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Abstract

In open set recognition, a classifier has to detect un-
known classes that are not known at training time. In or-
der to recognize new categories, the classifier has to project
the input samples of known classes in very compact and
separated regions of the features space for discriminating
samples of unknown classes. Recently proposed Capsule
Networks have shown to outperform alternatives in many
fields, particularly in image recognition, however they have
not been fully applied yet to open-set recognition. In cap-
sule networks, scalar neurons are replaced by capsule vec-
tors or matrices, whose entries represent different proper-
ties of objects. In our proposal, during training, capsules
features of the same known class are encouraged to match
a pre-defined gaussian, one for each class. To this end, we
use the variational autoencoder framework, with a set of
gaussian priors as the approximation for the posterior dis-
tribution. In this way, we are able to control the compact-
ness of the features of the same class around the center of
the gaussians, thus controlling the ability of the classifier
in detecting samples from unknown classes. We conducted
several experiments and ablation of our model, obtaining
state of the art results on different datasets in the open set
recognition and unknown detection tasks.

1. Introduction
Over the past decade, deep learning has become the dom-

inant approach in many computer vision problems, achiev-
ing spectacular results on many visual recognition tasks
[13, 27, 7, 29]. However, most of these results have been
obtained in a closed set scenario, where a critical assump-
tion is that all samples should belong to at least one labeled
category. When observing a sample from an unknown cat-
egory, closed-set approaches are forced to choose a class
label from one of the known classes, thus limiting their ap-
plicability in dynamic and ever-changing scenarios.

*Indicates equal contributions.

Figure 1: CVAECapOSR Model. Input samples are fed into
the Capsule Network that produces distributions over the
latent space. Each class has its own prior gaussian distribu-
tion in the feature space, that in the figure are represented as
spheres. After training, the known samples (represented as
small points) are clustered around the class target gaussians.
The samples belonging to unknown classes are represented
as black triangles, far from the target distributions.

To overcome such a limitation, open set recognition has
been introduced to enable a classification system to iden-
tify all of known categories, while simultaneously detect-
ing unknown test samples [25, 1]. In the open set scenario,
samples included/excluded in label space are referred to as
knowns/unknowns. Therefore, open set classifiers need to
use incomplete knowledge learned from a finite set of acces-
sible categories to devise effective representations able to
separate knowns from unknowns. Early works have identi-
fied this issue, thus proposing methods employing different
thresholding strategies for rejection of unknowns [25, 1].

Deep neural networks, despite demonstrating strong
capabilities in learning discriminative representations in
closed scenarios, show accuracy degradation within open
set settings [2]. As a naive strategy, modeling a thresh-
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old for Softmax outputs has been demonstrated to be a
sub-optimal solution for deep neural networks to identify
unknowns. Thus the Extreme Value Theory was intro-
duced to better adapt these discriminative models, fully
based on supervised learning, for open-set settings. The
underpinning idea is to calibrate Softmax scores so to es-
timate the probability of unknowns [32, 2]. In addition to
deep discriminative models, deep generative models focus-
ing on learning efficient latent feature representations by
unsupervised leaning, have been widely utilized in open-
set recognition tasks, and have gained successes one after
the other [16, 19, 21, 28]. In particular, The Variational
Auto-Encoder (VAE) is a typical probabilistic generative
model ideal for detecting unknowns, due to its ability in
learning low-dimensional representations in latent space not
only supporting input reconstruction but also approximating
a specified prior distribution. On the other hand, the VAE-
based models may be not sufficiently effective for identi-
fying known categories as all feature representations only
follow one distribution. To this end, we employ a Condi-
tional VAE (CVAE) that uses multiple prior distributions for
modeling the known classes, and indirectly the unknown
counterpart. Furthermore, we propose to represent the in-
put samples with probabilistic capsules, given their already
proved representation power capability [22, 24].

Capsule Networks (CapsNet) [24] were proposed as an
alternative to Convolutional Neural Networks (CNNs). Un-
like CNNs’ scalar neurons, capsules ensemble a group of
neurons to accept and output vectors. The vector of an ac-
tivated capsule represents the various properties of a partic-
ular object, such as position, size, orientation, texture, etc.
In essence, CapsNet can be viewed as an encoder encod-
ing objects by distributed representations, which is expo-
nentially more efficient than encoding them by activating a
single neuron in a high-dimensional space. Besides, Cap-
sNet has been successfully used to detect fake images and
videos in a task setting similar to open set recognition [18].
This motivated us to design a novel capsule network archi-
tecture in combination with CVAE for the open set recog-
nition problem, dubbed CVAECapOSR, that is depicted in
Figure 1.

The contributions of this paper are three-fold: i) We
present a novel open set recognition framework based on
CapsNet and show its advantages for learning an efficient
representation for known classes. ii) We integrate CapsNet
and conditional VAEs. In contrast to general VAEs that en-
courage the latent representation to approximate a single
prior distribution, our model exploits multiple priors (i.e.
one for each class), and it forces the latent representation to
follow the gaussian prior selected by the class of the input
sample. iii) We conduct extensive experiments on all the
standard datasets used for open set recognition, obtaining
very competitive results, that in several cases outperform

previous state of the art methods by a large margin.

2. Related Work
The open set recognition problem was introduced by [25]

and was initially formalized as a constrained minimiza-
tion problem based on Support Vector Machines (SVMs),
whereas subsequent works focused on other more tradi-
tional approaches, such as Extreme Value Theory [9, 26],
sparse representation [34], and Nearest Neighbors [10].

Following the success achieved by deep learning in many
computer vision tasks, deep networks were first introduced
for open set recognition in [2], in which it is proposed an
Openmax function by calibrating the Softmax probability
of each class with a Weibull distribution model. Subse-
quently, [5] extended Openmax to G-Openmax by introduc-
ing a generative adversarial network in which the generator
produces synthetic samples of novel categories and the dis-
criminator learns the explicit representation for unknown
classes. A similar strategy has been adopted in [16], that
presented a data augmentation technique based on genera-
tive adversarial networks, referred as counterfactual images
generation. More recently, Yoshihashi et al. [32] analyzed
and demonstrated the usefulness of training deep networks
jointly for classification and reconstruction in the open set
scenario. Specifically, the authors proposed to separate the
knowns from the unknowns using the representations pro-
duced by the unsupervised training, while maintaining the
discrimination capability of the model using the representa-
tions computed via the supervised learning process.

C2AE [19] introduced an architecture for open set recog-
nition and unknown detection based on class conditioned
VAEs by modelling the reconstruction error of the model
based on the Extreme Value Theory. Sun et al. [28] have
recently argued that one disadvantage of VAE-based archi-
tectures for open set recognition is the inadequate discrim-
inative ability on instances of known classes. Therefore,
the authors employed a conditional Gaussian distribution
VAE model for learning conditional distributions of known
classes and rejecting unknowns. A different approach is
presented in [33], where normalizing flows are employed
for density estimation of known samples. Specifically, the
authors proposed an architecture that uses a CNN encoder
and an invertible neural network that jointly learns the den-
sity of the input. However, a potential issue not discussed in
the paper is that the CNN encoder has no bijective property,
that is crucial to employ the change-of-variables formula for
density evaluation. Additionally, [3] introduced the concept
of reciprocal points in prototype leaning to manage the open
space. Although this work shows excellent performances in
rejecting unknowns coming from a different dataset with
respect to the known samples, the unknown detection ca-
pability degradates when the source of unknown samples is
the same of the known counterpart.



3. Preliminaries
3.1. The Open Set Recognition Problem

In the open set recognition problem the model has
to classify test samples that can belong to classes not
seen during training. Given a classification dataset
D = {(x1, y1), . . . , (xn, yn)} such that xi ∈ X is an input
sample, yi ∈ {1, . . . ,K} is the corresponding category la-
bel, the open set problem consists in the classification of
test samples among K + U classes, where the U are the
number of unknown classes. In the literature, the dataset
used for training is called closed dataset, meanwhile the one
used during evaluation, that contains samples from unseen
classes, is called open dataset. In order to quantify the open-
ness of a dataset during the evaluation, following [25, 16]

we consider the openness measure as O = 1−
√

K
M where

K and M = K + U are the number of classes observed
during training and test, respectively.

3.2. Conditional VAE Formulation

The Conditional Variational Eutoencoder (CVAE) di-
rectly derives from the VAE model [11] and its objective
is based on the estimation of the conditioned density p(x|y)
of the data x given the label y. It is one of the most power-
ful probabilistic generative models for its theory elegancy,
strong framework compatibility and efficient manifold rep-
resentations. The CVAEs commonly consist on an encoder
that maps the input x and class y to a pre-fixed distribution
over the latent variable z, and on a decoder that, given a la-
tent variable z and the class y tries to reconstruct the input
x. During training the model is trained by minimizing the
negative variational lower bound of the conditional density
of the data, defined as follows:

L
[
x, y; θ, φ

]
= DKL

[
qφ(z|x)‖p(z|y)

]
− Eqφ(z|x)

[
log pθ(x|z, y)

]
where qφ(z|x) denotes the posterior of the encoder, and
pθ(z|y) indicates the prior distribution over the latent vari-
able z conditioned on the class y. The first term in the loss
function is a regularizer that enforces the approximate pos-
terior distribution qφ(x|z) to be close to the prior distribu-
tion pθ(z|y), while the second term is the average recon-
struction error of the chained encoding-decoding process.
The original VAE [11], that uses an unconditioned prior
distribution, presumes that pθ(z) is an isotropic multivari-
ate Gaussian N (0, I) and qφ(z|x) is a general multivari-
ate Gaussian N (µ,σ2). With these assumptions, the KL-
divergence term given aK-dimensional z, can be computed
in closed form and expressed as:

DKL

[
qφ(z|x)‖pθ(z)

]
= −1

2

K∑
i

(1+ log(σ2
i )−µ2

i −σ2
i ).

For the CVAE the KL-divergence term can be computed
or estimated using only tractable latent prior distributions
p(z|y) [20].

3.3. CapsNet Formulation

The capsule network, proposed by Hinton et al. [8], is
a shallow architecture composed by two convolutional lay-
ers and two capsule layers. The first convolutional opera-
tion converts the pixel intensities of the input image x to
primary local feature maps, while the second convolutional
layer produces the primary capsules ui. Each capsule cor-
responds to a set of matrices that rotate the primary cap-
sules for predicting the pose transformation ûj|i = Wijui.
Afterwards, the digit capsules vj , used for classification,
are produced as the weighted sum of the primary capsules
vj =

∑
i cijûj|i, where the coefficients cij are determined

by the dynamic routing algorithm (DR), in which the pri-
mary capsules are compared to the digit capsules. For t-th
iteration of DR, the coefficients are updated by,

c
(t+1)
i = Softmax(b

(t+1)
i ), b

(t+1)
ij = b

(t)
ij + ûj|i · v

(t)
j .

For all layers of capsules, a squash function is used to intro-
duce non-linearity and shrunk the length of capsule vectors
into [0, 1],

Squash(v) =
‖v‖2

1 + ‖v‖2
v

‖v‖
.

In this way the norm of the capsule stands for the probability
of a particular feature being present in the input image x.

4. Proposed Method
4.1. Model Architecture

Our model, depicted in Figure 2, is based on a CVAE
with K different gaussian prior distributions, one for each
known class. Given the input image x and its corresponding
label y the encoder processes x producing the feature repre-
sentation xf . Afterward the capsule network computes the
distribution q(z|x) that is pushed toward the conditioned
prior p(z|y) = Ty during the learning process. Using the
distance information between q(z|x) and all the targets we
estimate the class ŷ, and using the reparametrization trick
we sample z from q(z|x). Given ŷ and z we compute the
reconstruction x̂ through the decoder that is a convolutional
neural network that uses transposed convolutions. After this
general description of the computation of our model, we
now present in deep the architecture step by step.

Encoding Stage. The blocks involved in the encoding
stage are an encoder and a capsule network. The encoder is
a convolutional neural network that processes the input im-
age x ∈ RC×H×W producing the feature xf ∈ Rdc×dh×dw .
Then, similar to [24], the capsule network processes the



Figure 2: Outline of our CVAECapOSR model. The dashed orange lines stand for the computation of the model during
training, whereas the solid black lines indicate the computation done by the model both during training and testing time.

feature representation xf by computing the primary cap-

sules xpc ∈ Rf1×(
dc
f1
dhdw) and then the digit capsules

xdc ∈ RK×f2 using the dynamic routing algorithm. We
indicate with f1 the dimension of the primary capsules and
with f2 the dimension of the digit capsules. Given the cap-
sules xdc we compute the mean zµ ∈ RK×d and variance
zσ2 ∈ RK×d of the capsules distribution C = q(z|x) by
applying a capsule-wise fully connected layer with d out-
put units. In this way the probabilistic capsule network pro-
ducesK mean capsules {z(k)µ }Kk=1 andK variance capsules
{z(k)σ2 }Kk=1, each of size d.

Contrastive Variational Stage. We design each CVAE
prior target p(z|y = k) to be a gaussian distribution Tk =

N
(
µ̃k, Σ̃k

)
with learnable mean vector µ̃k ∈ RKd and

learnable diagonal covariance matrix Σ̃k ∈ RKd×Kd with
1 ≤ k ≤ K. In order to simplify the notation of our model
framework we consider the targets Tk as gaussian distribu-
tions defined by µk ∈ RK×d being the reshaped version
of the µ̃k and Σk ∈ RK×d being the reshaped diagonal of
Σ̃k. In order to map input instances from the same class
into compacted and separated regions of the latent space,
during the learning process, we let the probabilistic capsule
C to be attracted by the y-th target distribution Ty and at
the same time we let all the other targets T6=y to be repulsed
by C. Using this contrastive strategy, we encourage the en-
coded representation to belong to the correct region of the
latent space while maintaining all the targets sufficiently far
apart to each other. We then estimate the class ŷ of the input
sample x as:

ŷk = p(y = k|x) = e−γd(C,Tk)∑K
j=1 e

−γd(C,Tj)
, 1 ≤ k ≤ K,

where

d(C,Ti) =
1

K

K∑
k=1

DKL

[
C(k)||T (k)

i

]
,

is the distance between the probabilistic capsules C and the
target Ti, and γ is a coefficient parameter that controls the
hardness of the probability assignment. In this way we es-
timate the probability of x being of class k considering the
whole configuration of capsules {C(k)}Kk=1 and not only the
single most activated capsule as done in [24].

Decoding Stage. Given the class estimate
ŷ ∈ RK we compute its learnable embedding
ŷe = Embedding(argmaxk(ŷk)) ∈ Rd, and given
the sampled latent capsules z ∈ RK×d we compute
the reconstruction x̂ through the decoder starting from
zy ∈ RK×d with z(k)y = ŷe + z(k). The decoder is a
convolutional neural network with transposed convolu-
tions that follows a symmetrical structure of the encoder.
Similar to [23], we implement lateral connections x` with
1 ≤ ` ≤ 4 from the internal features of the encoder to
the decoder that during training are randomly dropout
for making the decoder less dependent from the internal
representations of the encoder.

4.2. Training

We train the model on the closed dataset, and during the
learning process for a single input sample (x, y) we mini-
mize the following loss function:

L(x, y) = LKL(x, y) + αLcontr(x, y) + βLrec(x), (1)

where
LKL(x, y) = d(C, sg

[
Ty
]
), (2)

Lcontr(x, y) =
1

K − 1

K∑
k 6=y

[
mk − d(sg

[
C
]
,Tk)

]+
, (3)



Lrec(x) =
∥∥x̂− x∥∥2

2
. (4)

As already defined in [30], the function sg[·] in Eq. (2)
and Eq. (3) stands for the stop-gradient operator that is de-
fined as the identity at forward computation time and has
zero partial derivatives, constraining its argument to be a
non-updated constant. The loss term in Eq. (2) is responsi-
ble for pushing the probabilistic capsules C toward the tar-
get Ty , leading to the concentration of all the density of
known samples in the targets region. On the other hand, the
contrastive loss term in Eq. (3) pushes all the targets not re-
lated to y far away from the distribution C using a margin
loss with margin mk where [·]+ is the function that returns
the positive part of its argument. By considering T6=y to
be the otherness of Ty , therefore of C, the contrastive term
not only avoid the collapse of the prior targets, but also en-
courages the separation between one class and all the other
classes, potentially the unknown counterpart. Finally, the
loss term in Eq. (4) is the mean squared error reconstruc-
tion between the input and the output of the model. We ag-
gregate all loss terms in Eq. (1) and we control the strength
of Lcontr with a parameter α and the strength of Lrec with
a parameter β. During training we found beneficial to use
teacher forcing in the decoder i.e. we decided to feed y
instead of the estimate ŷ to the decoder, while during vali-
dation and testing we feed only the estimated quantity, en-
abling in this way, the independence of our model respect
to the label y during inference.

4.3. Inference

We use the model’s natural rejection rule based on the
probabilistic distance between samples and targets to detect
unknowns, and directly classify known samples with the
minimum probabilistic distance over than a given threshold.

Given a new sample x we decide if it is an outlier as
follows:

ŷ =


K + 1, if max

k

{
d(C,Tk)

}
= d∗ < τ

argmax
k

{
d(C,Tk)

}
, otherwise.

where τ is found using cross validation, and K + 1 is the
new, unknown class not seen during training.

5. Experiments
Recent works in this area followed the protocol pre-

sented in [16]. In that work, an open set recognition sce-
nario is obtained by randomly selecting K classes from
a specific dataset as known (see below for more details),
while the remaining classes are considered to be open set
classes. This procedure is applied to five random splits.
However, as recently shown by [21], performance across
different splits varies significantly (e.g. AUROC on CI-
FAR10 varied between 77% to 87% across different splits),

and there are serious reproducibility issues. Moreover, not
only the splits have a large influence on the results, but
also the strategy used to select the samples belonging to the
unknown classes. Therefore, starting from the splits used
in [16] and following [21], we publicly release our code and
data1, as well as the implementation of other state-of-the-art
methods, to foster a fair comparison on this task.

5.1. Datasets

We evaluate open set recognition performance on the
standard datasets used in previous works, i.e. MNIST [15],
SVHN [17], CIFAR10 [12], CIFAR+10, CIFAR+50 and
TinyImageNet [14].

MNIST, SVHN, CIFAR10. All three datasets contain
ten categories. MNIST consists of hand-written digit im-
ages, and it has 60, 000 28×28 grayscale images for training
and 10, 000 for testing. SVHN contains street view house
numbers, consisting of ten digit classes each with between
9, 981 and 11, 379 32× 32 color images. Then we consider
the CIFAR10 dataset, which has 50, 000 32 × 32 color im-
ages for training and 10, 000 for testing. Following [16], in
the unknown detection task each dataset is randomly parti-
tioned into 6 known classes and 4 unknown classes. In this
setting, the openness score is fixed to 22.54%.

CIFAR+10, CIFAR+50. To test our model in a setting
of higher openness values, we perform CIFAR+Q experi-
ments using CIFAR10 and CIFAR100 [12]. To this end, 4
known classes are sampled from CIFAR10 and Q unknown
classes are drawn randomly from the more diverse and
larger CIFAR100 dataset. Openness scores of CIFAR+10
and CIFAR+50 are 46.54% and 72.78%, respectively.

TinyImageNet. For TinyImagenet dataset, which is a
subset of ImageNet that contains 200 classes, we randomly
sampled 20 classes as known and the remaining classes as
unknown. In this setting, the openness score is 68.37%.

5.2. Metrics

Open set classification performance is usually measured
using F-score and AUROC (Area Under ROC Curve) [6].
F-score is used to measure the in-distribution classification
performance, while AUROC is commonly reported by both
open set recognition and out-of-distribution detection litera-
ture. AUROC provides a calibration free measure and char-
acterizes the performance for a given score by varying the
discrimination threshold [4]. In our experiments, we use
macro averaged F1-score on the open set recognition task,
and the AUROC for the unknown detection task. For both
metrics, higher values are better.

1Code and data publicly available on https://github.com/
guglielmocamporese/cvaecaposr.

https://github.com/guglielmocamporese/cvaecaposr
https://github.com/guglielmocamporese/cvaecaposr


Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet
Softmax † [28] 0.978 0.886 0.677 0.816 0.805 0.577
Openmax † [2] 0.981 0.894 0.695 0.817 0.796 0.576
G-Openmax † [5] 0.984 0.896 0.675 0.827 0.819 0.580
OSRCI † [16] 0.988 ±0.004 0.91 ±0.01 0.699 ±0.038 0.838 0.827 0.586
CROSR [32] 0.991 ±0.004 0.899 ±0.018 - - - 0.589
C2AE ‡ [19] - 0.892 ±0.013 0.711 ±0.008 0.810 ±0.005 0.803 ±0.000 0.581 ±0.019
GFROR ‡ [21] - 0.955 ±0.018 0.831 ±0.039 - - 0.657 ±0.012
CGDL § [28] 0.977 ±0.008 0.896 ±0.023 0.681 ±0.029 0.794 ±0.013 0.794 ±0.003 0.653 ±0.002
RPL § [3] 0.917 ±0.006 0.931 ±0.014 0.784 ±0.025 0.885 ±0.019 0.881 ±0.014 0.711 ±0.026
CVAECapOSR (ours) 0.992 ±0.004 0.956 ±0.012 0.835 ±0.023 0.888 ±0.019 0.889 ±0.017 0.715 ±0.018

Table 1: AUROC scores on the detection of known and unknown samples. Results are averaged over 5 different splits of
known and unknown classes partitions. As discussed in Section 5.3, we report the results on the same data splits and, for the
sake of clarity, we highlight the source of the results used to populate the table: † are provided by [16], ‡ is from [21] and §
are the results that we obtained by running the code of the original paper.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet
CVAECapOSR fixed Targets 0.997 ±0.006 0.953 ±0.022 0.823 ± ±0.012 0.868 ±0.018 0.829 ±0.009 0.706 ±0.014
CVAECapOSR learn Targets 0.992 ±0.004 0.956 ±0.012 0.835 ± ±0.023 0.888 ±0.019 0.889 ±0.017 0.715 ±0.018

Table 2: AUROC scores on the detection of known and unknown samples comparing our model that uses fixed targets (first
row) versus our model that learns the targets (second row) during the learning process. Results are averaged over 5 splits.

5.3. Experimental Results

Following [28], we conducted two major experiments in
which our model has to solve the unknown detection task
and the open set recognition task. For all the experiments
we use ResNet34 [7] as the encoder backbone of our model.

Unknown Detection. In the unknown detection prob-
lem the model is trained on a subset of the dataset using K
classes, and the evaluation is done by measuring the model
capability on detecting unknown classes, not seen during
training. The evaluation is performed by considering the bi-
nary recognition task of the known vs unknown classes, and
performances are reported in terms of AUROC scores. The
results, shown in Table 1, are averaged over five random
splits of known and unknown classes, provided by [16].

As already discussed (and recently shown in [6, 21]),
performance across different splits varies significantly. For
this reason we use the exact data splits provided by [16]
that have been used also in other recent works [32, 21].
Nevertheless, not all the results reported in these works
are directly comparable; although the splits are the same,
[21] followed a particular strategy in selecting the open set
classes in CIFAR+10 and CIFAR+50 experiments (i.e. they
selected 10 and 50 samples from vehicle classes instead of
purely random classes, which has gained a large impact on
these results). Therefore, following [21], we have run the
code of [28] and [3] (whereas the results of [19] are pro-
vided by [21], since the code is no more available), and we
compare all the results with the state of the art papers that

have the same splits and use the same evaluation setting,
and that can be reproduced. As shown in Table 1, we obtain
state of the art results, outperforming all previous methods,
on all the datasets. Moreover, as also previously reported,
we will release all data and code to guarantee reproducibil-
ity.

One important fact we observed during the training pro-
cess is the boost we obtained by letting the targets distribu-
tions Tk to be learned and not to be used as fixed priors, as
shown in Table 2. We initialized the learnable targets with
µ

(i)
k = 1d · δk=i and Σ

(i)
k = 1d. We noticed that learn-

ing the targets without considering the contrastive term in
the loss function (α = 0) caused the collapse of the targets
into one single distribution, leading to poor results. We thus
consider the contrastive term, and we set α = 1.0, β = 0.05
and mk = 10.

Open Set Recognition. In the open set recognition prob-
lem, the model is trained on the closed dataset that con-
tains K classes, and it is evaluated on the open dataset
considering K + 1 classes. In this experimental setting,
we evaluate the model using the macro F1-score on the
K + 1 classes. In the first experiment for open set recog-
nition, we train on all the classes of the MNIST dataset
and we then evaluate the performances by including new
datasets in the open set. Similarly to [32], we used Om-
niglot, MNIST-Noise, and Noise that are datasets of gray-
scale images. Each of this dataset contains 10, 000 test im-
ages, the same as MNIST. The Omniglot dataset contains



Method Omniglot MNIST-noise Noise
Softmax [28] 0.595 0.801 0.829
Openmax [5] 0.780 0.816 0.826
CROSR [32] 0.793 0.827 0.826
CGDL [28] 0.850 0.887 0.859
CVAECapOSR (ours) 0.971 0.982 0.982

Table 3: Results for the open set recognition on the MNIST
dataset. We report the macro-averaged F1-score for 11
classes (10 from the test partition of the MNIST, and 1 from
the test of another dataset).

AUROC scores w.r.t. different Openness Values (O)
Openness Variation: O = 0% O = 15.98% O = 30.72% O = 39.69%

Influence of the Feature Extractor (before CapsNet)
CapsNet 0.971 0.753 0.767 0.781
ResNet20 + CapsNet 0.981 0.948 0.949 0.950
Improvement +0.020 +0.195 +0.182 +0.169

Influence of CapsNet
ResNet20 + FC 0.975 0.581 0.595 0.606
ResNet20 + CapsNet 0.981 0.948 0.949 0.950
Improvement +0.006 +0.367 +0.354 +0.344

Influence of Dynamic Routing
ResNet20 + CapsNet 0.981 0.948 0.949 0.950
ResNet20 + CapsNet + DR 0.982 0.952 0.954 0.955
Improvement +0.001 +0.004 +0.005 +0.005

Table 4: Ablation study on the model architecture. We
report results for the unknown detection task on SVHN
dataset with outliers from CIFAR100. The performance is
evaluated by AUROC with different openness values.

hand-written characters from the alphabets of many lan-
guages, while the Noise dataset has images synthesized by
randomly sampling each pixel value independently from a
uniform distribution on [0, 1]. MNIST-Noise is also a syn-
thesized set, constructed by superimposing MNIST’s test
images on Noise. The results of the open set recognition
on these datasets are shown in Table 3. On each dataset,
we outperform state of the art results by a large margin.
On Omniglot, we improve the F1-score by +0.121, in the
MNIST-Noise by +0.095, and in the Noise by +0.123.

In the second experiment of open set recognition, fol-
lowing the same protocol used in [16], all samples from
the 10 classes in CIFAR10 dataset are considered as known
data, and samples from ImageNet and LSUN are selected
as unknown samples. In order to have the same image
size as known samples, we resized or croped the unknown
samples, obtaining the following datasets: ImageNet-crop,
ImageNet-resize, LSUN-crop, and LSUN-resize. For each
dataset, we consider all their 10, 000 test samples as the un-
known samples in the open set. The performance of the
method is evaluated using the macro-averaged F1-scores in
the 11 classes (10 known classes and 1 unknown), and the
results are shown in Table 5. We can see that our method
outperforms all previous methods under the F1-score on

ImageNet-resize, ImageNet-crop, LSUN-crop, and LSUN-
resize.

Ablation Study on the Model Architecture. In or-
der to verify the contribution of each part of our model,
we perform ablation on the relevance of the main model’s
components: the capsule network CapsNet, and the fea-
ture extractor. ResNet20 is selected as the feature ex-
tractor for getting shorter training times. We investigate
also the impact of different components of CapsNet, in
order to understand their importance. We consider four
different variations of our model architecture: the model
with CapsNet and dynamic routing that does not use the
ResNet20 feature extractor, but just a single convolutional
layer; ResNet20+CapsNet that includes the residual feature
extractor before CapsNet and doesn’t use dynamic rout-
ing; ResNet20+FC where a fully connected layer replaces
CapsNet; and ResNet20+CapsNet+DR that implements dy-
namic routing in CapsNet. For all CapsNets that do not im-
plement the dynamic routing, we process each capsule by
a fully connected layer. For the ablation, we consider the
entire SVHN dataset as the closed dataset, and we consider
unknown samples from the CIFAR100 for the open dataset.
We then consider different numbers of unknown classes of
CIFAR100, leading to different openness values O. The re-
sults of the ablation analysis are reported in Table 4. We
can see that the residual network used as a feature extractor
in the encoder helps, especially when the openness O of the
open set increases. This fact highlights the importance of
having already pre-processed features for the CapsNet on
the unknown detection problem when openness increases.
Furthermore, another emerging fact is the higher represen-
tation capability of the CapsNet with respect to a FC layer:
as the openness increases, the AUROC improvement in-
creases up to +0.344. This result suggests that capsules are
more capable in detecting unknown samples with respect to
standard artificial neurons. This fact emerges also from the
t-SNE [31] visualization of the latent space, reported in Fig-
ure 3, where the separation between known and unknown
produced by the probabilistic capsules is more evident with
respect to the one produced by a standard FC. Finally, from
the experiments we see that dynamic routing achieves bet-
ter performances with respect to not using it, and that the
largest boost on using the capsule network is given by the
pose transformation.

Implementation details. We also investigated the im-
portance of the parameters α, β, mk and γ. To this end,
we conducted the unknown detection experiment with the
ResNet20+CapsNet+DR architecture on SVHN, using CI-
FAR100 as the open dataset with openness O = 30.72%.
As suggested by the results reported in Table 6, we set
α = 1.0 and mk = 10.0 and, finally, we set β = 0.05
and γ = 1 empirically.



(a) CVAECapOSR with Capsules (b) CVAECapOSR with Standard Neurons

Figure 3: t-SNE latent space visualizations obtained with different components (i.e., (a) Capsules, (b) Standard Neurons) of
the SVHN test set including the CIFAR+100 test set from which unknown samples are sampled. In particular, we use an
openness value of O = 35.67%. In both pictures, the unknown samples are represented by black triangles.

Method ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize
Softmax † [28] 0.639 0.653 0.642 0.647
Openmax † [2] 0.660 0.684 0.657 0.668
CROSR [32] 0.721 0.735 0.720 0.749
C2AE ‡ [19] 0.837 0.826 0.783 0.801
CGDL § [28] 0.840 0.832 0.806 0.812
RPL § [3] 0.811 0.810 0.846 0.820
CVAECapOSR (ours) 0.857 0.834 0.868 0.882

Table 5: Open set recognition results on CIFAR-10 with various outliers added to the test set as unknowns. We evaluate the
model using macro-averaged F1-scores on 11 classes (10 from the the test of the CIFAR10, and 1 from various test datasets).
For the sake of clarity, we highlight the source of the results used to populate the table: † are provided by [16], ‡ is from [21]
and § are the results that we obtained by running the code of the original paper

Contr. Params mk = 5.0 mk = 10.0 mk = 20.0
α = 0.5 0.527 0.564 0.947
α = 1.0 0.937 0.954 0.949
α = 2.0 0.944 0.951 0.945

Table 6: AUROC scores for different values of the param-
eters α, mk in the loss function. Red cells indicate that
targets during the learning process overlap at some point,
leading to poor results. Green cells indicate no collapse of
prior targets, suggesting good values for α, and mk.

6. Conclusion

In this paper, we introduced CVAECapOSR, a model for
open set recognition based on CVAE that produces proba-
bilistic capsules as latent representations through the cap-
sule network. We extended the standard framework of
CVAEs using multiple gaussian prior distributions rather
than just one for all known classes in the closed dataset.
Furthermore, targets are set to be learnable in order to clus-

ter knowns inside their target regions. The contrastive term
is used to model the otherness for known classes and to keep
the target regions to be mutually separated. Experimental
results, obtained on several datasets, show the effectiveness
and the high performances on unknown detection and open
set recognition tasks.
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