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Abstract—The past few years have witnessed the rapid devel-
opment of applying the Transformer module to vision problems.
While some researchers have demonstrated that Transformer-
based models enjoy a favorable ability of fitting data, there are
still growing number of evidences showing that these models
suffer over-fitting especially when the training data is limited.
This paper offers an empirical study by performing step-by-
step operations to gradually transit a Transformer-based model
to a convolution-based model. The results we obtain during
the transition process deliver useful messages for improving
visual recognition. Based on these observations, we propose a
new architecture named Visformer, which is abbreviated from
the ‘Vision-friendly Transformer’. With the same computational
complexity, Visformer outperforms both the Transformer-based
and convolution-based models in terms of ImageNet classification
and object detection performance, and the advantage becomes
more significant when the model complexity is lower or the
training set is smaller. The code is available at https://github.
com/danczs/Visformer.

Index Terms—vision-friendly Transformer, vision Transformer,
convolutional neural network, image recognition.

I. INTRODUCTION

N the past decade, convolution used to play a central role

in the deep learning models [1]]-[4] for visual recognition.
This situation starts to change when the Transformer [5], a
module that originates from natural language processing [5]—
[7]], is transplanted to the vision scenarios. It was shown in
the ViT model [8]] that an image can be partitioned into a
grid of patches and the Transformer is directly applied upon
the grid as if each patch is a visual word. ViT requires a
large amount of training data (e.g., the ImageNet-21K [9]
or the JFT-300M dataset), arguably because the Transformer
is equipped with long-range attention and interaction, and is
prone to over-fitting. The follow-up efforts [10] improved ViT
to some extent, but these models still perform badly especially
under limited training data or moderate data augmentation
compared with convolution-based models.

On the other hand, vision Transformers can achieve much
better performance than convolution-based models when
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TABLE I
THE COMPARISON AMONG RESNET-50, DEIT-S, AND THE PROPOSED
VISFORMER-S MODEL ON IMAGENET.

[ Network [ ResNet-50 | DeiT-S [ Visformer-S |
FLOPs (G) 4.1 4.6 4.9
Parameters (M) 25.6 21.8 40.2
Full base setting 77.43 63.12 77.20
data elite setting 78.73 80.07 82.19
Part of | 10% labels 58.37 40.41 58.74
data 10% classes 89.90 80.06 90.06

trained with large amount of data. Namely, vision Transform-
ers have higher ‘upper-bound’ while convolution-based models
are better in ‘lower-bound’. Both upper-bound and lower-
bound are important properties for neural networks. Upper-
bound is the potential to achieve higher performance and
lower-bound enables networks to perform better when trained
with limited data or scaled to different complexity.

Based on the observation of lower-bound and upper-bound
on Transformer-based and convolution-based networks, the
main goal of this paper is to identify the reasons behind
the difference, by which we can design networks with higher
lower-bound and upper-bound. The gap between Transformer-
based and convolution-based networks can be revealed with
two different training settings on ImageNet. The first one is
the base setting. It is the standard setting for convolution-
based models, i.e., the training schedule is shorter and the data
augmentation only contains basic operators such as random-
size cropping [11]] and flipping. The performance under this
setting is called base performance in this paper. The other
one is the training setting used in [10]. It is carefully tuned
for Transformer-based models, i.e., the training schedule is
longer and the data augmentation is stronger (e.g., RandAug-
ment [12f], CutMix [[13]], etc., have been added). We use the
elite performance to refer to the accuracy produced by it.

We take DeiT-S [10] and ResNet-50 [4] as the examples of
Transformer-based and convolution-based models. As shown
in Table |Il Deit-S and ResNet-50 employ comparable FLOPs
and parameters. However, they behave very differently trained
on the full data under these two settings. Deit-S has higher elite
performance, but changing the setting from elite to base can
cause a 10%+ accuracy drop for DeiT-S. ResNet-50 performs
much better under the base setting, yet the improvement for
the elite setting is merely 1.3%. This motivates us to study
the difference between these models. With these two settings,
we can roughly estimate the lower-bound and upper-bound of
the models. The methodology we use is to perform step-by-
step operations to gradually transit one model into another, by
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which we can identify the properties of modules and designs
in these two networks. The entire transition process, taking a
total of 8 steps, is illustrated in Figure

Specifically, from DeiT-S to ResNet-50, one should (i)
use global average pooling (not the classification token),
(ii) introduce step-wise patch embeddings (not large patch
flattening), (iii) adopt the stage-wise backbone design, (iv) use
batch normalization [14] (not layer normalization [[15[]), (v)
leverage 3 x 3 convolutions, (vi) discard the position embed-
ding scheme, (vii) replace self-attention with convolution, and
finally (viii) adjust the network shape (e.g., depth, width, etc.).
After a thorough analysis on the reasons behind the results, we
absorb all the factors that are helpful to visual recognition and
derive the Visformer, i.e., the Vision-friendly Transformer.

Evaluated on ImageNet classification, Visformer claims
better performance than the competitors, DeiT and ResNet,
as shown in Table [I] With the elite setting, the Visformer-
S model outperforms DeiT-S and ResNet-50 by 2.12% and
3.46%, respectively, under a comparable model complexity.
Different from Deit-S, Visformer-S also survives two extra
challenges, namely, when the model is trained with 10%
labels (images) and 10% classes. Visformer-S even performs
better than ResNet-50, which reveals the high lower-bound
of Visformer-S. Additionally, for tiny models, Visformer-Ti
significantly outperforms Deit-Ti by more than 6%.

The contribution of this paper is three-fold. First, for the
first time, we introduce the lower-bound and upper-bound
to investigate the performance of Transformer-based vision
models. Second, we close the gap between the Transformer-
based and convolution-based models by a gradual transition
process and thus identify the properties of the designs in
the Transformer-based and convolution-based models. Third,
we propose the Visformer as the final model that achieves
satisfying lower-bound and upper-bound.

The preliminary version of this paper appeared as [[16]. In
the extended version, we further explore the recently proposed
work and provide more experiments and analysis. The main
improvements over the preliminary version are summarized as
follows:

« We optimize the architecture of Visformer according to
the experimental observations and propose VisformerV2
which substantially outperforms the old version.

o We analyze the overflow problem when utilizing half-
precision in Transformers and propose an efficient
method to avoid overflow without degrading the perfor-
mance.

o We generalize Visformer to downstream vision tasks and
observe consistent improvements.

II. RELATED WORK

Image classification is a fundamental task in computer
vision. In the deep learning era, the most popular method is to
use deep neural networks [2], [4], [[17]. One of the fundamental
units to build such networks is convolution, where a number
of convolutional kernels are used to capture repeatable local
patterns in the input image and intermediate data. To reduce
the computational costs as well as alleviate the risk of over-
fitting, it was believed that the convolutional kernels should

be of a small size, e.g., 3 x 3. However, this brings the
difficulty for faraway contexts in the image to communicate
with each other — this is partly the reason that the number
of layers has been increasing. Despite stacking more and
more layers, researchers consider another path which is to use
attention-based approaches to ease the propagation of visual
information.

Since Transformers achieved remarkable success in natural
language processing (NLP) [5]-[7]], many efforts have been
made to introduce Transformers to vision tasks. These works
mainly fall into two categories. The first category consists
of pure attention models [§]], [[10], [18]-[22]]. These models
usually only utilize self-attention and attempt to build vision
models without convolutions. However, it is computationally
expensive to relate all pixels with self-attention for realistic
full-sized images. Thus, there has some interest in forcing
self-attention to only concentrate on the pixels in local neigh-
borhoods (e.g., SASA [18]], LRNet [19], SANet [20]). These
methods replace convolutions with local self-attentions to learn
local relations and achieve promising results. However, it
requires complex engineering to efficiently apply self-attention
to every local region in an image. Another way to solve
the complexity problem is to apply self-attention to reduced
resolution. These methods either reduce the resolution and
color space first [21] or regard image patches rather pixels as
tokens (i.e., words) [8]], [10]. However, resolution reduction
and patch flattening usually make it more difficult to utilize
the local prior in natural images. Thus, these methods usually
obtain suboptimal results [21] or require huge dataset [8] and
heavy augmentation [10].

The second category contains the networks built with not
only self-attentions but also convolutions. Self-attention was
first introduced to CNNs by non-local neural networks [23]].
These networks aim to capture global dependencies in images
and videos. Note that non-local neural networks are inspired by
the classical non-local method in vision tasks [24] and unlike
those in Transformers, the self-attentions in non-local networks
are usually not equipped with multi-heads and position em-
bedding [23]], [25], [26]. Afterwards, Transformers achieve
remarkable success in NLP tasks [6], [7] and, therefore,
self-attentions that inherits NLP settings (e.g., multi-heads,
position encodings, classification token, efc.) are combined
with convolutions to improve vision tasks [18]], [27], [28].
A common combination is to utilize convolutions first and
apply self-attention afterwards [8]], [29]]. [8] builds hybrids of
self-attention and convolution by adding a ResNet backbone
before Transformers. Afterwards, more and more methods are
proposed to combine self-attention and convolution. Besides
utilizing convolution in early layers [30], BotNet [29] designs
bottleneck cells for self-attention. Conformer [31] fuses the
feature of a convolution neural network and a Transformer
with the feature coupling unit to combine the global and local
representations. CvT [32] introduces convolution to the feature
projection of self-attention, by which the query, key and value
in the self-attention can capture the local information. CoAt-
Net [33]] unifies depthwise convolution with self-attention and
vertically stacks convolution layers and self-attention layers to
improve the generalization, capacity and efficiency. However,



these methods usually combine convolution and self-attention
empirically or heuristically. Our method, in contrast, explores
the full process of converting a Transformer to a convolution
neural network.

There is also work that studies scaling or training vision
Transformer. CaiT [34] find that it is very efficient to scale
up vision Transformer in depth dimension with LayerScale.
AutoFormer [35]] builds a super Transformer network by which
they can evaluate the different designs and search efficient
Transformer architecture. Zhai et al. [36] observe that most
vision Transformers can benefit from increasing compute
resources and larger dataset. They suggest scaling up compute,
data and model together. Steiner et al. [37] further study data,
augmentation and regularization in vision Transformer and
finds that augmentation can yield the same performance as
that trained on an order of magnitude more data.

Additionally, self-attention has been used in many down-
stream vision tasks (detection [38]], segmentation [39]) and low
vision tasks [40]. These tasks usually utilize much larger input
resolution than classification. For example, the frameworks
in COCO [41] usually utilize 1280 x 800 inputs. This is a
critical problem for vision Transformer, since the complexity
increases quadratically with pixel numbers. The widely used
solution is adopting sliding windows to capture local patterns
and building extra pipelines for information exchange among
the windows. Swin Transformer [42] shifts the windows
alternately in different layers, by which the tokens can build
long-distance relations as the depth increases. CSWin Trans-
former [43|] further develops the cross-shaped self-attention
mechanism to ensure that the windows can access the global
feature in one dimension. MSG-Transformer [44], by contrast,
exchanges the local information by messenger tokens.

III. METHODOLOGY

A. Transformer-based and convolution-based visual recogni-
tion models

Recognition is the fundamental task in computer vision.
This work mainly considers image classification, where the
input image is propagated through a deep network to derive
the output class label. Most deep networks are designed in a
hierarchical manner and composed of a series of layers.

We consider two popular layers named convolution and
Transformer. Convolution originates from the intuition to
capture local patterns which are believed more repeatable
than global patterns. It uses a number of learnable kernels
to compute the responses of the input to different patterns,
for which a sliding window is moved along both axes of
the input data and the inner-product between the data and
kernel is calculated. In this paper, we constrain our study
in the scope of residual blocks, a combination of 2 or 3
convolutional layers and a skip-connection. Non-linearities
such as activation and normalization are inserted between the
neighboring convolutional layers.

On the other hand, Transformer originates from natural
language processing and aims to frequently formulate the
relationship between any two elements (called tokens) even
when they are far from each other. This is achieved by

generating three features for each token, named the query, key,
and value, respectively. Then, the response of each token is
calculated as a weighted sum over all the values, where the
weights are determined by the similarity between its query and
the corresponding keys. This is often referred to as multi-head
self-attention (MHSA), followed by other operations including
normalization and linear mapping.

Throughout the remaining part, we consider DeiT-S [10]
and ResNet-50 [4] as the representative of Transformer-based
and convolution-based models, respectively. Besides the basic
building block, there are also differences in design, e.g.,
ResNet-50 has a few down-sampling layers that partition
the model into stages, but the number of tokens remains
unchanged throughout DeiT-S. The impact of these details will
be elaborated in Section

B. Settings: The base and elite performance

Although DeiT-S reports a 80.1% accuracy which is higher
than 78.7% of ResNet-50, we notice that DeiT-S has changed
the training strategy significantly, e.g., the number of epochs is
enlarged by more than 3x and the data augmentation becomes
much stronger. Interestingly, DeiT-S seems to heavily rely on
the carefully-tuned training strategy, and other Transformer-
based models including ViT [8]] and PIT [40] also reported
their dependency on other factors, e.g., a large-scale training
set. In what follows, we provide a comprehensive study on
this phenomenon.

We evaluate all classification models on the ImageNet
dataset [45] which has 1K classes, 1.28M training images and
50K testing images. Each class has roughly the same number
of training images. This is one of the most popular datasets
for visual recognition.

There are two settings to optimize each recognition model.
The first one is named the base setting which is widely
adopted by convolution-based networks. Specifically, the
model is trained for 90 epochs with the SGD optimizer.
The learning rate starts with 0.2 for batch size 512 and
gradually decays to 0.00001 following the cosine annealing
function. A moderate data augmentation strategy with random-
size cropping [11] and flipping is used. The second one is
named the elite setting which has been verified effective to
improve the Transformer-based models. The Adamw optimizer
with an initial learning rate of 0.0005 for batch size 512 is
used. The data augmentation and regularization strategy is
made much stronger to avoid over-fitting, for which intensive
operations including RandAugment [12], Mixup [46], Cut-
Mix [13]], Random Erasing [47], Repeated Augmentation [48]],
[49] and Stochastic Depth [50] are used. Correspondingly, the
training lasts 300 epochs, much longer than that of the base
setting.

Throughout the remaining part of this paper, we refer to
the classification accuracy under the base and elite settings as
base performance and elite performance, respectively. We
expect the numbers to provide complementary views for us to
understand the studied models.
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Fig. 1. The transition process that starts with DeiT and ends with ResNet-50. To save space, we only show three important movements. The first movement
converts DeiT from the Transformer to convolution view (Section m The second movement replaces the patch flattening module with step-wise patch

embedding (elaborated in Section |I1I-

) and introduces the stage-wise design (Section [III-

) . The third movement replaces the self-attention module with

convolution (Section [[II-=C7). The upper-right area shows a relatively minor modifications, inserting 3 x 3 convolution (Section [[lI-=C3). The lower-right area
compares the receptive fields of a 3 X 3 convolution and self-attention. This figure is best viewed in color.

C. The transition from DeiT-S to ResNet-50

This subsection displays a step-by-step process in which we
gradually transit a model from DeiT-S to ResNet-50. There are
eight steps in total. The key steps are illustrated in Figure [T}
and the results, including the base and elite performance and
the model statistics, are summarized in Table

1) Using global average pooling to replace the classifi-
cation token: The first step of the transition is to remove
the classification token and add global average pooling to
the Transformer-based models. Unlike the convolution-based
models, Transformers usually add a classification token to the
inputs and utilize the corresponding output token to perform
classification, which is inherited from NLP tasks [6]. As
a contrast, the classification features in convolution-based
models are obtained by conducting global average pooling in
the space dimension.

By removing the classification token, the Transformer can
be equivalent translated to the convolutional version as shown
in Figure [T} Specifically, the patch embedding operation is
equivalent to a convolution whose kernel size and stride is the
patch size [8]. The shape of the intermediate features can be
naturally converted from a sequence of tokens (i.e., words) to
a bundle feature maps and the tokens become the vector in
channel dimension (illustrated in Figure [T). The linear layers
in MHSA and MLP blocks are equivalent to 1 x 1 convolutions.

The performance of the obtained network (Netl) is shown
in Table@ As can be seen, this transition can substantially im-
prove the base performance. Our further experiments show that
adding global pooling itself can improve the base performance
from 64.17% to 69.44%. In other words, the global average
pooling operation which is widely used in convolution-based
models since NIN [51], enables the network to learn more

efficiently under moderate augmentation. Furthermore, this
transition can slightly improve the elite performance.

2) Replacing patch flattening with step-wise patch embed-
ding: DeiT and ViT models directly encode the image pixels
with a patch embedding layer which is equivalent to a convolu-
tion with a large kernel size and stride (e.g., 16). This operation
flattens the image patches to a sequence of tokens so that
Transformers can handle images. However, patch flattening
impairs the position information within each patch and makes
it more difficult to extract the patterns within patches. To solve
this problem, existing methods usually attach a preprocessing
module before patch embedding. The preprocessing module
can be a feature extraction convnet [8] or a specially designed
Transformer [52].

We found that there is a rather simple solution, which is
factorizing the large patch embedding to step-wise small patch
embeddings. Specifically, We first add the stem layer in ResNet
to the Transformer, which is a 7 x 7 convolution layer with a
stride of two. The stem layer can be seen as a 2 x 2 patching
embedding operation with pixel overlap (i.e., 7x 7 kernel size).
Since the patch size in the original DeiT model is 16, we still
need to embed 8 x 8 patches after the stem. We further factorize
the 8 x 8 patch embedding to a 4 x 4 embedding and a 2 x 2
embedding, which are 4 x 4 and 2 X 2 convolution layers with
stride 4 and 2 in the perspective of convolution. Additionally,
we add an extra 2 x 2 convolution to further upgrade the
patch size from 16 x 16 to 32 x 32 before classification. These
patch embedding layers can also be seen as the down-sampling
layers and we double the channel numbers after embedding
following the practice in convolution-based models.

By utilizing step-wise embeddings, the position prior within
patches is encoded into features. As a result, the model can



TABLE I
THE CLASSIFICATION ACCURACY ON IMAGENET DURING THE TRANSITION PROCEDURE FROM DEIT-S TO RESNET-50. BOTH THE BASE SETTING AND
THE ELITE SETTING ARE CONSIDERED (FOR THE DETAILS, SEE SECTION , AND WE MARK THE POSITIVE MODIFICATIONS IN RED AND THE
NEGATIVE MODIFICATIONS IN BLUE. NOTE THAT A MODIFICATION CAN IMPACT THE BASE AND ELITE PERFORMANCE DIFFERENTLY. THOUGH THE
NUMBER OF PARAMETERS INCREASES CONSIDERABLY AT THE INTERMEDIATE STATUS, THE COMPUTATIONAL COSTS MEASURED BY FLOPS DOES NOT
CHANGE SIGNIFICANTLY.

[ Model Name | added [ removed | base perf. [ elite perf. [FLOPs (G) [ Params (M) |
DeiT-S - 64.17 80.07 4.60 22.1
Netl global average pooling | classification token | 69.81 (+5.64) | 80.16 (+0.09) 4.57 22.0
Net2 step-wise embeddings | large patch embedding | 73.01 (+3.20) | 81.35 (+1.19) 4.77 23.9
Net3 stage-wise design - 75.76 (+2.75) | 80.19 (-1.14) 4.79 39.5
Net4 batch norm layer norm 76.49 (+0.73) | 80.97 (+0.78) 4.79 39.5
Net5 3 x 3 convolution - 77.37 (+0.88) | 80.15 (-0.82) 4.76 39.2
Net6 - position embedding | 77.31 (-0.06) | 79.86 (-0.29) 4.76 39.0
Net7 convolution self-attention 76.24 (-1.07) | 79.01 (-0.85) 4.83 45.0
ResNet-50 network shape adjustment 77.43 (+1.19) | 78.73 (-0.28) 4.09 25.6

learn patterns more efficiently. As can be seen in Table
this transition can significantly improve the base performance
and elite performance of the network. It indicates that step-
wise embedding is a better choice than larger patch embedding
in Transformer-based models. Additionally, this transition is
computationally efficient and only introduces about 4% extra
FLOPs.

3) Stage-wise design: In this section, we split networks into
stages like ResNets. The blocks in the same stage share the
same feature resolution. Since step-wise embeddings in the
last transition have split the network into different stages, the
transition in this section is to reassign the blocks to different
stages as shown in Figure However, unlike convolution
blocks, the complexity of self-attention blocks increases by
O(N 4) with respect to the feature size. Thus we only insert
blocks to the 8 x 8, 16 x 16 and 32 x 32 patch embedding
stages, which correspond to 28 x 28, 14 x 14 and 7 x 7 feature
resolutions respectively for 224 x 224 inputs. Additionally, we
halve the head dimension and feature dimension before self-
attention in 28 x 28 stage to ensure that the blocks in different
stages utilize similar FLOPs.

This transition leads to interesting results. The base perfor-
mance is further improved. It is conjectured that the stage-
wise design leverages the image local priors and thus can
perform better under moderate augmentation. However, the
elite performance of the network decreases markedly. To study
reasons, we conduct ablation experiments and find that self-
attention does not work well in very large resolutions. We
conjecture that large resolution contains too many tokens and
it is much more difficult for self-attention to learn relations
among them. We will detail it in section [[II-D

4) Replacing LayerNorm with BatchNorm: Transformer-
based models usually normalize the features with Layer-
Norm [|15]], which is inherited from NLP tasks [5], [6]]. As
a contrast, convolution-based models like ResNets usually
utilize BatchNorm [14] to stabilize the training process. Lay-
erNorm is independent of batch size and more friendly for
specific tasks compared with BatchNorm, while BatchNorm
usually can achieve better performance given appropriate
batch size [53]]. We replace all the LayerNorm layers with
BatchNorm layers and the results show that BatchNorm per-
forms better than LayerNorm. It can improve both the base

performance and elite performance of the network.

In addition, we also try to add BatchNorm to Net2 to
further improve the elite performance. However, this Net2-BN
network suffers from convergence problems. This may explain
why BatchNorm is not widely used in the pure self-attention
models. But for our mixed model, BatchNorm is a reliable
method to advance performance.

5) Introducing 3 x 3 convolutions: Since the tokens of
the network are present as feature maps, it is natural to
introduce convolutions with kernel sizes larger than 1 x 1.
The specific meaning of large kernel convolution is illus-
trated at the bottom right of Figure When global self-
attentions attempt to build the relations among all the tokens
(i.e., pixels), convolutions focus on relating the tokens within
local neighborhoods. We chose to insert 3 x 3 convolutions
between the 1 x 1 convolutions in feed-forward blocks, which
transforms the MLP blocks into bottleneck blocks as exhibited
at the top right of Figure |I| Note that the channel numbers
of the 3 x 3 convolution layers are tuned to ensure that the
FLOPs of the feed-forward blocks are nearly unchanged. The
obtained bottleneck blocks are similar to the bottleneck blocks
in ResNet-50, although they have different bottleneck ratios
(i.e., the factor of reducing the channel numbers before the
3x 3 convolution). We replace the MLP blocks with bottleneck
blocks in all three stages.

Not surprisingly, 3 x 3 convolutions which can leverage the
local priors in images further improve the network base perfor-
mance. The base performance (77.37%) becomes comparable
with ResNet-50 (77.43%). However, the elite performance
decreases by 0.82%. We conduct more experiments to study
the reasons. Instead of adding 3 x 3 convolutions to all stages,
we insert 3 x 3 convolutions to different stages separately.
We observe that 3 x 3 convolutions only work well on
the high-resolution features. We conjecture that leveraging
local relations is important for the high-resolution features in
natural images. For the low-resolution features, however, local
convolutions become unimportant when equipped with global
self-attention. We will detail it in section

6) Removing position embedding: In Transformer-based
models, position embedding is proposed to encode the position
information inter tokens. In the transition network, we utilize
learnable position embedding as in [6] and add them to



features after patch embeddings. To approaching ResNet-50,
position embedding should be removed.

The results are exhibited in Table The base perfor-
mance is almost unchanged and the elite performance declines
slightly (0.29%). As a comparison, We test to remove the
position embedding of DeiT-S and elite performance decreases
significantly by 3.95%. It reveals that position embedding is
less important in the transition model than that in the pure
Transformer-based models. It is because that the position
prior inter tokens is preserved by the feature maps and
convolutions with spatial kernels can encode and leverage it.
Consequently, the harm of removing position embedding is
remarkably reduced in the transition network. It also explains
why convolution-based models do not need position embed-
ding.

7) Replacing self-attention with feed-forward: In this sec-
tion, we remove the self-attention blocks in each stage and
utilize a feed-forward layer instead, so that the network
becomes a pure convolution-based network. To keep the
FLOPs unchanged, several bottleneck blocks are added to each
stage. After the replacement, the obtained network consists of
bottleneck blocks like ResNet-50.

The performance of the obtained network (Net7) is shown
in Table The pure convolution-based network performs
much worse both in base performance and elite performance.
It indicates that self-attentions do drive neural networks to
higher elite performance and is not responsible for the poor
base performance in ViT or DeiT. It is possible to design a
self-attention network with high base performance and elite
performance.

8) Adjusting the shape of network: There are still many
differences between Net7 and ResNet-50. First, the shape
of Net7 is different from ResNet-50. Their depths, widths,
bottleneck ratios and block numbers in network stages are
different. Second, they normalize the features in different
positions. Net7 only normalizes input features in a block,
while ResNet-50 normalizes features after each convolutional
layer. Third, ResNet-50 down-samples the features with bot-
tleneck blocks but Net7 utilizes a single convolution layer
(i.e., patch embedding layer). In addition, Net7 employs a
few more FLOPs. Nevertheless, both these two networks are
convolution-based networks. The performance gap between
these two networks can be attributed to architecture design
strategy.

As shown in Table the base performance is improved
after transition. It demonstrates that ResNet-50 has better net-
work architecture and can perform better with fewer FLOPs.
However, ResNet-50 obtains worse elite performance. It indi-
cates that the inconsistencies between base performance and
elite performance exist not only in self-attention models but
also in pure convolution-based networks.

D. Summary: the Visformer model

We aim to build a network with high base performance
and elite performance. The transition study has shown that
there are some inconsistencies between base performance and
elite performance. The first problem is the stage-wise design,

TABLE III
IMPACT OF REPLACING THE SELF-ATTENTION BLOCKS WITH THE
BOTTLENECK BLOCKS IN EACH STAGE OF NET5. THESE EXPERIMENTS

ARE PERFORMED INDIVIDUALLY.

[ Network [ base perf.(%) [ elite perf.(%) |
Net5 77.37 80.15
Net5-DS1 77.29 (-0.08) 80.13 (-0.02)
Net5-DS2 | 77.34 (-0.02) 79.75 (-0.40)
Net5-DS3 77.05 (-0.32) 79.59 (-0.56)

TABLE IV

IMPACT OF REPLACING THE MLP LAYERS WITH THE BOTTLENECK
BLOCKS IN EACH STAGE OF NET4. THESE EXPERIMENTS ARE PERFORMED

INDIVIDUALLY.

Network [ base perf.(%) [ elite perf.(%) |

Net4 76.49 80.97

Net4-S1 | 77.02 (+0.53) | 81.10 (+0.13)
Net4-S2 | 76.55 (+0.06) | 80.50 (-0.47)
Net4-S3 | 76.82 (+0.33) | 80.44 (-0.53)
Net5 77.37 (+0.88) | 80.15 (-0.82)

which increases the base performance but decreases the elite
performance. Stage-wise design re-arrange the blocks from
one stage to three stages. Thus, for elite performance, some
blocks in the new two stages must work less efficiently than
those in the original stage. We replace the self-attention blocks
with bottleneck blocks in each stage separately for Net5S,
by which we can estimate the importance of self-attention
in different stages. The results are shown in Table The
replacement of self-attention in all three stages reduces both
the base performance and the elite performance. There is
a trend that self-attentions in lower resolutions play more
important roles than those in higher resolutions. Additionally,
replacing the self-attentions in the first stage almost has no
effect on the network performance. Larger resolutions contain
much more tokens and we conjecture that it is more difficult
for self-attentions to learn relations among them.

The second problem is adding 3 X 3 convolutions to the
feed-forward blocks, which decreases the elite performance
by 0.82%. Based on Net4, we replace MLP blocks with
bottleneck blocks in each stage separately. As can be seen
in Table although all stages obtain improvements in
base performance, only the first stage benefits from bottleneck
blocks in elite performance. The 3 x 3 convolutions are not
necessary for the other two low-resolution stages when self-
attentions already have a global view in these positions. On the
high-resolution stage, for which self-attentions have difficulty
in handling all tokens, the 3 x 3 convolutions can provide
improvement.

Integrating the observation above, we propose the Vis-
former as vision-friendly, Transformer-based models. The
detailed architectures are shown in Table [Vl Besides the
positive transitions, Visformer adopts the stage-wise design for
higher base performance. But self-attentions are only utilized
in the last two stages, considered that self-attention in the high-
resolution stage is relatively inefficient. Visformer employs
bottleneck blocks in the first stage and utilizes group 3 X 3
convolutions in bottleneck blocks inspired by ResNeXt [54].



THE CONFIGURATION FOR CONSTRUCTING THE VISFORMER-TI AND VISFORMER-S MODELS, WHERE ‘EMB.” STANDS FOR FEATURE EMBEDDING, AND

TABLE V

‘S0’—‘S3’ INDICATE THE FOUR STAGES WITH DIFFERENT SPATIAL RESOLUTIONS.

l

[ output size |

Visformer-Ti

[

Visformer-S

[

VisformerV2-Ti |

VisformerV2-S

|

stem | 112 x 112 7 x 7, 16, stride 2 | 7 x 7, 32, stride 2 | 7 X 7, 24, stride 2 | 7 x 7, 32, stride 2
emb.| 56 X 56 - - 2 X 2, 48, stride 2 | 2 X 2, 64, stride 2
M1x1,96 ] 1x1,128
. 3 x 3, 96 3 x 3,128
s0 56 x 56 - - (group = 8) x1 (group = 8) x1
L 1 x1,48 | 1x1,64
emb.| 28 X 28 | 4 X 4, 96, stride 4 | 4 X 4, 192, stride 4 | 2 X 2, 96, stride 2 | 2 X 2, 128, stride 2
1x1,192 1x1, 384 M1 x 1, 1927 1x 1, 256
3 x 3,192 3 x 3,384 3 x 3,192 3 x 3, 256
sl 28 %28 (group = 8) xT7 (group = 8) x7 (group = 8) x4 (group = 8) x10
1x1,96 1x1,192 L 1x1,96 | 1x1,128
emb.| 14 x 14 |2 x 2, 192, stride 2 | 2 X 2, 384, stride 2
[MHSA, 192] MHSA, 384 [MHSA, 192] [MHSA, 256
s2 14 x 14 1x1,768 | x4 1x1,1536| x4 1x1,768 | x6 1x1,1024| x14
1x1,192 1x1, 384 1x1,192 1x1, 256
emb. TXT 2 X 2, 384, stride 2 | 2 X 2, 768, stride 2
[MHSA, 384] MHSA, 768 [MHSA, 384 [MHSA, 512]
s3 TXT7 1x1,1536| x4 1x1,3072| x4 1x1,1536| x2 1x1,2048| x3
1x1, 384 1x1, 768 1x1, 384 1x1,512
1x1 global average pool, 1000-d fc, softmax
FLOPs 1.3 x 10° [ 4.9 x 109 [ 1.3 x 107 [ 4.3 x 109

We also introduce BatchNorm to patch embedding modules
as in CNNs. We name Visformer-S to denote the model that
directly comes from DeiT-S. In addition, we can adjust the
complexity by changing the output dimensionality of multi-
head attentions. Here, we shrink the dimensionality by half
and derive the Visformer-Ti model, which requires around 1/4
computational costs of the Visformer-S model.

E. VisformerV2: optimizing the architecture configuration

Some architecture configurations of Visformer are not care-
fully tuned. For example, when splitting the network into
different stages, we averagely assign the 12 blocks to the
three stages, expect that we utilize 3 more blocks in the
first stage to compensate for the removal of self-attention. In
other words, the stage configuration ([7, 4, 4]) is not carefully
designed. Furthermore, depth and width, which are also not
polished in Visformer, have been demonstrated to be very
important configurations for network performance. Therefore,
we conduct many experiments to explore the architecture of
Visformer and propose VisformerV2. VisformerV2 is much
better than the original Visformer and the architecture is shown
in Table [V] The detailed analysis and experiments are shown

in Section

FE. Transformer with Half-precision

Recently, quantization has been widely used to accelerate
the training process and save GPU memory. Specifically, half-
precision floating-point (FP16), the lowest precision that can
preserve the network performance, has been adopted by many
researchers. However, some works [10]], [55]], [[56] have shown
that half-precision can lead to overflows in Transformers and
we also observe this problem in Visformer.

Based on our experimental analysis, we find that attention
score generation can cause overflow. With the queries (()) and
keys (K), the standard self-attention scores can be computed
as:

Vd

However, () and K can be very large matrices and the elements
in QKT will be the dot-product of two very long vectors. As
a result, the scores can overflow easily while utilizing 16-bit
precision. To solve this problem, we first try to pre-normalize
Q and K:

Agcore = softmax(

) (D

<@y E
f \/>
Where d is the length of the vector. Nevertheless, the attention
scores still overflow sometimes. This is because the scores are
only normalized with v/d overall. As the dot product of two

vectors with length d, the scores are still under the risk of
overflow. Consequently, we try to normalize the score with d:

Q
Vd

Agcore = softmax((—

) 2)

KT
Vd

Agcore = softmax((—=

)(—=)) 3)

TABLE VI
COMPARISON OF INFERENCE TIME FOR VISFORMERV2-S WITH
DIFFERENT SCORE GENERATING METHODS. THE TESTED GPU 1s V100
AND THE BATCH SIZE IS 32.

Method
Batch Time (ms)

PB-Relax
46.6

original
42.8

ours
43.0




TABLE VII
THE COMPARISON OF BASE AND ELITE PERFORMANCE AS WELL AS THE
FLOPS BETWEEN VISFORMER AND DEIT, THE DIRECT BASELINE.

base perf. | elite perf. | FLOPs
Network (%) (%) )
Visformer-Ti 74.34 78.62 1.3
DeiT-Ti 63.87 72.21 1.3
Visformer-S 77.20 82.19 49
DeiT-S 63.12 80.07 4.6

In our experiments, we observed that it can effectively avoid
overflow during computing scores and will not degrade the
network performance.

Note that CogView [55] also proposes PB-Relax to elim-
inate overflow in attention scores. PB-Relax pre-minuses the
maximum of the attention scores. However, this method needs
to tune a hyper-parameter and usually considerably increases
the network runtime, as shown in Table As a contrast, our
method nearly does not introduce extra runtime.

IV. MORE EXPERIMENTS ON VISFORMER

A. The improvements on the upper-bound and lower-bound

We first compare Visformer against DeiT, the direct base-
line. Results are summarized in Table Using comparable
computational costs, the Visformer models outperform the cor-
responding DeiT models significantly. Specifically, the advan-
tages of Visformer-S and Visformer-Ti over DeiT-S and DeiT-
Ti under the elite setting are 2.12% and 6.41%, while under
the base setting, the numbers grow to 14.08% and 10.47%,
respectively. In other words, the advantage becomes more
significant under the base setting, which is more frequently
used for visual recognition.

B. Training with limited data

We evaluate the performance of Visformer in the scenario
with limited training data, which we consider is an important
ability of being vision-friendly, while prior Transformer-based
models mostly required abundant training data [8].

Four subsets of ImageNet are used, with 10% and 1%
randomly chosen classes (all data), and with 10% and 1%
randomly chosen images (all classes), respectively. To chal-
lenge the models, we still use the elite setting with 300 epochs
(not extended). As shown in Table it is observed that
the DeiT-S model reports dramatic accuracy drops in all the
four tests (note that the accuracy of using only 10% and
1% classes should be much higher if epochs are extended).
In comparison, Visformer remains robust in these scenarios,
showing its potential of being used for visual recognition with
limited data.

In tiny level, ResNet-50-55% is obtained by reducing the
channel numbers (like other tiny models) to 55% (so that the
FLOPs, 1.3G, is similar to Visformer-Ti and Deit-Ti). The
conclusion is similar: Visformer-Ti is still the best overall
model, and the advantage is slightly enlarged because the risk
of over-fitting has been reduced.

TABLE VIII
COMPARISON AMONG VISFORMER, DEIT, AND RESNET, IN TERMS OF
CLASSIFICATION ACCURACY (%) USING LIMITED TRAINING DATA. THE
ELITE SETTING WITH 300 EPOCHS IS USED FOR ALL MODELS.

100% | 10% 1% 10% 1%
Network . .
classes | classes | classes | images | images
DeiT-S 80.07 | 80.06 | 73.40 | 40.41 | 6.94
ResNet-50 78.73 | 89.90 | 93.20 | 58.37 | 13.59
Visformer-S 82.19 | 90.06 | 91.60 | 58.74 | 16.56
Deit-Ti 7233 | 78.72 | 7440 | 3844 | 6.53
ResNet-50-55% | 72.84 | 87.10 | 91.40 | 51.48 | 10.68
Visformer-Ti 78.62 | 89.48 | 90.60 | 55.14 | 11.79

C. Designing VisformerV2

We design VisformerV2 by polishing the original Visformer.
First, we apply relative position bias [42] to Visformer, which
improves the results to 82.39% as shown in Table Then
we test whether we need to utilize an extra early stage. As
shown in Table[IX] assigning a block to the new stage does not
improve the performance and furthermore, the performance
decreases when more blocks are assigned to it. However, we
find that this stage can improve the detection and segmentation
results, which will be detailed in Section Therefore,
we decide to utilize one block in the new stage. Next, we
test to utilize deep and narrow architecture [43]. We first
narrow down the network and directly assign blocks to the
self-attention stages (the last two stages). The tested stage
configurations are {1, 3, 11, 11} and {1, 6, 10, 10}. These
settings degrade the performance. Then we try to assign more
blocks to the third stage ( i.e., {1, 3, 18, 3} and {1, 6, 16,
3}), which is the default setting for many convolution [4] and
Transformer networks [42], [43]]. It improves the networks
significantly. We also find that the second pure convolution
stage is very important. Moving the blocks from this stage
to the other stages will substantially degrade the network.
Therefore we assign more blocks to this stage and obtain
VisformerV2-S. With a similar study, we design VisformerV2-
Ti. The detailed architecture is shown in Table [V

Note that the deep and narrow architecture significantly
increases the runtime on GPU. This is because that the wide
and shallow architecture has a better parallelization property.
To compensate for the loss in runtime, we utilize fewer
FLOPs for ‘deep-narrow’ networks. More importantly, we
find that when the input resolution is enlarged (detection and
segmentation tasks in Section or the model is scaled up,
the parallelization property will be improved and the runtime
on GPU becomes more consistent with FLOPs.

D. Comparison to the state-of-the-arts

We then compare Visformer and VisformerV2 to other
Transformer-based approaches in Table |[X] At the tiny level,
Visformer-Ti and VisformerV2-Ti outperform other vision
Transformers that with similar FLOPs. For larger models,
Visformer-S performs much better than most of the models
with similar FLOPs. VisformerV2-S further improves the per-
formance and outperforms other vision Transformer models.
Note that VisformerV2-S utilize fewer FLOPs and parameters
than Visformer-S.



TABLE IX
THE ELITE PERFORMANCE AND INFERENCE TIME OF DIFFERENT VISFORMER MODELS. THE BATCH TIME IS TESTED ON A V100 GPU WITH A BATCH
SIZE OF 32.
[ Network [ block numbers | channel numbers [ elite perf.(%) | FLOPs (G) | Params (M) [ Batch Time (ms) |

Visformer-S {0,7, 4, 4 {96, 192, 384, 768} 82.39 4.9 40.2 36.9

{1, 6,4, 4 82.37 4.9 40.3 37.3

(3.4.4.4 {96, 192, 384, 768} 81.70 9 393 384

{1, 3, 11, 11} 81.73 42 454 42.1

{16, 10, 10} §2.20 12 19 17

{1, 3, 18, 3} {64, 128, 256, 512} 82.51 4.2 25.8 43.4

{1, 6, 16, 3} 82.89 42 24.6 42.8

VisformerV2-S {1, 10, 14, 3} {64, 128, 256, 512} 82.97 4.3 23.6 43.0

TABLE X TABLE XI

COMPARISON AMONG OUR METHOD AND OTHER TRANSFORMER-BASED
VISION MODELS. ‘*’ INDICATES THAT WE RE-RUN THE MODEL USING THE
ELITE SETTING. ‘KD’ STANDS FOR KNOWLEDGE DISTILLATION [57].

FLOPs | Params
Methods Top-1(%) G) M)
ResNet-18 [4] 69.8 1.8 11.7
DeiT-Ti [10] 72.2 1.3 5.7
DeiT-Ti (KD) [10] 74.6 1.3 5.7
AutoFormer-Ti [35] 74.7 1.3 5.7
PVT-Ti [22] 75.1 1.9 13.2
PVTv2-BT [58] 78.7 2.1 13.1
Visformer-Ti (ours) 78.6 1.3 10.3
VisformerV2-Ti (ours) 79.6 1.3 9.4
ResNet-50 [4] 76.2 4.1 25.6
ResNet-50* [4] 78.7 4.1 25.6
RegNetY-4GF [59] 79.4 4.0 20.6
RegNetY-8GF [59] 79.9 8.0 39.2
RegNetY-4GF* [59] 80.0 4.0 20.6
DeiT-S [10] 79.8 4.6 21.8
DeiT-S* [10] 80.1 4.6 21.8
DeiT-B [10] 81.8 17.4 86.3
PVT-S [22] 79.8 3.8 24.5
PVT-Medium [22] 81.2 6.7 44.2
PVTv2-B2-Li [58] 82.1 39 22.6
PVTv2-B2 [58] 82.0 4.0 25.4
Swin-T [42] 81.3 4.5 29
CvT-13 [32] 81.6 4.5 20
CvT-13-NAS [32] 82.2 4.1 18
CvT-13(384) [32] 83.0 16.3 20
Conformer-Ti [31] 81.3 5.2 23.5
T2T-ViT:-14 [52] 80.7 5.2 21.5
T2T-ViT:-19 [52] 81.4 8.4 39.0
BoTNet-S1-59 [29] 81.7 7.3 33.5
CSWin-T [43] 82.7 4.3 23
AutoFormer-S [35]] 81.7 5.1 22.9
Visformer-S (ours) 82.2 4.9 40.2
VisformerV2-S (ours) 83.0 4.3 23.6

E. Inference efficiency

Although VisformerV2-S is not as efficient as Visformer-S
in runtime, it is still much faster than most vision Transformer
models as shown in Table [XII As for the state-of-the-art
EfficientNet convnets, Visformer-S are below the EfficientNets
with similar FLOPs. However, EfficientNets are computing in-
efficient on GPUs. It is shown that Visformer-S is significantly
faster than EfficientNet-B3 which performance is slightly
worse than our model. VisformerV2-S and EfficientNet-B4
have similar FLOPs and performance, but VisformerV2-S is
significantly faster than EfficientNet-B4.

COMPARISON OF INFERENCE EFFICIENCY AMONG VISFORMER AND

OTHER MODELS ON A 32G-V100. A BATCH SIZE OF 32 IS USED FOR

TESTING. ‘*’ INDICATES THAT THE MODEL IS RE-TRAINED WITH THE
ELITE SETTING.

Top-1 | FLOPs | Batch Time
Methods (%) (G) (ms)
ResNet-50* 78.7 4.1 34.2
DeiT-S* 80.1 4.6 36.9
RegNetY-4GF* 80.0 4.0 40.2
Swin-T 81.3 4.5 47.6
CSwin-T 82.7 43 57.5
PVT-S 79.8 38 47.6
PVTv2-B2 82.0 4.0 57.1
PVTv2-B2-Li 82.1 39 56.8
EfficientNet-B3 [[60] 81.6 1.8 483
EfficientNet-B4 [60] 82.9 4.2 81.7
Visformer-S (ours) 82.2 4.9 36.7
VisformerV2-S (ours) 83.0 43 43.0

F. COCO Object Detection

Last but not least, we evaluate our models on the COCO
object detection task. Since the standard self-attention in
Visformer models is not efficient for high-resolution inputs,
we simply replace self-attention with the shifted window
(Swin) self-attention [42] to apply our models to the detection
task. Therefore, Swin Transformers are our important baseline
models. It should be emphasized that the self-attention in Vis-
former can also be replaced with other resolution-friendly self-
attentions like CSWin self-attention and MSG self-attention.
We just utilize the widely used Swin self-attention to show
the superiority of Visformer architecture.

The models are evaluated with two frameworks: Mask-
RCNN [61] and Cascade Mask-RCNN [62]. We train the
models on COCO 2017 dataset and report the results on COCO
val2017. We inherit the training settings in [42]: the AdamW
optimizer with a learning rate of 0.0001 and the weight decay
of 0.05. The batch size is 16 and we show the results of 1x (12
epochs) and 3x (36 epochs) schedule. The FPS is measured on
a V100 GPU with a batch size of 1. The FLOPs are computed
with 1280 x 800 resolution.

We first test different methods with the Mask R-CNN
1x schedule. As shown at the top of Table Visformer-
S slightly outperform Swin-T. When we assign a block to
the first stage (Visformer-S-F), although the classification
performance is not improved (illustrated in Section [[V-C),
the detection result becomes better. We conjecture that the



Method Backbone APPox [ APRo* [ APRox [ Apmask [ Apmask [ APmask TFLOPs | Params | FPS |
R-50 380 | 586 | 414 344 351 36,7 260 4 186

Swin-T 426 | 651 | 462 393 62.0 4.1 267 48 | 148

II/I;S]‘(cl?e_dCTeN Visformer-S 430 | 653 | 472 39.6 62.4 42.4 275 60 | 13.1
schedu Visformer-S-F | 435 | 659 | 47.7 39.8 62.5 42.6 275 60 | 13.0
VisformerV2-S | 448 | 668 | 49.4 407 63.9 437 262 43 152

R-50 710 | 617 | 449 371 584 70.1 260 74 186

g/ljﬂj ?ASCNI\}II dul Swin-T 460 | 682 | 502 | 416 65.1 448 267 | 48 | 148
schedule VisformerV2-S | 478 | 69.5 | 526 425 66.4 45.8 262 43 | 152

R-50 37 | 617 | 475 38.0 588 410 739 82 | 106

fiscf‘iedév[:‘i‘eg'féNN Swin-T 481 | 671 | 522 | 417 64.4 450 | 745 | 86 | 95
u VisformerV2-S | 493 | 68.1 | 536 423 65.1 457 740 81 | 96

R-50 463 | 643 | 505 401 617 B4 739 82 | 106

DeiT-S 480 | 672 | 517 414 64.2 443 889 80 R

] Swin-T 505 | 69.3 | 549 437 66.6 47.1 745 86 | 9.5
gibcf?\iyfjﬁeilcew MSG-T [44] 503 | 690 | 547 | 436 66.5 475 | 758 | 86 |95
: PVTv2-B2-Li [58] | 509 | 695 | 552 - - - 725 80 | 82

PVTVv2-B2 [58] | 51.1 | 69.8 | 553 . y . 788 83 | 7.1

VisformerV2S | 51.6 | 70.1 | 56.4 44.1 675 478 740 81 | 96

TABLE XII

OBJECT DETECTION AND INSTANCE SEGMENTATION PERFORMANCE ON COCO 2017. THE FPS 1S MEASURED ON A V100 GPU WITH A BATCH SIZE OF
1. THE FLOPS ARE COMPUTED WITH 1280 X 800 RESOLUTION. ‘MS’ INDICATES MULTI-SCALE TRAINING [38]], [[64]

block in the first stage can help the FPN [63]] to explore the
low-level features. The VisformerV2-S further improves the
performance and outperforms Swin-T by 2.2%. Additionally,
because of the improvement on parallelization property, the
FPS becomes consistent with FLOPs and VisformerV2-S is
faster than Visformer-S.

For the Cascade Mask R-CNN framework, VisformerV2-
S still outperforms Swin-T by a large margin. We compare
VisformerV2-S with more methods for 3x and multi-scale
schedule [38]], [64]], and our model still performs better than
the other methods. As for FPS, our method is as efficient as
Swin-T and MSG-T, and is faster than other vision Trans-
former Methods.

V. CONCLUSIONS

This paper presents Visformer, a Transformer-based model
that is friendly to visual recognition. We propose to use two
protocols, the base and elite setting, to evaluate the perfor-
mance of each model. To study the reason why Transformer-
based models and convolution-based models behave differ-
ently, we decompose the gap between these models and design
an eight-step transition procedure that bridges the gap between
DeiT-S and ResNet-50. By absorbing the advantages and
discarding the disadvantages, we obtain the Visformer-S model
that outperforms both DeiT-S and ResNet-50. Visformer also
shows a promising ability when it is transferred to a compact
model and when it is evaluated on small datasets.
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