ± 0.53 19.55 ± 0.49
FL 89.82 ± 0.20 73.72 ± 0.08 57.90 ± 0.45 38.86 ± 0.07 19.13 ± 0.28

GCE 89.59 ± 0.26 87.03 ± 0.35 82.66 ± 0.17 67.70 ± 0.45 26.67 ± 0.59
SCE 91.61 ± 0.19 87.10 ± 0.25 79.67 ± 0.37 61.35 ± 0.56 28.66 ± 0.27

NLNL 90.73 ± 0.20 73.70 ± 0.05 63.90 ± 0.44 50.68 ± 0.47 29.53 ± 1.55
APL 89.17 ± 0.09 86.98 ± 0.07 83.74 ± 0.10 76.02 ± 0.16 46.69 ± 0.31

CE+SR 90.06 ± 0.02 87.93 ± 0.07 84.86 ± 0.18 78.18 ± 0.36 51.13 ± 0.51
FL+SR 89.86 ± 0.11 87.94 ± 0.19 84.65 ± 0.05 77.85 ± 0.74 52.42 ± 0.76

GCE+SR 90.02 ± 0.40 87.93 ± 0.27 84.82 ± 0.06 77.65 ± 0.05 51.97 ± 1.13

CIFAR-100

CE 71.33 ± 0.43 56.51 ± 0.39 39.92 ± 0.10 21.39 ± 1.17 7.59 ± 0.20
FL 70.06 ± 0.70 55.78 ± 1.55 39.83 ± 0.43 21.91 ± 0.89 7.51 ± 0.09

GCE 63.09 ± 1.39 61.57 ± 1.06 56.11 ± 1.35 45.28 ± 0.61 17.42 ± 0.06
SCE 70.64 ± 0.05 56.07 ± 0.26 39.88 ± 0.67 21.16 ± 0.65 7.63 ± 0.15

NLNL 68.72 ± 0.60 46.99 ± 0.91 30.29 ± 1.64 16.60 ± 0.90 11.01 ± 2.48
APL 67.95 ± 0.21 64.21 ± 0.24 57.70 ± 0.64 45.20 ± 0.75 24.91 ± 0.42

CE+SR 72.19 ± 0.06 67.51 ± 0.29 60.70 ± 0.25 44.95 ± 0.65 17.35 ± 0.13
FL+SR 72.08 ± 0.31 67.64 ± 0.10 60.67 ± 0.48 44.76 ± 0.08 17.16 ± 0.24

GCE+SR 72.11 ± 0.26 67.03 ± 0.46 60.68 ± 0.90 44.66 ± 0.84 17.35 ± 0.42

accuracy (99.36 ± 0.05) of FL+SR under 0.4 asymmetric
noise is higher than the clean case. On CIFAR-10 with 0.1
asymmetric noise, SCE has the best accuracy, but it loses
the superiority in the other three cases where our method
works much better than all other baselines with at least 1%
increase. On CIFAR-100, the enhanced loss functions show
particularly superior performance in all cases.
Representations. We further investigate the representa-
tions learned by CE+SR compared to those learned by CE.
We extract the high-dimensional features at the second last
full-connected layer, then project all test samples’ features
into 2D embeddings by t-SNE [26]. The projected repre-
sentations on MNIST with different symmetric noise are
illustrated in Fig. 5. As can be observed, CE encounters
severe overfitting on label noise, and the embeddings look
completely mixed when η = 0.8. On the contrary, CE+SR
learns good representations with more separated and clearly
bounded clusters in all noisy cases.

3.3. Evaluation on Real-world Noisy Dataset

Here, we evaluate our sparse regularization method on
large-scale real-world noisy dataset WebVision 1.0 [17]. It
contains 2.4 million images with real-world noisy labels,

which crawled from the web using 1,000 concepts in Im-
ageNet ILSVRC12 [5]. Since the dataset is very big, for
quick experiments, we follow the training setting in [11]
that only takes the first 50 classes of the Google resized im-
age subset. We evaluate the trained network on the same 50
classes of WebVision 1.0 validation set, which can be con-
sidered as a clean validation set. We add sparse regulariza-
tion to CE and GCE. The training details follow [20], where
for each loss , we train a ResNet-50 [10] by using SGD for
250 epochs with initial learning rate 0.4, nesterov momen-
tum 0.9, weight decay 3 × 10−5, and batch size 512. The
learning rate is multiplied by 0.97 after every epoch of train-
ing. All the images are resized to 224 × 224. Typical data
agumentations including random width/height shift, color
jittering, and random horizontal flip are applied. As shown
in in Table 3, our proposed SR mechanism obviously en-
hances the performance of CE and FL, which outperform
the existing loss functions SCE and APL with a clear mar-
gin (≥ 2.2%). This verifies the effectiveness of SR against
real-world label noise.

More Comparison. We also compare with Co-teaching[9],
which is the representative work of sample selection, and
PHuber-CE [23], which is a simple variant of gradient clip-



Table 2. Test accuracies (%) of different methods on bench-
mark datasets with clean or asymmetric label noise (η ∈
[0.1, 0.2, 0.3, 0.4]). The results (mean±std) are reported over 3
random runs and the top 3 best results are boldfaced.

Datasets Methods
Asymmetric Noise Rate (η)

0.2 0.3 0.4

MNIST

CE 94.56 ± 0.22 88.81 ± 0.10 82.27 ± 0.40
FL 94.25 ± 0.15 89.09 ± 0.25 82.13 ± 0.49

GCE 96.69 ± 0.12 89.12 ± 0.24 81.51 ± 0.19
SCE 98.03 ± 0.05 93.68 ± 0.43 85.36 ± 0.17

NLNL 98.35 ± 0.01 97.51 ± 0.15 95.84 ± 0.26
APL 98.89 ± 0.04 96.93 ± 0.17 91.45 ± 0.40

CE+SR 99.27 ± 0.06 99.24 ± 0.08 99.23 ± 0.07
FL+SR 99.31 ± 0.02 99.23 ± 0.02 99.36 ± 0.05

GCE+SR 99.22 ± 0.02 99.13 ± 0.05 99.09 ± 0.02

CIFAR-10

CE 83.32 ± 0.12 79.32 ± 0.59 74.67 ± 0.38
FL 83.37 ± 0.07 79.33 ± 0.08 74.28 ± 0.44

GCE 85.93 ± 0.23 80.88 ± 0.38 74.29 ± 0.43
SCE 86.20 ± 0.37 81.38 ± 0.35 75.16 ± 0.39

NLNL 84.74 ± 0.08 81.26± 0.43 76.97 ± 0.52
APL 86.50 ± 0.31 83.34 ± 0.39 77.14 ± 0.33

CE+SR 87.70 ± 0.19 85.63 ± 0.07 79.29 ± 0.20
FL+SR 87.56 ± 0.29 85.10 ± 0.23 79.07 ± 0.50

GCE+SR 87.55 ± 0.08 84.69 ± 0.46 79.01 ± 0.18

CIFAR-100

CE 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31
FL 58.05 ± 0.42 51.15 ± 0.84 41.18 ± 0.68

GCE 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
NLNL 50.19 ± 0.56 42.81 ± 1.13 35.10 ± 0.20
SCE 58.16 ± 0.73 50.98 ± 0.33 41.54 ± 0.52
APL 62.80 ± 0.05 56.74 ± 0.53 42.61 ± 0.24

CE+SR 64.79 ± 0.01 59.09 ± 2.10 49.51 ± 0.59
FL+SR 64.61 ± 0.67 58.94 ± 0.33 46.94 ± 1.68

GCE+SR 64.35 ± 0.78 57.22 ± 0.80 49.51 ± 1.31

Table 3. Top-1 validation accuracies (%) on WebVision validatoin
set of ResNet-50 models trained on WebVision using different loss
functions, under the Mini setting in [11].

Loss CE FL SCE APL CE+SR FL+SR

Acc 66.96 63.80 66.92 66.32 69.12 70.28

ping. As shown in Table 4, our method works better than
Co-teaching and PHuber-CE.

Table 4. A comparison with other methods

Dataset Method
Label Noise Type

sy 0.6 sy 0.8 asy 0.3 asy 0.4

CIFAR-10

CE 38.70 19.55 79.32 74.67
Co-teaching 65.74 38.01 64.01 51.26
PHuber-CE 75.44 41.18 76.06 55.78

CE+SR 78.18 51.13 85.63 79.29

CIFAR-100

CE 21.39 7.59 50.68 40.17
Co-teaching 34.28 7.94 42.82 33.67
PHuber-CE 21.54 9.33 26.91 23.43

CE+SR 44.95 17.35 59.09 49.51

3.4. Additional Experiments

Imbalanced Classification. As shown in Table 3, our
method achieves the best result on WebVision that has a
certain class imbalance. To better show the performance on
class imbalance, we additionally test the ability of SR on
the pure imbalanced classification task. We first follow the
controllable data imbalance in [21] to create the imbalanced
CIFAR-10/-100 by reducing the number of training exam-
ples and keeping the validation set unchanged. We also con-
sider two imbalance types: long-tailed imbalance[4] and
step imbalance [2]. The results shown in Table 5 are en-
couraging, where CE with sparse regularization achieves
a very significant improvements compared with CE in all
cases. Albeit simple, these additional experiments demon-
strate that SR can also mitigate class imbalance well.
Table 5. Validation accuracy on imbalanced CIFAR-10/-100.

Dataset Method
Imbalanced Type

lt-0.01 lt-0.1 step-0.01 step-0.1

CIFAR-10
CE 64.16 81.81 57.44 79.35

CE+SR 69.78 84.49 61.03 82.11

CIFAR-100
CE 35.17 51.43 37.92 53.43

CE+SR 41.24 59.51 40.21 58.42

4. Conclusion and Future Work
In this paper, we presented a novel method for learning

with noisy labels. We first provided a theoretical conclu-
sion that any loss can be made robust to noisy labels by
restricting the output of a network to a permutation set of
any fixed vector. According to this principle, subsequently,
we proposed a simple but effective strategy for robust learn-
ing through sparse regularization, which is the approxima-
tion of the constraint of one-hot permutation. The meanings
of sparse regularization are two-fold: the network output
sharpening operation is designed to enforce the output dis-
tribution of a network to be sharp, and the ℓp-norm (p ≤ 1)
regularization is tailored to promote the network output to
be sparse. Experimental results demonstrated the superior
performance of the proposed method over the SOTA meth-
ods on both synthetic and real-world datasets. Moreover,
we additionally experiment with imbalanced classification,
and the results are encouraging, which demonstrates that
sparse regularization can also mitigate class imbalance well.

Overall, this paper has investigated the one-hot con-
straint, i.e., restricting the output to a permutation set over a
one-hot vector. In future research, a promising direction is
replacing the one-hot vector with a fixed smoothing vector.
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Learning with Noisy Labels via Sparse Regularization:
Supplementary Materials

A. Proof of Theorems
Theorem 1. In a multi-class classification problem, ∀L ∈ L, L is noise-tolerant under symmetric label noise if η < 1 − 1

k
and f : X → Pv, where v is a fixed vector, i.e.,

argmin
f :X→Pv

RL(f) = argmin
f :X→Pv

Rη
L(f). (11)

Proof. For symmetric label noise, we have

Rη
L(f) = Ex,y

(1− η)L(f(x), y) +
η

k − 1

∑
i̸=y

L(f(x), i)


= Ex,y

[
(1− η)L(f(x), y) +

η

k − 1
(

k∑
i=1

L(f(x), i)− L(f(x), y)

]

= (1− η)RL(f) +
η

k − 1
(

k∑
i=1

L(v, i)−RL(f))

= (1− ηk

k − 1
)RL(f) +

η

k − 1

k∑
i=1

L(v, i)

since 1− ηk
k−1 > 0 and

∑k
i=1 L(v, i) is a constant, then f∗ minimizes Rη(f) if and only if f∗ minimizes R(f).

Theorem 2. In a multi-class classification problem, we let f : X → Pv, where v is a fixed vector. If RL(f
∗) = 0,

∀f : X → Pv, ∀L ∈ L and 0 ≤ L ≤ C
k−1 , L is noise-tolerant under asymmetric or class-conditional noise when

ηy,i < 1− ηy with
∑

k ̸=y ηy,i = ηy , ∀x.

Proof. For asymmetric or class-conditional noise, we have

Rη
L(f) = Ex,y(1− ηy)L(f(x), y) + Ex,y

∑
i̸=y

ηy,iL(f(x), i)

= Ex,y(1− ηy)(C −
∑
i̸=y

L(f(x), i)) + Ex,y

∑
i ̸=y

ηy,iL(f(x), i)

= CEx,y(1− ηy)− Ex,y

∑
i̸=y

(1− ηy − ηy,i)L(f(x), i)

(12)

Let f∗
η and f∗ be the minimizer of Rη

L(f) and RL(f) when f : X → Pv, respectively. We have Rη
L(f

∗
η )−Rη

L(f
∗) ≤ 0 and

hence derive that
Ex,y

∑
i̸=y

(1− ηy − ηy,i)(L(f(x), i)− L(f(x), i)) ≤ 0 (13)

Since we are given RL(f
∗) = 0, we have L(f∗(x), y) = 0. Given the condition on L in the theorem, this implies

L(f∗(x), i) = C/(k − 1), i ̸= y. As per the assumption on noise in the theorem, 1 − ηy − ηy,i > 0. Moreover, L has
to satisfy L(f∗

η (x), i) ≤ C/(k − 1), ∀i. Thus for Eq. 13 to hold, it must be the case that L(f∗
η (x), i) = C/(k − 1), which

implies L(f∗
η (x), y) = 0. Thus, the minimizer of true risk is also a minimizer of risk under noisy case.

Theorem 3. In a multi-class classification problem, if the loss function L satisfies |
∑k

i=1(L(u1, i) − L(u2, i))| ≤ δ when
∥u1 − u2∥2 ≤ ε, and δ → 0 as ε → 0, then for symmetric label noise satisfying η < 1− 1

k , the risk bound can be expressed
as

RL(f
∗
η )−RL(f

∗) ≤ 2cδ,

where c = η
(1−η)k−1 , f∗

η and f∗ denote the minimizer of Rη
L(f) and RL(f) when f ∈ Hv,ε, respectively.



Proof. For symmetric label noise, we have

Rη
L(f

∗) = Ex,y

[
(1− η)L(f∗(x), y) +

η

k − 1

∑
i ̸=y

L(f∗(x), i)
]

= (1− ηk

k − 1
)RL(f

∗) +
η

k − 1
Ex,y

[
k∑

i=1

L(f∗(x), i)

]

= (1− ηk

k − 1
)RL(f

∗) +
η

k − 1

k∑
i=1

L(v, i) +
η

k − 1
δ1

(14)

where δ1 = Ex,y[
∑k

i=1 L(f(x), i) −
∑k

i=1 L(v, i)]. On the other hand, f∗ ∈ Hv,ε, i.e., ∥f∗(x) − v∥2 ≤ ε, so we have
|
∑k

i=1 L(f(x), i)−
∑k

i=1 L(v, i)| ≤ δ. This means that δ1 ∈ [−δ, δ]. Similarly, we can obtain

Rη
L(f

∗
η ) = (1− ηk

k − 1
)RL(f

∗
η ) +

η

k − 1

k∑
i=1

L(v, i) +
η

k − 1
δ2 (15)

Since f∗
η = argminf∈Hv,ε

Rη
L(f), and f∗ = argminf∈Hv,ε

RL(f), we have

0 ≥ Rη
L(f

∗
η )−Rη

L(f
∗)

= (1− ηk

k − 1
)(RL(f

∗
η )−RL(f

∗)) +
η

k − 1
(δ2 − δ1)

⇒RL(f
∗
η )−RL(f

∗) ≤ η

(1− η)k − 1
(δ1 − δ2) ≤

2ηδ

(1− η)k − 1

(16)

where we have used the fact that 1− ηk
k−1 > 0, and δ2 − δ1 ≤ 2δ holds for δ1, δ2 ∈ [−δ, δ].

B. Experiments
In this section, we provide the experimental details.

Datasets. We verify the effectiveness of our method on benchmark datasets, including MNIST [15], CIFAR-10/-100 [14]
with synthetic label noise.

Since MNIST, CIFAR-10, and CIFAR-100 are clean, following previous works [27, 20], we experiment with two types
of label noise: symmetric (uniform) noise and asymmetric (class-conditional) noise. For symmetric noise, we corrupt the
training labels by flipping the labels in each class randomly to incorrect labels in other classes with flip probability η ∈
{0.2, 0.4, 0.6, 0.8}. For asymmetric noise, we flip the labels within a specific set of classes, for example, for MNIST, flipping
2 → 7, 7 → 1, 5 ↔ 6, and 3 → 8; for CIFAR-10, flipping TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER →
HORSE, and CAT ↔ DOG; for CIFAR-100, the 100 classes are grouped into 20 super-classes with each has 5 sub-classes,
and each class are flipped within the same super-classes into the next.
Baselines. We experiment with the following state-of-the art methods, and two effective loss functions CE and Focal Loss
(FL) [18] for classification. Moreover, we add the proposed sparse regularization mechanism to CE, FL and GCE, i.e.,
CE+SR, FL+SR and GCE+SR. All the implementations and experiments are based on PyTorch.

• GCE [29]. The Generalized Cross Entropy (GCE) is defined as LGCE(u, i) = (1− uq
i )/q (0 < q ≤ 1).

• SCE [27]. The Symmetric Cross Entropy (SCE) can be regarded as a weighted loss of CE and RCE (scaled MAE):
LSCE(u, i) = αLCE(u, i) + βLRCE(u, i).

• NLNL [13]. NLNL improves robustness with a complementary label.

• APL [20]. The Active Passive Loss (APL) was proposed to combine a robust active loss and a robust passive loss, i.e.,
LAPL = αLActive + βLPassive.

Network Structure and Training Details. Following the setting in [20], we use a 4-layer CNN for MNIST, an 8-layer
CNN for CIFAR-10 and a ResNet-34 for CIFAR-100. The networks are trained for 50, 120, 200 epochs for MNIST, CIFAR-
10, CIFAR-100, respectively. For all the training, we use SGD optimizer with momentum 0.9 and cosine learning rate
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Figure 6. Test accuracy curve of different λ on CIFAR-10 with 0.6 symmetric label noise.

annealing. Weight decay is set as 1 × 10−3, 1 × 10−4, 1 × 10−5 for MNIST, CIFAR-10, CIFAR-100, respectively. The
initial learning rate is set to 0.01 for CIFAR-10 and 0.1 for CIFAR-100. Batch size is set to 128. Typical data augmentations
including random width/height shift and horizontal flip are applied.
Parameters Setting. We set the parameters which match their original papers for all baseline methods. Specifically, for
FL, we set γ = 0.3. For GCE, we set q = 0.7. For SCE, we set A = −3, and α = 0.01, β = 1 for MNIST, α = 0.1, β = 1
for CIFAR-10, α = 6, β = 0.1 for CIFAR-100. For APL (NCE+MAE), we set α = 1, β = 100 for MNIST, α, β = 1 for
CIFAR-10, and α = 10, β = 0.1 for CIFAR-100. For our sparse regularization, we set (τ, p, λ0, ρ, r) = (0.1, 0.1, 4, 2, 5) for
MNIST, (0.5, 0.1, 1.1, 1.03, 1) for CIFAR-10, and (0.5, 0.01, ·, 1.02, 1) for CIFAR-100. Otherwise, on CIFAR-100, we set
λ0 to 10 and 4 for symmetric and asymmetric label noise, respectively.

As for the parameter setting for Webvision, we use the suggested q = 0.7 for GCE, A = −4, α = 10, β = 1 for SCE,
while for APL, we set α = 50, η = 0.1. For our CE+SR and FL+SR, we set τ = 0.5, p = 0.01, λ0 = 2, ρ = 1.02 and f = 1.
More experiments about hyperparameter selection. We offer more experimental results on selecting different λ on
CIFAR-10 with 0.6 symmetric label noise. We adjust τ from 1.0 to 0.5. The results are shown in Fig. 2. We found that the
output sharpening can benefit the sparse regularization. We can achieve the similar robustness result of λ = 20 (τ = 1) by
setting λ = 5 and τ = 0.5, which demonstrates that the output sharpening also plays the role of sparse regularization when
using ℓp-norm. Moreover, smaller λ can help maintain the fitting ability of the model with classification loss L(f(x), y) (i.e.,
learning efficiently while keeping robustness). As a evidence, the eventual accuracy (τ = 0.5, λ = 5) is higher than the
experiments with τ = 1.0.
More results of Comparison study. Fig. 7 shows test accuracy vs. epochs on MNIST. As can be observed, the commonly-
used loss functions CE and FL suffer from significant overfitting in all noisy cases. The state-of-the-art methods GCE, SCE
and APL show non-trival effectiveness of mitigating label noise, but the effects are crippled when meeting hard label noise.
On the contrary, our proposed SR-enhanced methods CE+SR, FL+SR and GCE+SR perform better robustness and more
efficiency . Fig. 8 shows test accuracy vs. epochs on CIFAR-10. The results are similar to MNIST, our SR-enhanced
methods keep robust and achieve the best accuracy in most cases. Fig. 9 shows test accuracy vs. epochs on CIFAR-100.
Our methods are of better fitting ability than commonly-used losses in the clean case, while the state-of-the-art GCE, SCE
and APL encounter little underfitting. For 0.2 and 0.4 symmetric label noise, our methods perform the best test accuracy.
Interestingly, for all asymmetric label noise, our methods perform overfitting at the beginning, but they later mitigate label
noise and outperform other methods.
More results of visualizations. More visualizations of representations on different datasets are shown in Fig. 10, 11 and
12. As can be seen, the representations learned by the proposed sparse regularization (SR)-enhanced methods are more
discriminative than those learned by original losses, which are with a more separated and clearly bound margin.



Table 6. Test accuracies (%) of different methods on benchmark datasets with clean or asymmetric label noise (η ∈ [0.1, 0.2, 0.3, 0.4]).
The results (mean±std) are reported over 3 random runs and the top 3 best results are boldfaced.

Datasets Methods
Asymmetric Noise Rate (η)

0.1 0.2 0.3 0.4

MNIST

CE 97.57 ± 0.22 94.56 ± 0.22 88.81 ± 0.10 82.27 ± 0.40
FL 97.58 ± 0.09 94.25 ± 0.15 89.09 ± 0.25 82.13 ± 0.49

GCE 99.01 ± 0.04 96.69 ± 0.12 89.12 ± 0.24 81.51 ± 0.19
SCE 99.14 ± 0.04 98.03 ± 0.05 93.68 ± 0.43 85.36 ± 0.17

NLNL 98.63 ± 0.06 98.35 ± 0.01 97.51 ± 0.15 95.84 ± 0.26
APL 99.32 ± 0.09 98.89 ± 0.04 96.93 ± 0.17 91.45 ± 0.40

CE+SR 99.42 ± 0.02 99.27 ± 0.06 99.24 ± 0.08 99.23 ± 0.07
FL+SR 99.34 ± 0.05 99.31 ± 0.02 99.23 ± 0.02 99.36 ± 0.05

GCE+SR 99.28 ± 0.06 99.22 ± 0.02 99.13 ± 0.05 99.09 ± 0.02

CIFAR-10

CE 87.55 ± 0.14 83.32 ± 0.12 79.32 ± 0.59 74.67 ± 0.38
FL 86.43 ± 0.30 83.37 ± 0.07 79.33 ± 0.08 74.28 ± 0.44

GCE 88.33 ± 0.05 85.93 ± 0.23 80.88 ± 0.38 74.29 ± 0.43
SCE 89.77 ± 0.11 86.20 ± 0.37 81.38 ± 0.35 75.16 ± 0.39

NLNL 88.54 ± 0.25 84.74 ± 0.08 81.26± 0.43 76.97 ± 0.52
APL 88.31 ± 0.20 86.50 ± 0.31 83.34 ± 0.39 77.14 ± 0.33

CE+SR 89.08 ± 0.08 87.70 ± 0.19 85.63 ± 0.07 79.29 ± 0.20
FL+SR 88.68 ± 0.23 87.56 ± 0.29 85.10 ± 0.23 79.07 ± 0.50

GCE+SR 89.20 ± 0.23 87.55 ± 0.08 84.69 ± 0.46 79.01 ± 0.18

CIFAR-100

CE 64.85 ± 0.37 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31
FL 64.78 ± 0.50 58.05 ± 0.42 51.15 ± 0.84 41.18 ± 0.68

GCE 63.01 ± 1.01 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
NLNL 59.55 ± 1.22 50.19 ± 0.56 42.81 ± 1.13 35.10 ± 0.20
SCE 64.26 ± 0.43 58.16 ± 0.73 50.98 ± 0.33 41.54 ± 0.52
APL 66.48 ± 0.12 62.80 ± 0.05 56.74 ± 0.53 42.61 ± 0.24

CE+SR 68.96 ± 0.22 64.79 ± 0.01 59.09 ± 2.10 49.51 ± 0.59
FL+SR 68.96 ± 0.17 64.61 ± 0.67 58.94 ± 0.33 46.94 ± 1.68

GCE+SR 69.27 ± 0.31 64.35 ± 0.78 57.22 ± 0.80 49.51 ± 1.31

10 20 30 40 50
Epochs

0.984

0.986

0.988

0.990

0.992

0.994

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(a) η = 0.0

10 20 30 40 50
Epochs

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(b) η = 0.2

10 20 30 40 50
Epochs

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(c) η = 0.4

10 20 30 40 50
Epochs

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(d) η = 0.6

10 20 30 40 50
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(e) η = 0.8

10 20 30 40 50
Epochs

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(f) η = 0.1

10 20 30 40 50
Epochs

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(g) η = 0.2

10 20 30 40 50
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(h) η = 0.3

10 20 30 40 50
Epochs

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

CE
FL
GCE
SCE
NCE+MAE
CE+SR
FL+SR
GCE+SR

(i) η = 0.4

Figure 7. Test accuracies of different methods on MNIST with different label noise, where (a) denotes the clean case, (b-e) denote the
symmetric label noise, and (f-i) denote the asymmetric label noise.
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(i) η = 0.4

Figure 8. Test accuracies of different methods on CIFAR-10 with different label noise, where (a) denotes the clean case, (b-e) denote the
symmetric label noise, and (f-i) denote the asymmetric label noise.
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(d) η = 0.6
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(e) η = 0.8
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(h) η = 0.3
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Figure 9. Test accuracies of different methods on CIFAR-100 with different label noise, where (a) denotes the clean case, (b-e) denote the
symmetric label noise, and (f-i) denote the asymmetric label noise.



(a) CE+SR with η = 0.1 (b) CE+SR with η = 0.2 (c) CE+SR with η = 0.3 (d) CE+SR with η = 0.4

(e) FL+SR with η = 0.1 (f) FL+SR with η = 0.2 (g) FL+SR with η = 0.3 (h) FL+SR with η = 0.4

(i) GCE+SR with η = 0.1 (j) GCE+SR with η = 0.2 (k) GCE+SR with η = 0.3 (l) GCE+SR with η = 0.4

Figure 10. Features visualization for CE+SR (top) and FL+SR (bottom) on MNIST with different asymmetric label noise (η ∈
[0.1, 0.2, 0.3, 0.4]) by t-SNE [26] 2D embeddings at the last second full-connected layer.

(a) CE with η = 0.2 (b) FL with η = 0.2 (c) GCE with η = 0.2

(d) CE+SR with η = 0.2 (e) FL+SR with η = 0.2 (f) GCE+SR with η = 0.2

Figure 11. Features visualization for CE (top) and CE+SR (bottom) on CIFAR10 with 0.2 symmetric label noise by t-SNE [26] 2D
embeddings at the last second full-connected layer.



(a) CE with η = 0.8 (b) FL with η = 0.8 (c) GCE with η = 0.8

(d) CE+SR with η = 0.8 (e) FL+SR with η = 0.8 (f) GCE+SR with η = 0.8

Figure 12. Features visualization for CE (top) and CE+SR (bottom) on CIFAR10 with 0.8 symmetric label noise by t-SNE [26] 2D
embeddings at the last second full-connected layer.


