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ABSTRACT

Event cameras are ideally suited to capture HDR visual information without blur but perform poorly on static
or slowly changing scenes. Conversely, conventional image sensors measure absolute intensity of slowly
changing scenes effectively but do poorly on high dynamic range or quickly changing scenes. In this paper, we
present an event-based video reconstruction pipeline for High Dynamic Range (HDR) scenarios. The proposed
algorithm includes a frame augmentation pre-processing step that deblurs and temporally interpolates frame
data using events. The augmented frame and event data are then fused using a novel asynchronous Kalman
filter under a unifying uncertainty model for both sensors. Our experimental results are evaluated on both
publicly available datasets with challenging lighting conditions and fast motions and our new dataset with
HDR reference. The proposed algorithm outperforms state-of-the-art methods in both absolute intensity error
(48% reduction) and image similarity indexes (average 11% improvement).

Code, Datasets and Video:
https://github.com/ziweiWWANG/AKF

1 Introduction

Event cameras offer distinct advantages over conventional frame-based cameras: high temporal resolution, high dynamic range
(HDR) and minimal motion blur [24]. However, event cameras provide poor imaging capability in slowly varying or static scenes,
where despite some efforts in ‘gray-level’ event cameras that measure absolute intensity [35, 6], most sensors predominantly
measure only the relative intensity change. Conventional imaging technology, conversely, is ideally suited to imaging static
scenes and measuring absolute intensity. Hybrid sensors such as the Dynamic and Active Pixel Vision Sensor (DAVIS) [4] or
custom-built systems [53] combine event and frame-based cameras, and there is an established literature in video reconstruction
fusing conventional and event camera data [43, 32, 31, 53]. The potential of such algorithms to enhance conventional video to
overcome motion blur and increase dynamic range has applications from robotic vision systems (e.g., autonomous driving),
through film-making to smartphone applications for everyday use.

?Wang, Z., Ng, Y., Scheerlinck, C., Mahony R. (2021), “An Asynchronous Kalman Filter for Hybrid Event Cameras”, published in IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 448-457, IEEE DOI: 10.1109/ICCV48922.2021.00050
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redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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(a) Input LDR Image (b) E2VID [39]

(c) CF [43] (d) Our AKF Reconstruction

Figure 1: An example with over exposure and fast camera motion causing blur taken from the open-source event camera dataset IJRR [29].
Image (a) is the low dynamic range (LDR) and blurry input image. Image (b) is the result of state-of-the-art method E2VID [39] (uses events
only). Image (c) is the result of filter-based image reconstruction method CF [43] that fuses events and frames. Our AKF (d) generates sharpest
textured details in the overexposed areas.

In this paper, we propose an Asynchronous Kalman Filter (AKF) to reconstruct HDR video from hybrid event/frame cameras.
The key contribution is based on an explicit noise model we propose for both events and frames. This model is exploited to
provide a stochastic framework in which the pixel intensity estimation can be solved using an Extended Kalman Filter (EKF)
algorithm [17, 18]. By exploiting the temporal quantisation of the event stream, we propose an exact discretisation of the EKF
equations, the Asynchronous Kalman Filter (AKF), that is computed only when events occur. In addition, we propose a novel
temporal interpolation scheme and apply the established de-blurring algorithm [31] to preprocess the data in a step called frame
augmentation. The proposed algorithm demonstrates state-of-the-art hybrid event/frame image reconstruction as shown in Fig. 1.

We compare our proposed algorithm with the state-of-the-art event-based video reconstruction methods on the popular public
datasets ACD [43], CED [46] and IJRR [29] with challenging lighting conditions and fast motions. However, existing public
datasets using DAVIS event cameras do not provide HDR references for quantitative evaluation. To overcome this limitation, we
built a hybrid system consisting of a high quality RGB frame-based camera mounted alongside a pure event camera to collect
high quality events, and HDR groundtruth from multiple exposures taken from the RGB camera. Thus, we also evaluate the
qualitative and quantitative performance of our proposed algorithm on our proposed HDR hybrid event/frame dataset. Our AKF
achieves superior performance to existing event and event/frame based image reconstruction algorithms.

In summary, our contributions are:

• An Asynchronous Kalman Filter (AKF) for hybrid event/frame HDR video reconstruction
• A unifying event/frame uncertainty model
• Deblur and temporal interpolation for frame augmentation
• A novel real-world HDR hybrid event/frame dataset with reference HDR images and a simulated HDR dataset for

quantitative evaluation of HDR performance.

2 Related Work

Recognising the limited ability of pure event cameras (DVS) [24] to detect slow/static scenes and absolute brightness, hybrid
event/frame cameras such as the DAVIS [4] were developed. Image frames and events are captured through the same photodiode
allowing the two complementary data streams to be exactly registered [5]. This has led to significant research effort into
image reconstruction from hybrid event/frame and pure event cameras including SLAM-based methods [21, 37], filters [43, 44],
de-blurring [32, 31], machine learning approaches [39, 45, 49].

Video and image reconstruction methods may be grouped into (i) per-event asynchronous algorithms that process events upon
arrival [5, 52, 43] and (ii) batch (synchronous) algorithms that first accumulate a significant number (e.g., 10k) of events before
processing the batch in one go [33, 39, 45]. While batch methods have achieved high accuracy, they incur additional latency
depending on the time-interval of the batch (e.g., 50ms). Asynchronous methods, if implemented on appropriate hardware,
have the potential to run on a timescale closer to that of events < 1ms. A further distinction may be made between pure event
reconstruction methods and hybrid event/frame methods that use a mix of (registered) events and image frames.
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Pure event reconstruction: Images and video reconstruction using only events is a topic of significant interest in the community
that can shed light on the information content of events alone. Early work focused on a moving event camera in a static scene,
either pure rotations [7, 20] or full 6-DOF motion [21, 37]. Hand-crafted approaches were proposed including joint optimisation
over optic flow and image intensity [2], periodic regularisation based on event timestamps [40] and temporal filtering [43, 44].
Recently, learned approaches have achieved surprisingly high quality video reconstruction [38, 39, 45, 49] at significantly higher
computational cost vs. hand-crafted methods.

Event/frame reconstruction: The invention of the DAVIS [4] and its ability to capture frames alongside events (and even IMU
measurements) has widened the community’s perspective from pure event cameras to hybrid sensors and how best to combine
modalities. An early algorithm interpolated between frames by adding events scaled by the contrast threshold until a new frame
is received [5]. The contrast threshold is typically unknown and variable so [5] includes a method to estimate it based on
surrounding image frames from the DAVIS. Pan et al. [32, 31] devised the event double integral (EDI) relation between events
and a blurry image, along with an optimisation approach to estimate contrast thresholds to reconstruct high-speed de-blurred
video from events and frames. High-speed video can also be obtained by warping still images according to motion computed via
events [47, 26], or by letting a neural network learn how to combine frames and events [34, 54, 33, 25, 15]. Recognising the
limited spatial resolution of the DAVIS, Han et al. [12] built a hybrid event/frame system consisting of an RGB camera and a
DAVIS240 event camera registered via a beam-splitter. An event guided HDR imaging pipeline was used to fuse frame and event
information [12].

Continuous-time temporal filtering is an approach that exploits the near-continuous nature of events. Scheerlinck et al. [43, 44]
proposed an asynchronous complementary filter to fuse events and frames that can equivalently be run as a high-pass filter if the
frame input is set to zero (i.e., using events only). The filters are based on temporal smoothing via a single fixed-gain parameter
that determines the ‘fade rate’ of the event signal.

Multi-exposure image fusion (MEIF): The most common approach in the literature to compute HDR images is to fuse multiple
images taken with different exposures. Ma et al. [27] proposed the use of structural patch decomposition to handle dynamic
objects in the scene. Kalantari and Ramamoorthi [16] proposed a deep neural network and a dataset for dynamic HDR MEIF.
More recent work also deals with motion blur in long exposure images [50, 23]. These methods directly compute images that do
not require additional tone mapping to produce nice looking images [36]. However, all these works require multiple images at
different exposures of the same scene and cannot be applied to the real-time image reconstruction scenarios considered in this
paper.

3 Sensor Model and Uncertainty

3.1 Event Camera Model

Event cameras measure the relative log intensity change of irradiance of pixels. New events eip are triggered when the log
intensity change exceeds a preset contrast threshold c. In this work, we model events as a Dirac delta or impulse function δ [1] to
allow us to apply continuous-time systems analysis for filter design. That is,

ep(t) =

∞∑
i=1

(cσip + ηip)δ(t− tip), (1)

ηip ∼ N (0, Qp(t)) ,

where tip is the time of the ith event at the p = (px,py)T pixel coordinate, the polarity σip ∈ {−1,+1} represents the direction
of the log intensity change, and the noise ηip is an additive Gaussian uncertainty at the instance when the event occurs. The noise
covariance Qp(t) is the sum of three contributing noise processes; ‘process’ noise, ‘isolated pixel’ noise, and ‘refractory period’
noise. That is

Qp(t) :=

∞∑
i=1

(
Qproc.

p (t) +Qiso.
p (t) +Qref.

p (t)
)
δ(t− tip). (2)

We further discuss the three noise processes in the next section.

3.1.1 Event Camera Uncertainty

Stochastic models for event camera uncertainty are difficult to develop and justify [10]. In this paper, we propose a number of
simple heuristics to model event noise as the sum of three pixel-by-pixel additive Gaussian processes.

Process noise: Process noise is a constant additive uncertainty in the evolution of the irradiance of the pixel, analogous to
process noise in a Kalman filtering model. Since this noise is realised as an additive uncertainty only when an event occurs, we
call on the principles of Brownian motion to model the uncertainty at time tip as a Gaussian process with covariance that grows
linearly with time since the last event at the same pixel. That is

Qproc.
p (tip) = σ2

proc.(t
i
p − ti−1

p ),
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where σ2
proc. is a tuning parameter associated with the process noise level.

Isolated pixel noise: Spatially and temporally isolated events are more likely to be associated to noise than events that are
correlated in group. The noisy background activity filter [9] is designed to suppress such noise and most event cameras have
similar routines that can be activated. Instead, we model an associated noise covariance by

Qiso.
p (tip) = σ2

iso. min{tip − t∗N(p)},

where σ2
iso. is a tuning parameter and t∗N(p) is the latest time-stamp of any event in a neighbourhood N(p) of p. If there are

recent spatio-temporally correlated events then Qiso.
p (tip) is negligible, however, the covariance grows linearly, similar to the

Brownian motion assumption for the process noise, with time from the most recent event.

Refractory period noise: Circuit limitations in each pixel of an event camera limit the response time of events to a minimum
known as the refractory period ρ > 0 [55]. If the event camera experience fast motion in highly textured scenes then the pixel
will not be able to trigger fast enough and events will be lost. We model this by introducing a dependence on the uncertainty
associated with events that are temporally correlated such that

Qref.
p (tip) =

{
0 if tip − ti−1

p > ρ,
σ2

ref. otherwise,

where σ2
ref. is a tuning parameter and ρ is an upper bound on the refractory period.

3.2 Conventional Camera Model

The photo-receptor in a CCD or CMOS circuit from a conventional camera converts incoming photons into charge that is then
converted to a pixel intensity by an analogue-to-digital converter (ADC). In a typical camera, the camera response is linearly
related to the pixel irradiance for the correct choice of exposure, but can become highly non-linear where pixels are overexposed
or underexposed [28]. In particular, effects such as dark current noise, CCD saturation, and blooming destroy the linearity of the
camera response at the extreme intensities [22]. In practice, these extreme values are usually trimmed, since the data is corrupted
by sensor noise and quantisation error. However, the information that can be gained from this data is critically important for
HDR reconstruction. The mapping of the scaled sensor irradiance (a function of scene radiance and exposure time) to the camera
response is termed the Camera Response Function (CRF) [11, 41]. To reconstruct the scaled irradiance Ip(τk) at pixel p at time
τk from the corresponding raw camera response IFp (τk) one applies the inverse CRF

Ip(τk) = CRF−1(IFp (τk)) + µ̄kp, (3)

µ̄kp ∼ N (0, R̄p(τk)),

where µ̄kp is a noise process that models noise in Ip(τk) corresponding to noise in IFp mapped back through the inverse CRF.
This inverse mapping of the noise is critical in correctly modelling the uncertainty of extreme values of the camera response.

3.2.1 Conventional Camera Uncertainty

The noise of Ip(τk) comes from uncertainty in the raw camera response IFp (τk) mapped through the inverse of the Camera
Response Function (CRF). The uncertainty associated with sensing process IFp (τk) is usually modelled as a constant variance
Gaussian process [48, 42] although for low light situations this should properly be a Poisson process model [13]. The quantisation
noise is uniform over the quantisation interval related to the number of bits used for intensity encoding. Since the CRF compresses
the sensor response for extreme intensity values, the quantisation noise will dominate in these situations. Conversely, for correct
exposure settings, the quantisation noise is insignificant and a Gaussian sensing process uncertainty provides a good model [13].
Inverting this noise model through the inverse of the CRF function then we expect the variance R̄p(τk) in (3) to depend on
intensity of the pixel: it should be large for extreme intensity values and roughly constant and small for well exposed pixels.

The CRF can be estimated using an image sequence taken under different exposures [8, 11, 41]. For long exposures, pixels
that would have been correctly exposed become overexposed and provide information on the nonlinearity of the CRF at high
intensity, and similarly, short exposures provide information for the low intensity part of the CRF. We have used this approach to
estimate the CRF for the APS sensor on a DAVIS event camera and a FLIR camera. In the experiment, we use the raw image
intensity as the measured camera response.

Following [41], the exposure time is linearly scaled to obtain the scaled irradiance in the range of raw camera response. In this
way, the camera response function CRF(·) is experimentally determined as a function of the scaled irradiance I . The Certainty
function f c(·) is defined to be the sensitivity of the CRF with respect to the scaled irradiance

f c :=
dCRF

dI
, (4)

and it is renormalised so that the maximum is unity [41]. Note that different cameras can have dissimilar camera responses for
the same irradiance of the sensor.

4
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Figure 2: Weighting function fw(·) and image covariance function R̄p for the APS camera in a DAVIS event/frame camera (blue) and the
FLIR camera (red) used in the experimental studies.

Remapping the I axis of the Certainty function f c(·) to camera response IF defines the Weighting function fw(·) (Fig 2.a) as a
function of camera response [41]

fw :=
dCRF

dI
◦ CRF−1, (5)

where ◦ defines function composition.

Inspired by [41], we define the covariance of noise associated with raw camera response as

R̄p := σ2
im.

1

fw(IF )
, (6)

where σ2
im. is a tuning parameter related to the base level of noise in the image (see Fig. 2.b. for σ2

im. = 1). Note that we also
introduce a saturation to assign a maximum value to the image covariance function (Fig. 2.b).

In addition to the base uncertainty model for Ip(τk), we will also need to model the uncertainty of frame information in the
interframe period and in the log intensity scale for the proposed algorithm. We use linear interpolation to extend the covariance
estimate from two consecutive frames Ip(τk) and Ip(τk+1) by

R̄p(t) :=
( t− τk
τk+1 − τk

)
R̄p(τk+1) +

( τk+1 − t
τk+1 − τk

)
R̄p(τk). (7)

We define the continuous log image intensity function by taking the log of Ip. However, the log function is not symmetric and
mapping the noise from Ip will bias the log intensity. Using Taylor series expansion, the biased log intensity is approximately

LFp (τk) ≈ log
(
Ip(τk) + I0

)
− R̄p(τk)

2(Ip(τk) + I0)2
+ µkp,

µkp ∼ N (0, Rp(τk)), (8)

where I0 is a fixed offset introduced to ensure intensity values remain positive and Rp(τk) is the covariance of noise associated
with the log intensity. The covariance is given by

Rp(t) =
R̄p(t)

(Ip(τk) + I0)2
. (9)

Generally, when Ip(τk) is not extreme then R̄p(t)
2(Ip(τk)+I0)2

� log
(
Ip(τk) + I0

)
and LFp (τk) ≈ log

(
Ip(τk) + I0

)
.

4 Method

The proposed image processing architecture is shown in Fig. 3. There are three modules in the proposed algorithm; a frame
augmentation module that uses events to augment the raw frame data to remove blur and increase temporal resolution, the
Asynchronous Kalman Filter (AKF) that fuses the augmented frame data with the event stream to generate HDR video, and the
Kalman gain module that integrates the uncertainty models to compute the filter gain.

5
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Figure 3: Block diagram of the image processing pipeline discussed in §4.
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Figure 4: Frame augmentation. Two deblurred frames at times τk − T
2

and τk+1 + T
2

are computed. The event stream is used to interpolate
between the two deblurred frames to improve temporal resolution.

4.1 Frame Augmentation

Deblur: Due to long exposure time or fast motion, the intensity images LF may suffer from severe motion blur. We use the
double integral model (EDI) from [32] to sharpen the blurry low frequency images to obtain a deblurred image LDp (τk − T/2)

at the beginning, and LDp (τk+1 + T/2) at the end, of the exposure of each frame (Fig. 4). The two sharpened images are used in
the interpolation module.

Interpolation: The goal of the interpolation module is to increase the temporal resolution of the frame data. This is important
to temporally align the information in the image frames and event data, which helps to overcome the ghosting effects that are
visible in other recent work where the image frames are interpolated using zero order hold [43, 44].

To estimate intensity at the ith event timestamp at pixel p, we integrate forward from a deblurred image LDp (τk − T/2) taken
from the start of the exposure (Fig. 4). The forward interpolation is

LA−p (t) = LDp (τk − T/2) +

∫ t

τk−T/2
e(γ)dγ, (10)

where LA−p denotes the augmented image. Similarly, we interpolate backwards from the end of exposure k + 1 to obtain

LA+
p (t) = LDp (τk+1 + T/2)−

∫ τk+1+T/2

t

e(γ)dγ. (11)

Ideally, if there are no missing or biased events and the frame data is not noisy, then the forwards and backwards interpolation
results LA−p (tip) and LA+

p (tip) computed with the true contrast threshold should be equal. However, noise in either the event
stream or in the frame data will cause the two interpolations to differ. We reconcile these two estimates by per-pixel calibration

6
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of the contrast threshold in each interpolation period. Define the scaling factor of the contrast threshold

ckp :=
LDp (τk+1 + T/2)− LDp (τk − T/2)∫ τk+1+T/2

τk−T/2 e(γ)dγ
. (12)

This calibration can be seen as using the shape provided by the event integration between deblurred frames and scaling the
contrast threshold to vertically stretch or shrink the interpolation to fit the deblurred frame data (Fig. 4). This is particularly
effective at compensating for refractory noise where missing events are temporally correlated to the remaining events. Using the
outer limits of the exposure for the deblurred image maximises the number of events (per-pixel) in the interpolation period and
improves the estimation of ckp.

Within each exposure (frame k) there is a forward and backward estimate available with different per-pixel contrast thresholds
associated with interpolating from frame k − 1 to k, k to k + 1. We smoothly interpolate between estimates in the exposure
period to define the final augmented frame

LAp (t) =



(
τk+T/2−t

T

)
LA−p (t) +

(
t−τk+T/2

T

)
LA+
p (t)

if t ∈ [τk − T/2, τk + T/2),
LA+
p (t)

if t ∈ [τk + T/2, τk+1 − T/2).

(13)

4.2 Asynchronous Kalman Filter (AKF)

In this section, we introduce the Kalman filter that integrates the uncertainty models of both event and frame data to compute the
filter gain dynamically. We propose a continuous-time stochastic model of the log intensity state

dLp = ep(t)dt+ dwp,

LAp (tip) = Lp(tip) + µip,

where dwp is a Wiener process (continuous-time stochastic process) and µip is the log intensity frame noise (8) in continuous
time associated with the models introduced in §3.1 and §3.2. Here LAp (tip) is the augmented image (see LA(t) in Fig. 3) and the
notation serves also as the measurement equation where Lp(tip) is the true (log) image intensity.

The ordinary differential equation (ODE) of the proposed filter state estimate is

˙̂
Lp(t) = ep(t)−Kp(t)[L̂p(t)− LAp (t)], (14)

where Kp(t) is the Kalman gain defined below (18). The Kalman-Bucy filter that we implement is posed in continuous-time and
updated asynchronously as each event arrives. At each new event timestamp tip, the filter state is updated as

L̂p(tip) = L̂p(ti−p ) + ep(tip). (15)

Within a time-interval t ∈ [tip, t
i+1
p ) where there are no new events or frames we solve the following ODE as a discrete update

˙̂
Lp(t) = −Kp(t)[L̂p(t)− LAp (t)] for t ∈ [tip, t

i+1
p ). (16)

Substituting the Kalman gain Kp(t) from (18) and (20), the analytic solution of (16) between frames or events is

L̂p(t) =
[L̂p(tip)− LAp (tip)] · P−1

p (tip)

P−1
p (tip) +R−1

p (t) · (t− tip)
+ LAp (t). (17)

The detailed derivation of L̂p(t) is shown in the supplementary material §6.

4.3 Asynchronous Kalman Gain

The Asynchronous Kalman filter computes a pixel-by-pixel gainKp(t) derived from estimates of the state and sensor uncertainties.
The Kalman gain is given by [17, 18]

Kp(t) = Pp(t)R−1
p (t), (18)

where Pp(t) > 0 denotes the covariance of the state estimate in the filter and Rp(t) (9) is the log-intensity frame covariance of
pixel p. The standard Riccati equation [19, 56] that governs the evolution of the filter state covariance [18] is given by

Ṗp(t) = −P 2
pR
−1
p (t) +Qp(t),

7
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Figure 5: Comparison of state-of-the-art event-based video reconstruction methods on sequences with challenging lighting conditions and fast
motions, drawn from the open-source datasets ACD [43], CED [46] and IJRR [29]. CF [43] fails to capture details under extreme lighting
conditions and suffers from a ‘shadowing effect’ (white or black shadows trailing behind dark or bright moving objects). E2VID [39] and
AKF are able to reconstruct the blurry right turn sign in the high-speed, low-light Night drive dataset and the overexposed regions in the
Shadow and Outdoor running dataset. But without frame information, E2VID [39] fails to compute the static background of Shadow, and
only provides washed-out reconstructions in all three sequences. AKF outperforms the other methods in all challenging scenarios. Additional
image and video comparisons are provided in the supplementary material.

where Qp(t) (2) is the event noise covariance. Here the choice of event noise model (2) as a discrete noise that occurs when the
update of information occurs means that the Riccati equation can also be solved during the time interval t ∈ [tip, t

i+1
p ) and at

new event timestamp ti+1
p separately.

In the time interval t ∈ [tip, t
i+1
p ) (no new events or frames occur), the state covariance Pp(t) is asynchronously updated by the

ordinary differential equation

Ṗp(t) = −P 2
p(t) ·R−1

p (t). (19)

Computing Rp(t) from (6)-(9) on this time interval then the solution of (19) is

Pp(t) =
1

P−1
p (tip) +R−1

p (t) · (t− tip)
,

for t ∈ [tip, t
i+1
p ). (20)

At the new event timestamp ti+1
p , the state covariance Pp(t) is updated from the timestamp t(i+1)−

p such that

Pp(ti+1
p ) = Pp(t(i+1)−

p ) +Qp(ti+1
p ). (21)

The explicit solution of Kalman filter gain is obtained by substituting (20) and (21) to (18). See derivation of Pp(t) in the
supplementary material §5. The solution is substituted into (14) to obtain (17).

5 Hybrid Event/Frame Dataset

Evaluating HDR reconstruction for hybrid event/frame cameras requires a dataset including synchronised events, low dynamic
range video and high dynamic range reference images. The dataset associated with the recent work by [12] is patent protected
and not publicly available. Published datasets lack high quality HDR reference images, and instead rely on low dynamic range
sensors such as the APS component of a DAVIS for groundtruth [49, 58, 29]. Furthermore, these datasets do not specifically
target HDR scenarios. DAVIS cameras used in these datasets also suffer from shutter noise (noise events triggered by APS frame
readout) due to undesirable coupling between APS and DVS components of pixel circuitry [4].

8
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Figure 6: Typical results from the proposed HDR and AHDR dataset. Our HDR dataset includes referenced HDR images generated by fusing
several images of various exposures. Our AHDR dataset is simulated by saturating the values of well-exposed real images, taking out most of
the details. The original images are used as HDR references. E2VID [39] uses events only. The input images used in the CF [43] and AKF are
low dynamic range. CF [43] leads to shadows on moving object edges. E2VID [39] performs poorly on the dark trees in the HDR dataset and
the road/sky in the AHDR dataset. Our AKF correctly computes the underexposed and overexposed trees in the HDR dataset and reconstructs
the mountain road clearly in the artificially saturated regions.

Table 1: Comparison of state-of-the-art event-based video reconstruction methods E2VID [39], ECNN [49] and CF [43] on the proposed HDR
and AHDR dataset. Metrics are evaluated over the full dataset of 9 sequences. Our AKF outperforms the compared methods on all metrics.
Detailed evaluation on each sequence can be found in the supplementary material. Higher SSIM and Q-score and lower MSE indicate better
performance.

Metrics MSE (×10−2) ↓ SSIM [51] ↑ Q-score [30] ↑
Methods E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours)

HDR 7.76 11.43 6.22 1.71 0.616 0.31 0.66 0.89 4.32 3.41 3.01 4.83
AHDR 11.56 21.23 5.28 4.18 0.50 0.04 0.62 0.75 5.24 3.36 4.78 5.54

To address these limitations, we built a hybrid event/frame camera system consisting of two separate high quality sensors, a
Prophesee event camera (VGA, 640×480 pixels) and a FLIR RGB frame camera (Chameleon3 USB3, 2048×1536 pixels,
55FPS, lens of 4.5mm/F1.95), mounted side-by-side. We calibrated the hybrid system using a blinking checkerboard video and
computed camera intrinsic and extrinsic matrices following [14, 57]. We synchronised the two cameras by sending an external
signal from the frame camera to trigger timestamped zero magnitude events in the event camera.

We obtained an HDR reference image for quantitative evaluation of a sequence via traditional multi-exposure image fusion
followed by an image warp to register the reference image with each frame. The scene in the proposed dataset is chosen to be
static and far away from the camera, so that SURF feature matching [3] and homography estimation are sufficient for the image
registration.

We also provide an artificial HDR (AHDR) dataset that was generated by simulating a low dynamic range (LDR) camera by
applying an artificial camera response function and using the original images as HDR references. We synthesised LDR images in
this manner to provide additional data to verify the performance of our algorithm.

6 Experiments

We compared our proposed Asynchronous Kalman Filter (AKF) with three state-of-the-art event-based video reconstruction
methods: E2VID [39] and ECNN [49] are neural networks that use only events to reconstruct video, while CF [43] is a filter-based
method that combines events and frames. In Fig. 5, we evaluate these methods on some challenging sequences from the popular
open-source event camera datasets ACD [43], CED [46] and IJRR [29]. We also evaluate these methods on the proposed HDR
and AHDR dataset in Fig. 6 and Table 1.

Evaluation: We quantitatively evaluated image reconstruction quality with the HDR reference in the proposed dataset using
the following metrics: Mean squared error (MSE), structural similarity Index Measure (SSIM) [51], and Q-score [30]. SSIM
measures the structural similarity between the reconstructions and references. Q-score is a metric tailored to HDR full-reference
evaluation. All metrics are computed on the un-altered reconstruction and raw HDR intensities.

Main Results: The open-source event camera datasets ACD [43], CED [46] and IJRR [29] are popularly used in several
event-based video reconstruction works. Without HDR references, we only visually evaluate on the challenging HDR scenes
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from these datasets in Fig. 1 and 5. Night drive investigates extreme low-light, fast-speed, night driving scenario with blurry
and underexposed/overexposed DAVIS frames. Shadow evaluates the scenario of static background, dynamic foreground objects
with overexposed region. Outdoor running evaluates the outdoor overexposed scene with event camera noise. Both AKF
and E2VID [39] are able to capture HDR objects (e.g., right turn sign in Night drive), but E2VID [39] fails to capture the
background in Shadow because the stationary event camera provides no information about the static background. In Outdoor
running, it is clear that E2VID [39] is unable to reproduce the correct high dynamic range intensity between the dark road and
bright left building and sky background. Our AKF algorithm is able to resolve distant buildings despite the fact that they are too
bright and washed out in the LDR DAVIS frame. The cutoff frequency of CF [43], which corresponds to the Kalman gain of our
AKF is a single constant value for all pixels. This causes CF [43] to exhibits ‘shadowing effect’ on object edges (on the trailing
edge of road sign and buildings). AKF overcomes the ‘shadowing effect’ by dynamically adjusting the per-pixel Kalman gain
based on our uncertainty model. Our frame augmentation also sharpens the blurry DAVIS frame and reduces temporal mismatch
between the high data rate events and the low data rate frames. AKF reconstructs the sharpest and most detailed HDR objects in
all challenging scenes.

Table 1 shows that our AKF outperforms other methods on the proposed HDR/AHDR dataset on MSE, SSIM and Q-score.
Unsurprisingly, our AKF outperforms E2VID [39] and ECNN [49] since it utilises frame information in addition to events.
CF [43] performs worse compared to E2VID [39] and ECNN [49] in some cases despite utilising frame information in addition
to events. AKF outperforms state-of-the-art methods in the absolute intensity error MSE with a significant reduction of 48% and
improve the image similarity metrics SSIM and Q-score by 11% on average. The performance demonstrates the importance of
taking into account frame and event noise and preprocessing frame inputs compared to CF [43].

Fig. 6 shows qualitative samples of input, reconstructed and reference images from the proposed HDR/AHDR dataset. In the
first row of Fig. 6, the proposed HDR dataset Trees includes some underexposed trees (left-hand side) and two overexposed
trees (right-hand side). In the second row, our AHDR sequence Mountain is artificially saturated (pixel values higher than 160
or lower than 100 of an 8-bit image), removing most of the detail. E2VID [39] reconstructs the two right-hand trees correctly,
although the relative intensity of the tree is too dark. E2VID [39] also performs poorly in the dark area in Trees on the bottom
left corner and skies/road in Mountain where it lacks events. CF [43] exhibits ‘shadowing effect’ on object edges (trees and
mountain road), which is significantly reduced in AKF by dynamically adjusting the per-pixel Kalman gain according to events
and frame uncertainty model.

7 Conclusion

In this paper, we introduced an asynchronous Kalman-Bucy filter to reconstruct HDR videos from LDR frames and event data for
fast-motion and blurry scenes. The Kalman gain is estimated pixel-by-pixel based on a unifying event/frame uncertainty model
over time. In addition, we proposed a novel frame augmentation algorithm that can also be widely applied to many existing
event-based applications. To target HDR reconstruction, we presented a real-world, hybrid event/frame dataset captured on
registered frame and event cameras. We believe our asynchronous Kalman filter has practical applications for video acquisition
in HDR scenarios using the extended power of event cameras in addition to conventional frame-based cameras.
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[39] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. High speed and high dynamic range video with an event camera.
IEEE Trans. Pattern Anal. Mach. Intell., 2020.

[40] Christian Reinbacher, Gottfried Graber, and Thomas Pock. Real-time intensity-image reconstruction for event cameras using manifold
regularisation. In British Mach. Vis. Conf. (BMVC), 2016.

[41] Mark A Robertson, Sean Borman, and Robert L Stevenson. Estimation-theoretic approach to dynamic range enhancement using multiple
exposures. Journal of Electronic Imaging, 12(2):219–229, 2003.

[42] Fabrizio Russo. A method for estimation and filtering of Gaussian noise in images. IEEE Transactions on Instrumentation and
Measurement, 52(4):1148–1154, 2003.

[43] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Continuous-time intensity estimation using event cameras. In Asian Conf. Comput.
Vis. (ACCV), 2018.

[44] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Asynchronous spatial image convolutions for event cameras. IEEE Robot. Autom.
Lett., 4(2):816–822, Apr. 2019.

[45] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick Barnes, Robert Mahony, and Davide Scaramuzza. Fast image reconstruction with
an event camera. In IEEE Winter Conf. Appl. Comput. Vis. (WACV), 2020.

[46] Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick Barnes, Robert Mahony, and Davide Scaramuzza. CED: Color event camera
dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[47] Prasan Shedligeri and Kaushik Mitra. Photorealistic image reconstruction from hybrid intensity and event-based sensor. J. Electron.
Imaging, 28(06):1, Dec. 2019.

[48] Dong-Hyuk Shin, Rae-Hong Park, Seungjoon Yang, and Jae-Han Jung. Block-based noise estimation using adaptive Gaussian filtering.
IEEE Transactions on Consumer Electronics, 51(1):218–226, 2005.

[49] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drummond, Nick Barnes, Lindsay Kleeman, and Robert Mahony.
Reducing the Sim-to-Real gap for event cameras. In Eur. Conf. Comput. Vis. (ECCV), 2020.

[50] Guangxia Wang, Huajun Feng, Qi Li, and Yueting Chen. Patch-based approach for the fusion of low-light image pairs. In 2018 IEEE 3rd
International Conference on Signal and Image Processing (ICSIP), pages 81–85. IEEE, 2018.

[51] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment: From error visibility to structural
similarity. IEEE Trans. Image Process., 13(4):600–612, Apr. 2004.

[52] Ziwei Wang, Yonhon Ng, Pieter van Goor, and Robert Mahony. Event camera calibration of per-pixel biased contrast threshold. In
Australasian Conf. Robot. Autom. (ACRA), 2019.

[53] Zihao W Wang, Peiqi Duan, Oliver Cossairt, Aggelos Katsaggelos, Tiejun Huang, and Boxin Shi. Joint filtering of intensity images and
neuromorphic events for high-resolution noise-robust imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1609–1619, 2020.

[54] Zihao W. Wang, Weixin Jiang, Aggelos Katsaggelos, and Oliver Cossairt. Event-driven video frame synthesis. In Int. Conf. Comput. Vis.
Workshops (ICCVW), 2019.

[55] Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous
delta modulator for event encoding. IEEE Journal of Solid-State Circuits, 50(9):2149–2160, 2015.

[56] Valentin F Zaitsev and Andrei D Polyanin. Handbook of exact solutions for ordinary differential equations. CRC press, 2002.
[57] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence,

22(11):1330–1334, 2000.
[58] Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd Pfrommer, Vijay Kumar, and Kostas Daniilidis. The multivehicle stereo event

camera dataset: An event camera dataset for 3D perception. IEEE Robot. Autom. Lett., 3(3):2032–2039, July 2018.

12


	1 Introduction
	2 Related Work
	3 Sensor Model and Uncertainty
	3.1 Event Camera Model
	3.1.1 Event Camera Uncertainty

	3.2 Conventional Camera Model
	3.2.1 Conventional Camera Uncertainty


	4 Method
	4.1 Frame Augmentation
	4.2 Asynchronous Kalman Filter (AKF)
	4.3 Asynchronous Kalman Gain

	5 Hybrid Event/Frame Dataset
	6 Experiments
	7 Conclusion

