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Figure 1: Category-level retrieval orders images based on their semantic similarity to a query. The Grafit method,
although it has used only coarse labels (like ’pyrgus’) at training time, produces a ranking consistent with fine-
grained labels. Unsupervised learning is a particular case of this task, in which the set of coarse labels is reduced
to a singleton. Image credit: [1].

Abstract
This paper tackles the problem of learning a finer rep-

resentation than the one provided by training labels. This
enables fine-grained category retrieval of images in a collec-
tion annotated with coarse labels only.

Our network is learned with a nearest-neighbor classifier
objective, and an instance loss inspired by self-supervised
learning. By jointly leveraging the coarse labels and the un-
derlying fine-grained latent space, it significantly improves
the accuracy of category-level retrieval methods.

Our strategy outperforms all competing methods for re-
trieving or classifying images at a finer granularity than
that available at train time. It also improves the accuracy
for transfer learning tasks to fine-grained datasets, thereby
establishing the new state of the art on five public bench-
marks, like iNaturalist-2018.

1. Introduction

Image classification now achieves a performance
that meets many application needs [27, 37, 54]. In
practice however, the dataset and labels available at
training time do not necessarily correspond to those

needed in subsequent applications [17]. The granu-
larity of the training-time concepts may not suffice for
fine-grained downstream tasks.

This has encouraged the development of special-
ized classifiers offering a more precise representation.
Fine-grained classification datasets [29] have been de-
veloped for specific domains, for instance to distin-
guish different plants [13] or bird species [59].

Gathering a sufficiently large collection with fine-
grained labels is difficult by itself, as it requires to
find enough images of rare classes, and annotating
them precisely requires domain specialists with in-
domain expertise. This is evidenced by the Open Im-
ages construction annotation protocol [38] that states
that: “Manually labeling a large number of images with
the presence or absence of 19,794 different classes is not
feasible”. For this reason they resorted to computer-
assisted annotation, at the risk of introducing biases
due to the assisting algorithm. Being able to get strong
classification and image retrieval performance on fine
concepts using only coarse labels at training time can
circumvents the issue, liberating the data collection
process from the quirks of a rigid fine-grained taxon-
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omy.
In this paper, our objective is to learn a finer-

grained representation than that available at train-
ing time. This approach addresses the following use-
cases:

Category-level Retrieval. Given a collection of im-
ages annotated with coarse labels, like a product cata-
log, we aim at ranking these images according to their
fine-grained semantic similarity to a new query image
outside the collection, as illustrated by Figure 1.

On-the-fly classification. For this task the fine-
grained labels are available at test time only, and we
use a non-parametric kNN classifier [61] for on-the-fly
classification, i.e. without training on the fine-grained
labels.

Our work leverages two intuitions. First, in or-
der to improve the granularity beyond the one pro-
vided by image labels, we need to exploit another sig-
nal than just the labels. For this purpose, we build
upon recent works [3, 62] that exploits two losses to
address both image classification and instance recog-
nition, leveraging the “free” annotations provided by
multiple data augmentations of a same instance, in the
spirit of self-supervised learning [6, 9, 10, 25].

The second intuition is that it is best to explicitly
infer coarse labels even when classifying for a finer
granularity. For this purpose, we propose a simple
method that exploits both a coarse classifier and image
embeddings to improve fine-grained category-level
retrieval. This strategy outperforms existing works
that exploit coarse labels at training time but do not
explicitly rely on them when retrieving finer-grained
concepts [61].

In summary, in this context of coarse-to-fine rep-
resentation learning, our paper makes the following
contributions:

• We propose a method that learns a representation
at a finer granularity than the one offered by the
annotation at training time. It exhibits a signifi-
cant accuracy improvement on all the coarse-to-
fine tasks that we consider. For instance, we im-
prove by +16.3% the top-1 accuracy for on-the-fly
classification on ImageNet. This improvement is
still +9.5% w.r.t. our own stronger baseline, every-
thing being equal otherwise.

• Our approach performs similarly or better at the
coarse level. A byproduct of our study is a very
strong kNN-classifier on Imagenet: Grafit with
ResNet-50 trunk reaches 79.6% top-1 accuracy at
resolution 224×224.

• Grafit improves transfer learning: our experi-
ments show that our representation discriminates
better at a finer granularity. Everything being
equal otherwise, fine-tuning our model for fine-
grained benchmarks significantly improves the ac-
curacy.

• As a result we establish the new state of the
art on five public benchmarks for transfer learn-
ing: Oxford Flowers-102 [41], Stanford Cars [35],
Food101 [7], iNaturalist 2018 [30] & 2019 [31].

This paper is organized as follows. After review-
ing related works in Section 2, we present our method
in Section 3. Section 4 compares our approach against
baselines on various datasets, and presents an exten-
sive ablation. Section 5 concludes the paper.

In the supplemental material, Appendix A summa-
rizes two experiments that show how an instance-
level loss improves the granularity beyond the one
learned by a vanilla cross-entropy loss. Appendix B
complements our experimental section 4 with more
detailed results. Appendix C provides visual results
associated with different levels of training/testing
granularities.

2. Related work

Label granularity in image classification. In com-
puter vision, the concept of granularity underlies sev-
eral tasks, such as fine-grained [13, 29] or hierarchi-
cal image classification [18, 60, 65]. Some authors
consider a formal definition of granularity, see for in-
stance Cui et al. [15]. In our paper, we only consider
levels of granularity relative to each other, where each
coarse class is partitioned into a set of finer-grained
classes.

In some works on hierarchical image classifica-
tion [19, 26, 45, 49], a coarse annotation is available
for all training images, but only a subset of the train-
ing images are labelled at a fine granularity. In this
paper we consider the case where no fine labels at all
are available at training time.

Train-Test granularity discrepancy. A few works
consider the case where the test-time labels are finer
than those available at training time and where each
fine label belongs to one coarse label. Approaches to
this task are based on clustering [61] or transfer learn-
ing [33]. Huh et al. [33] address the question: “is the
feature embedding induced by the coarse classifica-
tion task capable of separating finer labels (which it
never saw at training)?” To evaluate this, they con-
sider the 1000 ImageNet classes as fine, and group
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them into 127 coarse classes with the WordNet [20] hi-
erarchy. Wu et al. [61] evaluate on the 20 coarse classes
of CIFAR-100 [36] and on the same subdivision of Im-
ageNet into 127 classes. They evaluate their method,
Scalable Neighborhood Component Analysis (SNCA),
with a kNN classifier applied on features extracted
from a network trained with coarse labels. Note that
this work departs from the popular framework of ob-
ject/category discovery [11, 21, 32, 57, 58], which is
completely unsupervised.

In our work we mainly compare to the few works
that consider coarse labels at train time, therefore
SNCA [61] is one of our baseline. We adopt their
coarse labels definition and evaluation procedure for
on-the-fly classification.

Unified embeddings for classes and instances. Sim-
ilar to Wu et al. [61], several Distance Metric Learn-
ing (DML) approaches like the Magnet loss [44] or
ProxyNCA [40, 51] jointly take into account intra- and
inter-class variability. This improves transfer learning
performance and favors in some cases the emergence
of finer hierarchical concepts. Berman et al. proposed
Multigrain [3], which simply adds to the classifica-
tion objective a triplet loss that pulls together different
data-augmentations of a same image. Recent works
on semi-supervised learning [4, 5, 48, 62, 66, 69] rely
on both supervised and self-supervised losses to get
information from unlabelled data. For instance the
approach of Xie et al. [62] is similar to Multigrain, ex-
cept that the Kullback-Leibler divergence replaces the
triplet loss. Matching embeddings of the same images
under different data-augmentations is the main signal
in current works on self-supervised learning, which
we discuss now.

Unsupervised and Self-Supervised Learning. In un-
supervised and self-supervised approaches [9, 10, 22,
25, 34, 56] the model is trained on unlabeled data.
Each image instance is considered as a distinct class
and the methods aim at making the embeddings of
different data-augmentations of a same instance more
similar than those of other images. To deal with finer
semantic levels than those provided by the labels, we
use an approach similar to BYOL [25]. BYOL only re-
quires pairs of positive elements (no negatives), more
specifically different augmentations of the same im-
age. A desirable consequence is that this limits con-
tradictory signals on the classification objective.

Transfer Learning. Transfer learning datasets [7, 35,
41] are often fine grained and rely on a feature extrac-
tor pre-trained on another set of classes. However, the
fine labels are not a subset of the pre-training labels,

kNN
classifier

instance
recognition

Figure 2: Illustration of our method at train time.
The convnet trunk that receives gradient is fθ and is
used to update the target network fξ as a moving av-
erage. The database of neighbors is updated by aver-
aging embedding in each mini-batch with correspond-
ing embeddings in the database.

so we consider transfer learning as a generalization of
our coarse-to-fine task. It is preferable to pre-train on
a domain similar to the target [16], e.g., pre-training
on iNaturalist [29] is preferable to pre-training on Im-
ageNet if the final objective is to discriminate between
species of birds. The impact of pre-training granular-
ity is discussed in prior works [15, 67]. In Section 4.6
we investigate how Grafit pre-training performs on
fine-grained transfer learning datasets.

3. Grafit: Fitting a finer Granularity

Figure 2 depicts our approach at training time. In
this section we discuss the different components and
training losses. Then we detail how we produce the
category-level ranking, and how we perform on-the-
fly classification.

3.1. Training procedure: Grafit and Grafit FC

We first introduce an instance loss inspired by
BYOL [25] that favors fine-grained recognition. The
Grafit model includes a trunk network fθ, to which
we add two multi-layers perceptrons (MLP): a “pro-
jector” Pθ and a predictor qθ. In the Grafit FC vari-
ant, Pθ is linear for a more direct fair comparison with
Wu et al. [61]’s projector. The learnable parameters are
represented by the vector θ. As in BYOL we define a
“target network” fξ as an exponential moving aver-
age of the main network fθ: the parameters ξ are not
learned, but computed as ξ ← τξ + (1 − τ)θ, with a
target decay rate τ ∈ [0, 1].

Instance loss. Each image x is transformed by T data
augmentations (t1, . . . , tT ). Denoting cos the cosine
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similarity and gθ(x) = Pθ(fθ(x)), the instance loss is:

Linst(x) = −
∑

1≤i 6=j≤T

cos
(
qθ ◦ gθ(ti(x)).gξ(tj(x))

T (T − 1)

)
,

(1)

kNN loss. A parametric classifier with softmax
yields a representation that does not generalize natu-
rally to new classes [61] and is not adapted for kNN
classification. Therefore, inspired by the neighbor-
hood component analysis [23, 39, 47], Wu et al. [61]
propose a loss function optimized directly for kNN
evaluation, that we adopt and denote by Lknn. Let
xi be a training image with coarse label yi and σ a
temperature hyper-parameter. For each image xi we
select xj(j 6= i) as its neighbor with probability pi,j ,
computed as

pi,j ∝ exp
(
cos(gθ(xi), gθ(xj))/σ

)
, (2)

where the pi,j are normalized so that
∑
j 6=i pi,j = 1.

The loss is then defined as:

Lknn(xi, yi) = − log
∑

j,yj=yi,j 6=i

pi,j . (3)

We `2-normalize after the Pθ projection. The Lknn

scores all classes with Equation 3.

Memory of embeddings. One of the limitations of the
kNN approach is that it requires to use all the fea-
tures of the training set. To avoid recomputing all
the embeddings of the training set, we use a mem-
ory M = {m1, . . . ,mi, . . . }. It is updated as follows:
when the image xi in the training set is in the current
mini-batch, we update its embedding mi as follows:
mi ← 1

2 (mi + gθ(xi)). In order to limit the memory
space needed, we apply the Lknn loss on the space
of the projected features, which allows us to store
smaller embedding and hence requires less memory.
For instance for ImageNet we have to store 1.2M train-
ing images. Without the projection with ResNet-50 ar-
chitecture for fθ, the memory size is 2048 × 1.2M but
with a projection on a space of size 256 the memory
size is 256× 1.2M what is ×8 smaller.

Combined loss. Our method is summarized in Fig-
ure 2. The total loss at training time for an image x
with label y is:

Ltot(x) = Lknn(gθ(x), y) + Linst(x). (4)

Appendix B empirically shows that weighting dif-
ferently the losses does not bring much performance.

Adapting the architecture at test-time. The training
parameters include the model weights (fθ, Pθ) and the
parameters related to Linst (fξ, Pξ and qθ) as described
previously. At test time we remove the Linst branch,
keeping only fθ and Pθ. In order to have consistent
representations of all the training images with the fi-
nal weights, we re-computemi = gθ(xi) for each train-
ing image xi and store it inM.

3.2. Category-level retrieval

For a given test image x′ the task is to order by
semantic relevance all images from the training col-
lection. In our coarse-to-fine case, a search result is
deemed correct if it has the same fine label as the
query.

Cosine-based ranking. The standard strategy to or-
der the images is to compute gθ(x′), and to order all
images xi in the collection by they cosine similarity
score cos(gθ(xi), gθ(x

′)) to the query (the gθ(xi) are
pre-computed in M). The experiments in Section 4
show that the way Grafit embeddings are trained al-
ready improves the ranking with that method.

Ranking conditioned by coarse prediction. Let x′

be a test image and x a training image with coarse
class y. Let pc(x, y) be the probability that the image
x has coarse label y according to our classifier. Our
conditional score ψcond is a compromise between the
embedding similarity and the coarse classification, in
spirit of the loss in Equation 4:

ψcond(x
′, x) = cos (gθ(x

′), gθ(x))+log

(
pc(x

′, y)

1− pc(x′, y)

)
.

(5)
Note that, in that case, we rely on the fact that

the collection in which we search is the training set,
so that the coarse labels associated with the collec-
tion are known. In Section 4 we show experimentally
that ψcond improves the category-level retrieval per-
formance in the coarse-to-fine context.

Conditional ranking: Oracle. If we assume that the
coarse label of the query test image is known (given
by an oracle), then we can set pc(x′, y) = 1y=y′ with y′

the coarse class of the test image x′. This boils down
to systematically putting images with the same coarse
class as the test image first in the ranking. Experimen-
tally, this shows the impact of test label prediction on
the score, and provides an upper bound on the per-
formance of the conditional ranking strategy. It is also
relevant in practice in a scenario where the user pro-
vides this coarse labeling, for instance by selecting it
from an interface.
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3.3. On-the-fly classification

In on-the-fly classification, a kNN classifier
“knows” about the fine classes of the training images
only at test time [61]. Such a non-parametric classifi-
cation does not require any training or fine-tuning. As
a side note, this flexible classifier can handle settings
with evolving datasets, including dynamic additions
of new classes, although such setups are outside the
scope of this paper.

For a test image x we compute the embedding
gθ(x) and compare it to the training image embed-
dings stored inM. We select the k embeddings max-
imizing the cosine similarity to the query, (x1, ..., xk),
with labels (y1, ..., yk). For a direct comparison with
Wu et al. [61] and consistently with Equation 3, we ap-
ply an exponentially decreasing neighbour weighting
that computes the probability that x belongs to class y
as

pkNN(x, y) ∝
k∑

j=1,yj=y

exp (cos(gθ(x), gθ(xj))/σ) . (6)

We normalize the probabilities so that∑
y pkNN(x, y) = 1.

4. Experiments

We consider evaluation scenarios where it is bene-
ficial to learn at a finer granularity than that provided
by the training labels. The first two tasks are coarse-to-
fine tasks (category-level retrieval and on-the-fly clas-
sification), where we measure the capacity of the net-
work to discriminate fine labels without having seen
them at training time. The third protocol is vanilla
transfer learning, where we transfer from Imagenet to
a fine-grained dataset.

4.1. Datasets and evaluation metrics

We carry out our evaluations on public bench-
marks, which statistics are detailed in Table 1.

CIFAR-100 [36] has 100 classes grouped into 20
coarse concepts of 5 fine classes each. For instance the
coarse class large carnivore includes fine classes bear,
leopard, lion, tiger and wolf. In all experiments, we use
the coarse concepts to train our models and evaluate
the trained model using the fine-grained labels.

ImageNet [46] classes follow the WordNet [20] hier-
archy. We use the 127 coarse labels defined in Huh et
al. [33] in order to allow for a direct comparison with
their method.

Table 1: Datasets used for our different tasks. The four
top datasets offer two or more levels of granularity,
we use them for all coarse-to-fine tasks. The bottom
three are fine-grained datasets employed to evaluate
transfer learning.

Dataset Train size Test size #classes

CIFAR-100 [36] 50,000 10,000 20/100
ImageNet [46] 1,281,167 50,000 127/1000
iNaturalist 2018 [30] 437,513 24,426 6/. . . /8,142
iNaturalist 2019 [31] 265,240 3,003 6/. . . /1,010

Flowers-102 [41] 2,040 6,149 102
Stanford Cars [35] 8,144 8,041 196
Food101 [7] 75,750 25,250 101

iNaturalist-2018 offers 7 granularity levels from the
most general to the most specific, that follow the bi-
ological taxonomy: Kingdom (6 classes), Phylum (25
classes), Class (57 classes), Order (272 classes), Fam-
ily (1,118 classes), Genus (4,401 classes) and Species
(8,142 classes). We consider pairs of (coarse,fine) gran-
ularity levels in our experiments. iNaturalist-2019 is
similar to iNaturalist-2018 with fewer classes and im-
ages, and yields similar conclusions.

Flowers-102, Stanford Cars and Food101 are fine-
grained benchmarks with no provided coarse la-
belling. Therefore we can use them for the transfer
learning task.

Evaluation metrics. For category-level retrieval we
report the mean average precision (mAP), as com-
monly done for retrieval tasks [2, 42]. For on-the-fly
classification we report the top-1 accuracy.

4.2. Baselines

We use existing baselines and introduce stronger
ones:

Wu’s baselines [61] use activations of a network
learned with cross-entropy loss, but evaluated with a
kNN classifier. Huh et al. [33] evaluate how a network
trained on the 127 ImageNet coarse classes transfers
on the 1000 fine labels1.

Our main baseline: we learn a network with
cross-entropy loss, and perform retrieval or kNN-
classification with the `2-normalized embedding pro-
duced by the model trunk. We point out that, thanks

1They fine-tune a linear classifier with fine labels. We do not con-
sider this task in the body of the paper, but refer to Appendix B.2:
our approach provides a significant improvement in this case as
well.
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Table 2: Coarse-to-fine: comparison with the state of
the art for category-level retrieval (mAP, %) and kNN
classification (top-1, %), with the ResNet50 architec-
ture. We compare Grafit with the state of the art [61]
and our stronger baselines. We highlight methods
that use more parameters (32.9M vs ∼23.5M), see Ta-
ble 5 for details.

Method CIFAR-100 ImageNet-1k
kNN mAP kNN mAP

Baseline, Wu et al. [61] 54.2 48.1
SNCA, Wu et al. [61] 62.3 52.8
Baseline (ours) 71.8 42.5 54.7 22.7
ClusterFit+ 72.5 23.0 59.5 12.7
SNCA+ 72.2 35.9 55.4 31.8

Grafit FC 75.6 55.0 69.1 44.4
Grafit 77.7 55.7 69.1 42.9

to our strong optimization strategy borrowed from re-
cent works [28, 50], this baseline by itself outperforms
all published results in several settings, for instance
our ResNet-50 baseline without extra training data
outperforms on ImageNet a ResNet-50 pretrained on
YFCC100M [66] (see Table 12 in Appendix B for a com-
parison).

SNCA. Wu et al. [61] proposed SNCA, a model op-
timized with a kNN loss. In our implementation, we
add a linear operator Pθ to the network trunk fθ when
training the supervised loss Lknn.

SNCA+. We improve SNCA with our stronger opti-
mization procedure. The retrieval or kNN evaluation
uses features from a MLP instead of a simple linear
projector, which means that its number of parameters
is on par with Grafit (and larger than Grafit FC).

ClusterFit+. Same as for SNCA, we improve Clus-
terFit [67] with our training procedure, and cross-
validate the number of clusters (15000 for Imagenet
and 1500 for CIFAR-100). As a result we improve its
performance and have a fair comparison, everything
being equal otherwise.

4.3. Experimental details

Architectures. Most experiments are carried out
using the ResNet-50 architecture [27] except for
Section 4.6 where we also use RegNet [43] and
ResNeXt [64].

Training settings. Our training procedure borrows
from the bag of tricks [28]: we use SGD with Nesterov

Table 3: kNN evaluation on iNaturalist-2018 with dif-
ferent semantic levels. The symbol ∅ refers to the un-
supervised case (a unique class). We compare with the
best competing method according to Table 2.

Train→ ∅ Kingdom Phylum class Order Family Genus Species
↓Test / #classes→ 1 6 25 57 272 1,118 4,401 8,142

C
lu

st
er

Fi
t+

Kingdom 70.9 94.7 95.0 95.3 95.6 96.2 96.3 96.1
Phylum 48.8 87.4 90.3 90.7 91.1 92.6 92.6 92.2

Class 40.4 80.2 83.8 85.7 86.7 88.8 88.8 88.2
Order 17.1 54.5 59.0 61.4 70.8 73.9 74.3 72.3

Family 5.6 38.3 42.1 44.4 54.3 63.0 64.2 61.9
Genus 0.9 26.7 29.5 31.5 40.1 49.4 53.9 51.7

Species 0.3 21.8 23.7 25.2 32.7 40.3 44.7 43.4

G
ra

fit

Kingdom 95.5 98.1 98.2 98.2 98.2 98.2 98.4 98.3
Phylum 90.0 94.1 96.6 96.7 96.8 96.7 96.9 96.7

Class 82.2 87.5 90.9 94.5 94.9 94.9 95.0 95.0
Order 54.0 61.7 66.9 72.7 87.1 87.5 87.6 87.3

Family 33.7 42.1 48.7 55.1 70.9 81.8 82.4 82.1
Genus 20.5 27.0 33.5 39.5 54.2 64.6 75.6 75.5

Species 15.9 20.4 25.5 30.8 42.7 51.2 61.9 67.7

momentum and cosine learning rates decay. We fol-
low Goyal et al.’s [24] recommendation for the learn-
ing rate magnitude: lr = 0.1

256×batchsize. The data aug-
mentation consists of random resized crop, RandAug-
ment [14] and Erasing [70]. We train for 600 epochs
with batches of 1024 images at resolution 224 × 224
pixels (except for CIFAR-100: 32×32). We set the tem-
perature σ to 0.05 in all our experiments following Wu
et al. [61]. Appendix B.1 gives more details.

For the on-the-fly classification task, the
unique hyper-parameter k is cross-validated in
k ∈ {10, 15, 20, 25, 30}.

4.4. Coarse-to-fine experiments

CIFAR and ImageNet experiments. Table 2 compares
Grafit results for coarse to fine tasks with the baselines
from Section 4.2. On CIFAR-100, Grafit outperforms
other methods by +5.5% top-1 accuracy. On ImageNet
the gain over other methods is +13.7%.

Grafit also outperforms other methods on category-
level retrieval, by 13.2% on CIFAR and 11.1% on Im-
ageNet. Table 2 shows that Grafit not only provides
a better on-the-fly classification (as evaluated by the
kNN metric), but that the ranked list is more relevant
to the query (results for mAP).

Coarse-to-Fine with different taxonomic ranks. We
showcase Grafit on various levels of coarse granular-
ity by training one model on each annotation level
of iNaturalist-2018 and evaluating on all levels with
kNN classification (Table 3) and retrieval (Table 4).

Figure 3 presents results with retrieval and kNN
classification for two of the most interesting cases:
when the train and test granularities are the same
(left), and on the finest test level (Species) with vary-
ing granularities at training time (right). On the left,
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Table 4: Category-retrieval evaluation (mAP, %) on
iNaturalist-2018 with different semantics levels. We
compare with the best baseline according to Table 2.

Train→ Kingdom Phylum class Order Family Genus Species
↓Test / #classes→ 6 25 57 272 1,118 4,401 8,142

SN
C

A
+

Kingdom 97.6 83.3 75.9 59.2 56.0 54.9 55.0
Phylum 59.8 91.7 79.4 49.1 35.0 32.3 32.2

Class 41.3 73.1 89.9 49.2 28.1 23.6 23.0
Order 9.09 24.9 35.7 77.9 35.3 18.0 15.0

Family 2.24 6.43 11.2 35.7 68.4 29.1 21.7
Genus 0.39 2.47 5.03 18.1 36.6 60.5 46.0

Species 0.19 1.86 3.80 12.8 26.4 46.0 54.9

G
ra

fit

Kingdom 98.6 88.3 79.7 60.8 58.0 55.9 55.5
Phylum 67.8 97.2 82.1 50.9 38.9 34.2 33.0

Class 50.1 74.9 95.4 51.2 32.3 25.9 24.1
Order 17.7 30.7 42.7 88.3 42.3 21.1 16.2

Family 8.70 13.2 18.0 43.9 83.1 34.8 24.2
Genus 6.78 9.72 13.5 29.0 46.9 77.2 53.9

Species 6.45 9.02 12.1 23.6 35.6 55.4 70.0
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Figure 3: Evaluation on iNaturalist-2018 [30] with and
left: train=test granularity right: test at finest granular-
ity (species). We compare our method Grafit, SNCA+,
ClusterFit+ and Baseline. Top: on-the-fly kNN clas-
sification (top-1 accuracy); bottom: category-level re-
trieval (mAP).

the accuracy of all methods decreases as the granular-
ity increases: this is expected as the task moves from
coarse classification to fine, as it is more difficult to
discriminate amongst a larger number of classes.

We observe that the performance drop of Grafit for
category-level retrieval is reduced in comparison with
other methods. On the right figures, the accuracy of all
methods increases as the level of annotation increases
(keeping evaluation at Species). Grafit also stands out
in this context, outperforming other methods.

We report comprehensive results with Grafit and
the baselines from Section 4.2 on iNaturalist-2019 &

Table 5: Ablation study on CIFAR-100 and ImageNet
with ResNet50 architecture. We report results both
for on-the-fly classification (kNN classifier, top-1 ac-
curacy, %) and category-level retrieval (mAP, %). The
rows corresponding to the main baselines and meth-
ods discussed through our paper are highlighted: our
baseline and improved SNCA+ in grey and red,

and our two variants Grafit-FC and Grafit in blue.
The last row is the result that Grafit would obtain with
a perfect coarse classification.

Loss knn
head

proj. Pθ

coarse
cond.

CIFAR100 Imagenet

LCE Lknn Linst kNN mAP kNN mAP #Params

X 71.8 42.5 54.7 22.7 23.5M
X X 71.8 43.1 54.7 24.4 23.5M

X 54.3 14.3 41.7 3.47 23.5M
X X 76.9 51.0 65.0 26.0 23.5M

X FC 70.0 39.7 57.8 30.7 23.8M
X X FC 75.6 53.6 69.1 41.7 23.8M
X X FC X 75.6 55.0 69.1 44.4 23.8M

X MLP 72.2 35.9 55.4 31.8 32.9M
X MLP X 72.2 41.4 55.4 32.9 32.9M
X X MLP 77.7 52.9 69.1 39.4 32.9M
X X MLP X 77.7 55.7 69.1 42.9 32.9M

X X MLP oracle 77.7 59.3 69.1 47.2 32.9M

2018 in the supplemental material (Appendix B.3).

Visualizations. Figure 1 shows visual results for the
category-level retrieval task with Grafit. All the re-
sults for the baseline and Grafit have the correct coarse
label, but our method is better at a finer granularity. In
Appendix C we show that the improvement is even
more evident when the granularity level at training
time is coarser.

Figure 4 presents t-SNE visualizations [55] of the la-
tent spaces associated with the baseline and Grafit for
images associated with a sub-hierarchy of iNaturalist-
2018.

4.5. Ablation studies

Losses, architectural choice and conditioning. Ta-
ble 5 presents a study on CIFAR-100 and ImageNet-1k,
where we ablate several components of our method.
A large improvement stems from the instance loss
when it supplements the supervised kNN loss. It is
key for discriminating at a finer grain. The category-
level retrieval significantly benefits from our ap-
proach, rising from 22.7% to 44.4% in the best case.
Coarse conditioning also has a consistent measur-
able impact on performance, yielding around 3 mAP
points across the various settings.

Sanity check: training with coarse vs fine labels.
Table 6 compares the performance gap of several
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Figure 4: t-SNE representa-
tions of features from im-
ages of the family paridae, fo-
cusing on the genus baeolo-
phus (in blue). When trained
with granularity Family, all
depicted points have the same
coarse label, while granular-
ity Genus means that the net-
work has seen 7 distinct la-
bels. Visually, Grafit offers a
better separation of the images
than the baseline w.r.t. the
two finest level ’Genus’ and
’Species’.

Baeolophus

Cyanistes
Lophophanes
Parus
Periparus
Poecile
Sittiparus

Baeolophus atricristatus
Baeolophus bicolor
Baeolophus inornatus
Baeolophus ridgwayi
Baeolophus wollwerberi

Family Paridae:

methods when training with coarse labels vs fine la-
bels. The performance improvement of Grafit over
competing methods on Imagenet is quite sizable: with
fine-tuning, Grafit with coarse labels is almost on par
with the baseline on fine labels. For on-the-fly classifi-
cation, Grafit with coarse labels reaches 69.1% perfor-
mance on Imagenet, significantly decreasing the gap
with fine-grained labels settings. The kNN classifi-
cation performance is 79.3%. This concurs with our
prior observations in Section 4.4 on iNaturalist-2018.

Overall, in this setting Grafit provides some slight
yet systematic improvement over the baseline. With
a ResNet-50 architecture at image resolution 224 ×
224 pixels, Grafit reaches 79.6% top-1 accuracy with
a kNN classifier on ImageNet, which is competitive
with classical cross-entropy results published for this
architecture. See Appendix B for a comparison (Ta-
ble 12) and more results on Imagenet.

Table 6: We compare coarse-to-fine and fine-to-fine
context with mAP (%), kNN (top-1, %) and fine-
tuning (FT) of a linear classifier with fine labels (top-1,
%) on ImageNet.

Method Train Coarse Train Fine
(with ResNet50) mAP kNN FT mAP kNN FT

Baseline 22.7 54.7 78.1 51.5 78.0 79.3
SNCA+ 31.8 55.4 77.9 72.0 79.1 77.4
Grafit FC 44.4 69.1 78.3 72.4 79.2 78.5
Grafit 42.9 69.1 77.9 71.2 79.6 78.0

4.6. Transfer Learning to fine-grained datasets

We now evaluate Grafit for transfer learning on
fine-grained datasets (See) Table 2, with ImageNet
pre-training.

Settings. We initialize the network trunk with Ima-
geNet pre-trained weights and fine-tune only the clas-
sifier. For our method, the network trunk fθ remains

8



fixed and the projector Pθ is discarded. For all meth-
ods we fine-tune during 240 epochs with a cosine
learning rate schedule starting at 0.01 and batches of
512 images (details in Appendix B.4).

Classifier. We experiment with two types of classi-
fiers: a standard linear classifier (FC) and a multi-layer
perceptron (MLP) composed of two linear layers sepa-
rated by a batch-normalization and a ReLU activation.
We introduce this MLP because, during training, both
Grafit and SNCA+ employ an MLP projector, so their
feature space is not learned to be linearly separable. In
contrast, the baseline is trained with a cross-entropy
loss associated with a linear classifier.

Tasks. We evaluate on five classical transfer learning
datasets: Oxford Flowers-102 [41], Stanford Cars [35],
Food101 [7], iNaturalist 2018 [30] & 2019 [31]. Ta-
ble 1 summarizes some statistics associated with each
dataset.

Results. Table 7 compares a ResNet-50 pretrained
on ImageNet with Grafit, SNCA+, ClusterFit [67] and
our baseline on five transfer learning benchmarks.
Our method outperforms all methods. The table also
shows the relatively strong performance of SNCA+.

Table 8 compares Grafit with the RegNetY-
8.0GF [43] architecture against the state of the art,
on the same benchmarks. Note that this architec-
ture is significantly faster than the EfficientNet-B7 and
ResNet-152 employed in other papers, and that we
use a lower resolution in most settings.

In Table 8 we consider models pre-trained on Ima-
geNet with a classifier fine-tuned on the fine-grained
target dataset. In each case we report results with
Grafit (with a MLP for the projector Pθ) and Grafit FC.
See more detailed results in Appendix B Table 16.

In summary, Grafit establishes the new state of the
art. We point out that we have used a consistent train-
ing scheme across all datasets, and a single architec-
ture that is more efficient than in competing methods.

5. Conclusion
This paper has introduced a procedure to learn a

neural network that offers a finer granularity than
the one provided by the annotation. It improves the
performance for fine-grained category retrieval within
a coarsely annotated collection. For on-the-fly kNN
classification, Grafit significantly reduces the gap with
a network trained with fine labels. It also translates
into better transfer learning to fine-grained datasets,
outperforming the current state of the art with a more
efficient network.

Table 7: Comparison of transfer learning performance
for different pre-training methods. All methods use
a ResNet-50 pre-trained on Imagenet. The training
procedues are the same (except the result reported for
ClusterFit [67]). We report the top-1 accuracy (%) with
a single center crop evaluation at resolution 224× 224.
See Table 15 of Appendix B.4 for additional results
with other architectures.

Dataset Ba
se

lin
e

C
lu

st
er

Fi
t

[6
7]

C
lu

st
er

Fi
t+

SN
C

A
+

G
ra

fit

G
ra

fit
FC

Flowers-102 96.2 96.2 98.2 98.2 97.6
Stanford Cars 90.0 89.4 92.5 92.5 92.7
Food101 88.9 88.9 88.8 89.5 88.7
iNaturalist 2018 68.4 49.7 67.5 69.2 69.8 68.5
iNaturalist 2019 73.7 73.8 74.5 75.9 74.6

Table 8: State of the art for transfer learning with pre-
trained ImageNet-1k models. We report top-1 accu-
racy (%) with a single center crop. For Grafit we use
a 39M-parameter RegNetY-8.0GF [43] with resolution
384×384 pixels that is 4× faster than EfficientNetB7 at
inference. “Res” is the inference resolution in pixels.

Best reported results (%) Grafit
Dataset State of the art # Params Res Top-1 Top-1

Flowers-102 EfficientNet-B7 [50] 64M 600 98.8 99.1
Stanford Cars EfficientNet-B7 [50] 64M 600 94.7 94.7
Food101 EfficientNet-B7 [50] 64M 600 93.0 93.7
iNaturalist 2018 ResNet-152 [12] 60M 224 69.1 81.2
iNaturalist 2019 – – – – 84.1
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Marion Zöller: CC BY-NC 4.0, martinswarren: CC BY-
NC 4.0, Ronald Werson: CC BY-NC-ND 4.0, Donna
Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC
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Supplementary material for Paper ID 5395

“Grafit: Learning fine-grained image representations with coarse labels”

In this supplementary material we report addi-
tional analyses, results and examples that comple-
ment our paper. Appendix A presents two exper-
iments on the impact of self-supervised losses on
the granularity and distribution of embeddings. Ap-
pendix B contains a more accurate description of
the experimental settings and more detailed account
of the experiments conducted for this paper. Ap-
pendix C presents additional visualizations of the
ranking obtained with Grafit.

A. About granularity

Is it possible to create representations that discrim-
inate between classes finer than the available coarse
labels? Considering that we have seen only coarse la-
bels at training time, how can we exploit the coarse
classifier for fine-grained classification, if useful at all?
In this section we discuss these two questions and con-
struct an experiment to analyze the role of the losses
and of the coarse classifier. We then provide empirical
observations.

Practical setup. In the following two experiments,
we consider the CIFAR-100 benchmark that has two
granularity levels with 20 and 100 classes (see Section
4.1).

We denote by f the Resnet-18 trunk mapping from
the image space to an embedding space. We train the
neural network trunk f with three possible losses:

• Baseline: regular cross-entropy classification train-
ing LCE with coarse or fine classes;

• Triplet loss: training a triplet loss LTriplet to differ-
entiate between image instances (does not use the
labels);

• LCE + LTriplet: sum of the two losses. This is in-
tended to be a simple proxy of Grafit.

A.1. Experiment: separating arbitrary fine labels

This experiment is inspired both by the
Rademacher complexity [8] and by the self-supervised
learning (SSL) literature [4]. In SSL, the standard way
to evaluate the quality of a feature extractor f is to
measure the accuracy of the network after learning
a linear classifier l for the target classes on top of f .
The Rademacher complexity measures how a class of

Table 9: Separability experiment on CIFAR-100. The
trunk is trained with coarse labels only. Images with
the same coarse label are randomly grouped into two
distinct fine-grain labels (40 distinct labels in total).
Then we fine-tune a linear classifier on this synthetic
labels and measure the top-1 accuracy on fine-labels.
When conditioning, the estimator exploits the hierar-
chy: we first predict the coarse class and condition on
it to make the final prediction. We report results with
three training losses.

Training Top-1 (%)
loss no cond. coarse cond.

LCE 53.7 ±0.3 54.5 ±0.3

LTriplet 26.4 ±0.3 —
LCE + LTriplet 57.1 ±0.2 58.5 ±0.3

Random network 8.7 ±0.3 —

functions (i.e. l ◦ f , with f fixed and l learned) is able
to classify a set of images with random binary labels.

For this experiment we train the trunk f jointly
with a (coarse class) classifier with LCE using coarse
labels. We hope to improve the granularity of f ,
i.e. improve the network trunk such that a (finer-
grained) classifier l trained on top of f performs bet-
ter at discriminating between instances that have the
same coarse label.

Random labels. We generate synthetic fine labels by
the following process: for each coarse label, we ran-
domly and evenly split the training images into two
subcategories, yielding 40 classes in total. Inspired
by the empirical Rademacher estimation, we sample
10 distinct splits of random labels. For each split, we
learn a linear classifier l on top of fi. We then compute
the mean accuracy (top-1, %) of l ◦ fi on the training
examples for the three losses. By evaluating to what
extent one can fit a linear classifier l on top of f , this
experiment measures how well the data are spread in
the representation spaces.

Impact of the loss terms. We report the results in Ta-
ble 9. We can see that, to distinguish between our syn-
thetic fine labels, training with the triplet loss LTriplet

in combination with the classification loss LCE is es-
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Table 10: Top-1 accuracy of a ResNet-18 on CIFAR-100
for different training schemes. We report the results
after finetuning of the linear classifier on the fine la-
bels (see Section A). The Triplet training is unsuper-
vised, so the two columns are the same.

Method Train Coarse Train Fine

LCE 80.4 ±0.2 80.6 ±0.2

LTriplet 76.5 ±0.2 76.5 ±0.2

LCE + LTriplet 80.9 ±0.2 81.3 ±0.2

sential: the sum of losses outperforms each individual
loss.

Conditioning. We also measure the impact of condi-
tioning on coarse classes: we first predict the coarse la-
bel with the coarse classifier, and leverage its softmax
output to classify the fine class. This clearly improves
the accuracy, which motivates our fusion strategy in-
spired by this conditioning in Section 3.2.

A.2. Experiment: varying the training granularity

In this section we make empirical observations re-
lated to the training granularity in the embedding
space.

We train f with one of the three losses and either
coarse or fine labels as supervision. In a second stage,
we train a linear classifer l on the Resnet-18 trunk with
fine class supervision, and evaluate its accuracy on the
test set.

Accuracies. We first quantify the quality of the rep-
resentation space. The accuracies are reported in Ta-
ble 10. We observe that the coarse labels are almost
as good as the fine labels as a pre-training. The un-
supervised LTriplet loss performs significantly worse,
which concurs with our previous separability experi-
ment. Combining this loss with the LCE loss improves
is, both with coarse and fine supervisions.

Size of the representation space. We quantify the in-
formation content of embedding vectors by comput-
ing their principal components analysis (PCA). This
is a reasonable proxy for information content given
that the features are separated by linear classifiers af-
terwards. We observe the cumulative energy of the
PCA components ordered by decreasing energy. We
assume that a more uniform energy distribution (and
thus lower curves) means that the representation is
richer, since a few vector components cannot summa-
rize it.
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Figure 5: Cumulative energy of the PCA decompo-
sition of CIFAR-100 image embeddings, depending
on the granularity of the training labels (20 or 100
classes).

Figure 5 shows the results. When training with
LCE loss, the most uniform distribution for the prin-
cipal components is obtained for the fine supervision.
This is expected since it is a finer-grain separation of
entities and that can not be summarized with a sub-
space as small as the one associated with a relatively
small number of categories. Notice that the training
granularity (20 or 100 classes) can be read as an inflex-
ion point on the PCA decomposition curves. The loss
LTriplet is not very informative on its own but does
improve the cross-entropy representation when com-
bined with it.

Discussion. This simple preliminary experiment
shows that the label granularity has a strong impact
on very basic statistics of the embedding distribution.
It is the basic intuition behind Grafit: a rich represen-
tation can be obtained using just coarse labels, if we
combine them with a self-supervised loss.

B. Additions to the experiments

This section details the training procedure of Grafit
and provides more extensive experimental results.

B.1. Training settings

As described in the main part, our training proce-
dure is inspired by Tong et al. [28]: we use SGD with
Nesterov momentum and cosine learning rates decay.
We follow Goyal et al.’s [24] recommendation for the
learning rate magnitude: lr = 0.1

256×batchsize. The aug-
mentations include random resized crop, RandAug-
ment [14] and Erasing [70]. We train for 600 epochs
with batches of 1024 images of resolution 224 × 224
pixels (except for CIFAR-100 where the resolution is
32 × 32). For Grafit with Linst we use T = 4 differ-
ent data-augmentations on ImageNet and T = 8 on
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Table 11: Category-level (mAP, %) and one-the-
fly kNN classification (top-1, %) performance in a
coarse-to-fine setting on CIFAR-100 with different loss
weighting. Our total loss is Ltot(x) = Lknn(gθ(x), y) +
λLinst(x) with λ being a real-valued coefficient.

λ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

mAP 35.9 46.3 49.6 51.4 52.4 52.9 52.8 52.4

kNN 72.2 70.0 73.2 74.8 75.8 77.7 77.4 77.7

Table 12: Performance comparison (top-1 accuracy)
with our ResNet-50 baseline and state of the art
ResNet-50 on ImageNet. All results are with single
center crop evaluation with image resolution 224 ×
224.

Method Extra-data Top-1 (%)

ResNet-50 [27] PyTorch 76.2
RandAugment [14] 77.6
CutMix [68] 78.6
Noisy-Student [63] JFT-300M [63] 78.9
Billion Scale [66] YFCC100M [52] 79.1

Our Baseline 79.3

CIFAR-100. For the supervised loss we use one data-
augmentation in order to have the same training pro-
cedure as our supervised baseline.

Weighting of the losses. We investigate the impact of
weighting the losses Lknn and Linst. For example, on
CIFAR-100 classification, Table 11 shows that an equal
weighting gives the best or near-best results. There-
fore, to avoid adding a hyper-parameter and in order
to simplify the method, we chose to not use weight-
ing, i.e. we just sum up the two losses.

A strong Baseline. Our training procedure improves
the ResNet-50 performance and thus is a strong base-
line against which we can compare Grafit. Therefore,
Table 12 compares our baseline on ImageNet with
other ResNet-50 training procedures. We observe that
our training procedure gives better results than many
other approaches. This makes it possible to isolate the
contribution of our improved training practices and
that of the Grafit loss.

B.2. {coarse,fine}-to-{coarse,fine}: evaluation

We compare our main baselines and Grafit’s perfor-
mance in the 4 following scenarios: coarse-to-coarse,
coarse-to-fine, fine-to-fine and fine-to-coarse. The
evaluations are performed with two classifiers: a kNN

Table 13: Performance comparison (top-1 accuracy)
when learning and testing at different granularities
(ResNet50). For CIFAR-100, there are 100 fine and 20
coarse concepts. ImageNet covers 1000 fine and 127
coarse concepts. We report the results of both the kNN
classifier and of a linear classifier fine-tuned with the
target granularity (FT).

Method ↓ Test Train Coarse Train Fine
kNN FT kNN FT

C
IF

A
R

-1
00

Baseline
Coarse

89.3 ±0.1 89.4 ±0.2 90.3 ±0.1 90.5 ±0.2
SNCA+ 88.4 ±0.3 88.9 ±0.3 88.8 ±0.1 90.2 ±0.1
Grafit 90.6 ±0.1 90.6 ±0.1 90.6 ±0.3 90.9 ±0.2

Baseline
Fine

71.8 ±0.3 82.3 ±0.2 82.7 ±0.2 82.7 ±0.2

SNCA+ 72.2 ±0.3 82.0 ±0.4 81.7 ±0.1 82.9 ±0.1

Grafit 77.7 ±0.2 83.7 ±0.2 83.2 ±0.3 83.7 ±0.2

Im
ag

eN
et

-1
k Baseline

Coarse
87.0 ±0.1 87.6 ±0.1 87.4 ±0.1 87.9 ±0.1

SNCA+ 87.7 ±0.1 87.5 ±0.1 88.9 ±0.1 87.2 ±0.1
Grafit 88.4 ±0.1 87.3 ±0.1 89.2 ±0.1 87.7 ±0.1

Baseline
Fine

54.7 ±0.2 78.1 ±0.1 78.0 ±0.1 79.3 ±0.1
SNCA+ 55.4 ±0.2 77.9 ±0.1 79.1 ±0.1 77.4 ±0.1
Grafit 69.1 ±0.2 77.9 ±0.1 79.6 ±0.1 78.0 ±0.1

classifier (kNN) and a linear classifier fine-tuned (FT)
with a cross-entropy loss on top of the embeddings.

The results in Table 13 show that Grafit training im-
proves the accuracy in almost all settings, including
the fine-to-fine setting, which is just regular classifica-
tion with the vanilla labels for Imagenet.

B.3. Coarse-to-Fine with different taxonomic rank

Datasets. We carry out evaluations on iNaturalist-
2018, and with iNaturalist-2019 [31], which is a subset
of iNaturalist-2018 [30] where classes with too few im-
ages have been removed. iNaturalist 2019 dataset is
thus composed of 268,243 images divided into 1,010
classes at the finest level. From the coarse to the
finest level, we have 3 classes for Kingdom, 4 classes
for Phylum, 9 classes for Class, 34 classes for Order,
57 classes for Family, 72 classes for Genus and 1,010
classes for Species.

Results. We report exhaustive results with our two
coarse-to-fine evaluation protocols with all our base-
lines on iNaturalist-2018 [30] and iNaturalist-2019 [31]
in Table 14.

We comment more specifically the kNN classifica-
tion accuracy (left) because for retrieval, Grafit outper-
form all the baselines by a large margin. The table on
the right is divided in 10 matrices each containing re-
sults for one combination of a method and a dataset
(iNaturalist 2018 or 2019).

The diagonal values in the matrices correspond to
a traditional setting where the training and the test
granularity are the same. Even in this case, the Grafit
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descriptors outperforms the baseline methods most
often. On iNaturalist 2018, for Species, the finest and
most challenging level, the additional Grafit loss im-
proves the top-1 accuracy by 7% absolute. The gain
is more marginal for iNaturalist 2019 (+0.9%), which
shows that Grafit is especially useful for unbalanced
class distributions where some classes are in a low-
shot training regime.

The lower triangle of each matrix reports the
coarse-to-fine results, which is the setting in which we
focus in our paper. Grafit obtains the best results for
most combinations, with accuracy gains of around 10
points with respect to the baseline and by a few points
for ClusterFit+. It is interesting to look at the ∅ col-
umn, which is the unsupervised case. In that case, the
baseline training reduces to a random network, but
Grafit is able to extract signal from the kNN loss.

The upper triangle is the fine-to-coarse setting,
where finer labels are available for the training images
than what is used at test time. This is obviously not
the setting of the paper but it is worth discussing these
results. A natural baseline for fine-to-coarse is to dis-
card the fine labels and train only with the coarse la-
bels induced by the fine annotation. This would yield
the same accuracy as on the corresponding entry of
the diagonal of the matrix. Irrespective of the method,
the fine-to-coarse training does not necessarily outper-
form this simple strategy.

B.4. Transfer Learning Tasks

This section details the experimental settings for
the transfer learning and reports more results and
comparisons.

Fine-tuning settings As described in Section 4.6
We initialize the network trunk with ImageNet pre-
trained weights and fine-tune only the classifier. For
our method, the pre-trained network trunk fθ remains
fixed. The projector Pθ is discarded. For all methods
we fine-tune during 240 epochs with a cosine learn-
ing rate schedule starting at 0.01, and batches of 512
images.

For fine-tuning results in Table 8 we additionally
use Cutmix [68] and FixRes [53] during fine-tuning
and we fine-tune with more epochs (1000 for Flow-
ers [41] and Cars [35], 300 for Food-101 [7] and iNatu-
ralist [30, 31]). These choices improve the performance
for all the methods.

Results. Table 15 compares the performance ob-
tained with Grafit for different architectures. We re-
port results with Grafit topped with either a multi-
layers perceptron (MLP) or a linear classifier (FC). The
accuracy increases for larger models. This shows that,

although ResNet-50 serves as a running example ar-
chitecture for Grafit, the method applies without mod-
ifications to other architectures.

Table 16 compares the performances= obtained
with Grafit and baselines with MLP and FC classi-
fier. For all settings, the flexibility of the MLP is useful
to outperform the linear classifier (FC). The transfer
learning results are better or as good for Grafit vari-
ants. The gap with the baseline methods is higher for
the iNaturalist variants. This is because the datasets
are more challenging, as evidenced by the relatively
low accuracies reported.

C. Visualization

CIFAR. Figure 6 shows for a giving test image in
CIFAR-100 the 10 nearest neighbours in the train-
ing according the cosine similarity in the embedding
space. In Figure 6 models are trained on the 20 CIFAR-
100 coarse classes. The correct classes are indicated in
green. For example, in the first row, Grafit correctly
identifies a butterfly query in 9 out of 10 results, while
the baseline method succeeds only 5 times. The sec-
ond row is a relative failure case, because Grafit con-
fuses a van with a pickup truck. However, it correctly
matches the colors of the vehicles.

iNaturalist. Figure 7, 8 and Figure 9 present simi-
lar results for three examples for iNaturalist-2018, but
with several levels of granularity for the training set,
which allow one to vizualize the importance of the
training granularity as well. Each granularity level is
identified with a color. The frame color around the im-
age indicates which at which granularity the match is
correct: for example, light orange means it is correct
at the order level and green means that the result is
correct at the finest granularity (Species).

We can observe from the colors and the image con-
tent that the level at which Grafit is correct is almost
systematically better than the baseline2. For example,
the baseline model trained at the genus granularity in
Figure 7 matches the deer query with a moose (rank
3).

In Figure 8, the butterfly is matched relatively eas-
ily with other butterflies by both classifiers, even
when they are trained with coarse granularity. This
is because butterflies have quite distinctive textures.
However, Grafit slightly outperforms the baseline for
finer granularity levels.

Figure 9 shows an orca query, which is quite dis-
tinctive with its black-and-white skin. The baseline

2These examples are representative of typical comparisons, as
we have not cherry-picked to show cases where our method is bet-
ter.
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Table 14: Evaluation on iNaturalist-2018/2019 with all combinations of training / testing semantic levels. Left:
on-the-fly k-NN classification accuracy (top-1, %) Right: category-level retrieval (mAP, %). We highlight the best
and second-best result across methods for each train-test granularity combination. The diagonals (test = train
granularity) are in bold. Lower triangles are coarse-to-fine combinations, handled in the paper. Upper triangles
(fine-to-coarse) are reported for reference but not formally addressed by our approach: better strategies would
exploit the hierarchy of concepts more explicitly.

Test \ Train ∅ King. Phyl. Class Order Fam. Gen. Spec.

iNaturalist-2018
# classes: 1 6 25 57 272 1118 4401 8142

Ba
se

lin
e

Kingdom 70.9 97.6 98.0 98.1 98.2 98.2 97.9 97.5
Phylum 48.8 88.0 96.3 96.4 96.6 96.7 96.2 95.2
Class 40.4 77.1 86.7 94.1 94.7 94.8 94.1 92.9
Order 17.1 43.6 55.0 61.0 85.6 86.6 85.5 82.6
Family 5.6 23.0 32.8 36.7 62.0 80.7 79.7 76.1
Genus 0.9 10.0 17.3 20.1 41.7 63.0 72.5 68.3
Species 0.3 6.3 11.5 13.6 31.2 51.3 61.6 60.2

SN
C

A
+

Kingdom 71.2 97.7 97.9 98.1 97.9 98.0 98.2 98.3
Phylum 48.0 68.7 96.1 96.4 96.4 96.5 96.7 96.7
Class 39.4 56.7 84.8 93.9 94.3 94.6 94.7 94.7
Order 16.2 23.3 47.4 59.0 85.4 86.2 86.7 86.7
Family 5.2 7.8 23.2 33.2 57.8 80.2 81.1 81.3
Genus 0.9 1.3 10.4 17.6 36.9 56.8 74.2 74.1
Species 0.3 0.5 6.3 11.9 26.2 42.4 58.9 64.6

C
lu

st
er

Fi
t+

Kingdom 70.9 94.7 95.0 95.3 95.6 96.2 96.3 96.1
Phylum 48.8 87.4 90.3 90.7 91.1 92.6 92.6 92.2
Class 40.4 80.2 83.8 85.7 86.7 88.8 88.8 88.2
Order 17.1 54.5 59.0 61.4 70.8 73.9 74.3 72.3
Family 5.6 38.3 42.1 44.4 54.3 63.0 64.2 61.9
Genus 0.9 26.7 29.5 31.5 40.1 49.4 53.9 51.7
Species 0.3 21.8 23.7 25.2 32.7 40.3 44.7 43.4

G
ra

fit
FC

Kingdom 91.1 97.8 98.1 98.4 98.3 98.4 98.5 98.4
Phylum 81.7 93.0 96.4 96.9 97.0 96.9 97.1 96.8
Class 71.9 86.0 90.7 94.8 95.0 95.1 95.3 95.0
Order 41.8 58.5 66.8 72.2 86.8 87.1 87.3 87.2
Family 22.4 38.8 48.4 54.4 70.4 81.1 81.6 81.7
Genus 11.4 24.6 33.1 38.6 53.0 63.9 73.8 74.2
Species 8.13 18.8 25.6 29.9 41.5 50.9 60.9 65.9

G
ra

fit

Kingdom 95.5 98.1 98.2 98.2 98.2 98.2 98.4 98.3
Phylum 90.0 94.1 96.6 96.7 96.8 96.7 96.9 96.7
Class 82.2 87.5 90.9 94.5 94.9 94.9 95.0 95.0
Order 54.0 61.7 66.9 72.7 87.1 87.5 87.6 87.3
Family 33.7 42.1 48.7 55.1 70.9 81.8 82.4 82.1
Genus 20.5 27.0 33.5 39.5 54.2 64.6 75.6 75.5
Species 15.9 20.4 25.5 30.8 42.7 51.2 61.9 67.7

iNaturalist-2019
# classes: 1 3 4 9 34 57 72 1010

Ba
se

lin
e

Kingdom 77.0 98.9 98.9 99.0 99.3 99.4 99.3 98.9
Phylum 73.8 97.1 98.7 98.9 99.2 99.2 99.2 98.7
Class 63.3 87.6 90.3 98.0 98.5 98.6 98.6 98.0
Order 17.9 49.6 56.4 70.8 95.6 95.5 96.0 95.2
Family 12.4 42.1 50.4 65.0 89.4 94.8 95.1 94.4
Genus 9.6 39.2 46.5 62.1 86.1 91.5 94.8 93.9
Species 1.5 9.8 13.5 20.6 34.5 39.9 42.4 75.0

SN
C

A
+

Kingdom 76.9 98.6 98.9 99.2 99.2 99.3 99.1 99.0
Phylum 73.3 87.1 98.8 99.1 99.1 99.1 98.9 99.0
Class 62.3 74.9 84.1 98.2 98.6 98.3 98.1 97.8
Order 17.6 19.7 30.2 55.4 95.3 95.2 95.2 94.2
Family 12.2 12.7 20.7 45.5 88.2 94.5 94.6 93.5
Genus 9.3 9.2 17.1 41.6 85.0 91.2 94.0 93.1
Species 1.3 1.0 1.8 10.4 36.0 40.8 42.3 74.7

C
lu

st
er

Fi
t+

Kingdom 77.0 96.4 96.1 95.8 95.7 95.7 95.4 97.0
Phylum 73.8 94.2 95.0 94.6 94.3 94.4 93.8 95.5
Class 63.3 88.7 90.1 91.3 90.1 90.9 90.6 93.5
Order 17.9 65.5 67.9 70.9 76.8 79.0 78.1 83.2
Family 12.4 59.5 62.0 65.4 71.7 75.6 75.3 80.4
Genus 9.6 56.9 59.3 62.7 68.7 72.6 73.9 78.6
Species 1.5 24.5 25.6 27.3 31.1 33.6 33.9 49.6

G
ra

fit
FC

Kingdom 93.1 98.9 99.0 99.2 99.2 99.4 99.4 99.2
Phylum 90.9 98.2 98.9 99.1 99.1 99.3 99.2 99.0
Class 82.6 94.9 96.4 98.2 98.3 98.7 98.7 98.3
Order 52.5 80.0 83.5 89.5 95.8 96.0 95.9 95.3
Family 45.3 74.6 78.9 86.0 93.4 95.2 95.4 94.7
Genus 41.7 71.7 76.3 84.0 91.7 93.4 95.0 94.3
Species 12.0 29.5 32.6 40.4 51.8 53.2 53.9 75.9

G
ra

fit

Kingdom 96.9 99.2 99.1 99.2 99.2 99.0 99.0 99.0
Phylum 96.4 98.8 98.9 99.0 99.0 98.9 98.9 98.7
Class 93.0 97.0 97.1 98.2 98.4 98.3 98.1 97.8
Order 81.3 89.0 89.3 91.2 95.9 95.3 95.3 94.5
Family 76.5 85.2 85.2 87.8 93.1 94.5 94.5 93.8
Genus 73.8 82.7 83.1 85.8 91.3 92.6 94.2 93.4
Species 31.0 41.6 41.4 46.0 51.8 53.5 55.3 75.3

Test \ Train King. Phyl. Class Order Fam. Gen. Spec.

iNaturalist-2018
# classes: 6 25 57 272 1118 4401 8142
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Kingdom 97.8 86.3 81.0 76.4 65.9 62.1 61.5
Phylum 64.2 96.6 82.1 63.1 45.9 39.8 38.1
Class 46.0 72.1 93.8 60.1 39.2 31.2 28.5
Order 12.2 24.1 34.3 74.5 35.4 20.1 15.6
Family 3.69 7.02 10.1 32.6 51.3 20.9 14.5
Genus 1.30 3.06 4.47 16.6 30.4 33.3 24.0
Species 1.18 2.63 3.63 12.8 25.7 31.4 27.9
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+

Kingdom 97.6 83.3 75.9 59.2 56.0 54.9 55.0
Phylum 59.8 91.7 79.4 49.1 35.0 32.3 32.2
Class 41.3 73.1 89.9 49.2 28.1 23.6 23.0
Order 9.09 24.9 35.7 77.9 35.3 18.0 15.0
Family 2.24 6.43 11.2 35.7 68.4 29.1 21.7
Genus 0.39 2.47 5.03 18.1 36.6 60.5 46.0
Species 0.19 1.86 3.80 12.8 26.4 46.0 54.9
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lu
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Kingdom 55.5 55.5 55.7 56.4 57.0 57.6 57.7
Phylum 31.6 32.1 32.1 32.4 33.1 33.9 34.0
Class 21.0 21.6 22.0 22.2 23.0 23.7 23.8
Order 6.8 7.4 7.8 9.4 9.9 10.3 10.1
Family 2.9 3.5 3.9 5.5 7.8 7.9 7.3
Genus 3.6 4.3 4.8 7.1 10.8 13.3 12.0
Species 4.7 5.4 5.9 8.6 12.5 15.3 14.5
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Kingdom 98.5 88.3 80.6 61.6 57.7 56.0 56.0
Phylum 69.6 97.2 83.1 50.5 37.9 33.9 33.3
Class 52.4 75.8 95.7 51.3 31.3 25.5 24.5
Order 18.6 31.4 41.6 88.0 41.6 20.4 16.4
Family 7.68 12.9 17.7 44.7 82.4 33.4 23.6
Genus 4.97 8.82 11.9 27.3 45.0 75.5 52.2
Species 4.95 8.25 10.7 21.4 33.6 53.8 68.1
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Kingdom 98.6 88.3 79.7 60.8 58.0 55.9 55.5
Phylum 67.8 97.2 82.1 50.9 38.9 34.2 33.0
Class 50.1 74.9 95.4 51.2 32.3 25.9 24.1
Order 17.7 30.7 42.7 88.3 42.3 21.1 16.2
Family 8.70 13.2 18.0 43.9 83.1 34.8 24.2
Genus 6.78 9.72 13.5 29.0 46.9 77.2 53.9
Species 6.45 9.02 12.1 23.6 35.6 55.4 70.0

iNaturalist-2019
# classes: 3 4 9 34 57 72 1010
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Kingdom 99.0 98.2 88.9 73.6 65.8 67.4 58.6
Phylum 87.1 98.9 90.8 71.7 59.8 61.6 51.7
Class 67.2 77.6 98.2 68.8 55.1 56.3 42.8
Order 15.1 21.1 33.7 94.8 68.6 57.6 26.2
Family 9.72 13.8 24.2 70.7 94.2 80.6 31.5
Genus 7.77 11.0 21.3 59.6 81.4 93.9 34.8
Species 1.09 1.55 3.60 10.8 14.8 16.6 57.0
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Kingdom 98.4 90.1 82.0 63.5 60.9 60.3 55.0
Phylum 84.1 97.7 87.7 62.6 55.9 55.3 49.3
Class 63.2 75.6 95.5 59.0 50.0 49.1 38.5
Order 11.5 17.2 32.4 83.0 64.3 54.4 15.7
Family 6.53 10.0 20.1 75.2 90.9 78.8 19.5
Genus 5.08 7.61 18.1 71.5 84.6 92.8 22.0
Species 0.40 0.65 2.11 15.4 17.1 18.6 72.3
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Kingdom 55.1 55.0 54.7 54.4 54.5 54.6 55.5
Phylum 49.0 49.1 48.8 48.2 48.3 48.4 49.3
Class 36.8 36.9 37.1 36.3 36.4 36.5 37.6
Order 7.5 7.7 8.2 8.4 8.5 8.4 9.7
Family 5.6 5.9 6.4 6.8 7.4 7.3 8.9
Genus 4.9 5.2 5.8 6.1 6.8 6.9 8.6
Species 2.4 2.5 2.9 3.5 4.1 4.2 10.1

G
ra
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Kingdom 99.2 93.2 86.5 63.8 62.3 62.2 56.1
Phylum 88.6 99.2 90.7 63.0 58.9 57.9 50.5
Class 70.4 80.9 98.5 61.6 53.9 52.5 39.9
Order 25.1 32.6 45.4 96.3 70.3 58.6 18.4
Family 20.8 26.7 38.2 84.5 95.8 82.2 23.0
Genus 18.9 24.7 34.0 78.3 88.4 95.7 25.7
Species 6.83 9.63 14.7 28.4 29.7 31.5 78.4

G
ra

fit

Kingdom 99.4 93.1 85.9 62.7 61.5 60.9 56.6
Phylum 88.8 99.2 90.2 62.6 58.4 57.2 51.0
Class 71.8 81.9 98.6 61.3 53.2 52.0 40.4
Order 30.7 36.6 48.1 96.4 69.3 58.3 19.1
Family 28.2 30.8 41.8 82.5 95.1 81.5 23.7
Genus 28.0 29.8 40.5 76.2 87.5 94.8 26.3
Species 18.7 18.9 21.8 32.5 33.3 34.7 77.5
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method is unable to distinguish it from other marine
mammals, even when trained at the finest granular-
ity. Grafit is able to distinguish these textures more ac-
curately, so it gets perfect retrieval results even when
trained at the genus granularity.
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Table 15: Transfer learning task with various architectures pretrained on ImageNet with Grafit. We report the
Top-1 accuracy (%) for the evaluation with a single center crop at resolution 224× 224.
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# Params 25M 25M 48M 21M 39M

Dataset FC MLP FC MLP FC MLP FC MLP FC MLP

Flowers-102 [41] 95.5 98.3 95.9 98.6 96.3 98.7 98.1 98.6 99.0 98.8
Stanford Cars [35] 91.6 92.9 88.7 93.3 90.9 93.8 93.3 92.7 94.0 93.4
Food101 [7] 89.6 89.9 90.2 90.3 90.9 91.1 91.2 91.3 92.1 92.4
iNaturalist 2018 [30] 67.7 71.2 68.9 72.4 71.4 74.4 73.8 74.2 76.4 76.8
iNaturalist 2019 [31] 75.3 76.3 75.8 77.6 77.8 78.7 78.1 77.9 79.8 80.0

Table 16: Transfer learning with ResNet-50 pretrained on ImageNet. Comparison between different pre-training
methods and two different classifiers trained on the target domain (a linear FC or an MLP). We report the top-1
accuracy (%) with a single center crop evaluation at resolution 224× 224.
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Flowers-102 [41] 96.2 95.7 94.3 98.2 96.2 96.1 97.6 98.2 94.3 97.6
Stanford Cars [35] 90.0 89.8 91.6 92.5 89.4 89.3 91.4 92.5 91.4 92.7
Food101 [7] 88.2 88.9 88.7 88.8 88.5 88.9 88.9 89.5 88.5 88.7
iNaturalist 2018 [30] 65.0 68.4 64.7 69.2 64.2 67.5 65.6 69.8 65.2 68.5
iNaturalist 2019 [31] 72.8 73.7 73.1 74.5 71.8 73.8 74.1 75.9 73.9 74.6
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Figure 6: CIFAR-100: For given test images (top), we present the ranked list of train images that are most similar
with embeddings obtained with a baseline method (top) and our method (bottom) train with coarse labels. Images
in green indicate that the image belongs to the correct fine class; orange indicates the correct coarse class but
incorrect fine class. In this example, all results are correct w.r.t. coarse granularity.
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Figure 7: We compare Grafit and Baseline for different training granularity. We rank the 10 closest images in the
iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine similarity on the
features space of each of the two approaches. See Table 17 for authors and image copyrights.
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Figure 8: We compare Grafit and Baseline for different training granularity. We rank the 10 closest images in the
iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine similarity on the
features space of each of the two approaches. See Table 18 for authors and image copyrights.
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Figure 9: We compare Grafit and Baseline for different training granularity. We rank the 10 closest images in the
iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine similarity on the
features space of each of the two approaches. See Table 19 for authors and image copyrights.
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Table 17: Author and Creative Commons Copyright notice for images in Figure 7.

sequeirajluis: CC BY-NC 4.0, 101724807574796438015: CC BY-NC 4.0, Juan Carlos Pérez Magaña: CC BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, Damon Tighe: CC BY-NC 4.0,
colinmorita: CC BY-NC 4.0, Bob Hislop: CC BY-NC 4.0, Skyla Slemp: CC BY-NC 4.0, Sam Kieschnick: CC BY-NC 4.0, Derek Broman: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC
4.0, dfwuw: CC BY-NC 4.0, maractwin: CC BY-NC-SA 4.0, pfaucher: CC BY-NC 4.0, Ryan Blankenship: CC BY-NC 4.0, Gary Chang: CC BY-NC-SA 4.0, Linda Jo: CC BY-NC 4.0,
sequeirajluis: CC BY-NC 4.0, pwiedenkeller: CC BY-NC 4.0, dfwuw: CC BY-NC 4.0, dfwuw: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, CC BY-NC 4.0, Bruno Durand: CC BY-NC
4.0, Kyle Jones: CC BY-NC 4.0, Jakub Pełka: CC BY-NC 4.0, ekoaraba: CC BY-NC 4.0, Shane: CC BY-NC 4.0, dfwuw: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, gyrrlfalcon: CC
BY-NC 4.0, dengland81: CC BY-NC 4.0, mafzam: CC BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, Damon Tighe: CC BY-NC 4.0, Cathy Bell: CC BY-NC-ND 4.0, ONG OeBenin: CC
BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, fiddleman: CC BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, Brian Gratwicke: CC BY 4.0, ONG OeBenin: CC BY-NC 4.0, sequeirajluis: CC
BY-NC 4.0, gyrrlfalcon: CC BY-NC 4.0, Simon Kingston: CC BY-NC 4.0, Mark Freeman: CC BY-NC 4.0, Mike: CC BY-NC 4.0, tiyumq: CC BY-NC 4.0, Kyle Jones: CC BY-NC 4.0, abn:
CC BY-NC 4.0, James Bailey: CC BY-NC 4.0, Allan Finlayson: CC BY-NC 4.0, joysglobal: CC BY-NC 4.0, sea-kangaroo: CC BY-NC-ND 4.0, Ken-ichi Ueda: CC BY-NC 4.0, driles5:
CC BY-NC 4.0, driles5: CC BY-NC 4.0, 112692329998402018828: CC BY-NC-SA 4.0, Andy Jones: CC BY-NC-SA 4.0, almanzacamille: CC BY-NC 4.0, CC BY-NC 4.0, J. Maughn: CC
BY-NC 4.0, jameseatonbio1020: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, bio22003jeaton: CC BY-NC 4.0, 112692329998402018828: CC BY-NC-SA 4.0, Sterling Sheehy: CC BY 4.0,
Guillermo Debandi: CC BY-NC 4.0, James Bailey: CC BY-NC 4.0, sliverman: CC BY-NC 4.0, Joanne Siderius: CC BY-NC 4.0, janaohrner: CC BY-NC 4.0, ONG OeBenin: CC BY-NC
4.0, mcodellwildlife: CC BY-NC 4.0, Johnny Wilson: CC BY-NC 4.0, sea-kangaroo: CC BY-NC-ND 4.0, Brian Gratwicke: CC BY 4.0, 112692329998402018828: CC BY-NC-SA 4.0, ONG
OeBenin: CC BY-NC 4.0, summersilence: CC BY-NC 4.0, efarias1: CC BY-NC 4.0, redhat: CC BY-NC 4.0, Dale Hameister: CC BY-NC 4.0, 116916927065934112165: CC BY-NC-SA 4.0,
sequeirajluis: CC BY-NC 4.0, Zac Cota: CC BY-NC 4.0, J Brew: CC BY-SA 4.0, Cullen Hanks: CC BY-NC 4.0, Allan Finlayson: CC BY-NC 4.0, dfwuw: CC BY-NC 4.0, Mark Freeman:
CC BY-NC 4.0, mmski303: CC BY-NC 4.0, driles5: CC BY-NC 4.0, driles5: CC BY-NC 4.0, Marcus Garvie: CC BY-NC 4.0, ryanubrown: CC BY-NC-ND 4.0, efarias1: CC BY-NC 4.0,
amarena: CC BY-NC 4.0, ttempel: CC BY-NC 4.0, tnewman: CC BY-NC 4.0, Juan Cruzado Cortés: CC BY-NC-SA 4.0, lonnyholmes: CC BY-NC 4.0, Audrey Kremer: CC BY-NC 4.0,
texasblonde: CC BY-NC 4.0, Dale Hameister: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, Allan Finlayson: CC BY-NC 4.0, pfaucher: CC BY-NC 4.0, Edward George: CC BY-NC
4.0, Cullen Hanks: CC BY-NC 4.0, CK Kelly: CC BY 4.0, mustardlypig: CC BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, ONG OeBenin: CC BY-NC 4.0, ONG OeBenin: CC BY-NC
4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0,
CK Kelly: CC BY 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, CK Kelly: CC BY 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, nighthawk0083:
CC BY-NC 4.0, pfaucher: CC BY-NC 4.0, Johnny Wilson: CC BY-NC 4.0, ncowey: CC BY-NC 4.0, Johnny Wilson: CC BY-NC 4.0, redhat: CC BY-NC 4.0, ONG OeBenin: CC BY-NC
4.0, owlentine: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, Jakub Pełka: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0,
sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, sequeirajluis: CC BY-NC 4.0, Robert
J. ”Bob” Nuelle, Jr. AICEZS: CC BY-NC 4.0

Table 18: Author and Creative Commons Copyright notice for images in Figure 8.

stefanovet: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, selwynq: CC BY-NC 4.0, emily-a: CC BY-NC 4.0, carlaag: CC BY-NC 4.0, carroll: CC BY-NC 4.0, kevinhintsa: CC BY-NC
4.0, Lindsey Smith: CC BY-NC 4.0, kevinhintsa: CC BY-NC 4.0, Bob Heitzman: CC BY-NC 4.0, rmorgan: CC BY-NC 4.0, Giuseppe Cagnetta: CC BY-NC 4.0, cwwood: CC BY-SA
4.0, Fernando de Juana: CC BY-NC 4.0, Chris Evers: CC BY-NC 4.0, Marion Zöller: CC BY-NC 4.0, Marion Zöller: CC BY-NC 4.0, Chuck Sexton: CC BY-NC 4.0, Ronald Werson: CC
BY-NC-ND 4.0, Chris Evers: CC BY-NC 4.0, Chris van Swaay: CC BY-NC 4.0, stefanovet: CC BY-NC 4.0, Richard Barnes: CC BY-NC 4.0, Fluff Berger: CC BY-SA 4.0, Cheryl Harleston:
CC BY-NC-SA 4.0, Steven Chong: CC BY-NC 4.0, juliayl: CC BY-NC 4.0, Kent McFarland: CC BY-NC 4.0, Bruno Durand: CC BY-NC 4.0, José Belem Hernández Dı́az: CC BY-NC
4.0, Nolan Eggert: CC BY-NC 4.0, Lee Elliott: CC BY-NC-SA 4.0, Ronald Werson: CC BY-NC-ND 4.0, Giuseppe Cagnetta: CC BY-NC 4.0, cwwood: CC BY-SA 4.0, Donna Pomeroy:
CC BY-NC 4.0, martinswarren: CC BY-NC 4.0, Fernando de Juana: CC BY-NC 4.0, Chris van Swaay: CC BY-NC 4.0, Monica Krancevic: CC BY-NC 4.0, brentano: CC BY-NC 4.0,
martinswarren: CC BY-NC 4.0, stefanovet: CC BY-NC 4.0, Mark Rosenstein: CC BY-NC-SA 4.0, Mark Rosenstein: CC BY-NC-SA 4.0, Mark Nenadov: CC BY-NC 4.0, Robin Agarwal:
CC BY-NC 4.0, Bryan: CC BY-NC 4.0, Ronald Werson: CC BY-NC-ND 4.0, Chris van Swaay: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Mark Rosenstein: CC BY-NC-SA 4.0,
Monica Krancevic: CC BY-NC 4.0, Chris Evers: CC BY-NC 4.0, Ronald Werson: CC BY-NC-ND 4.0, Don Loarie: CC BY 4.0, Fernando de Juana: CC BY-NC 4.0, Chris Evers: CC BY-NC
4.0, Donna Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Chris van Swaay: CC BY-NC 4.0, cwwood: CC BY-SA 4.0, stefanovet: CC
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Pomeroy: CC BY-NC 4.0, Marion Zöller: CC BY-NC 4.0, Ronald Werson: CC BY-NC-ND 4.0, Chris van Swaay: CC BY-NC 4.0, Giuseppe Cagnetta: CC BY-NC 4.0, martinswarren:
CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Giuseppe Cagnetta: CC BY-NC 4.0, Marion Zöller: CC BY-NC 4.0, Ronald Werson: CC BY-NC-ND 4.0, Donna Pomeroy: CC BY-NC
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Table 19: Author and Creative Commons Copyright notice for images in Figure 9.

slsfirefight: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, Tim Hite: CC BY 4.0, Mikael Behrens: CC BY-NC 4.0, colinmorita: CC BY-NC 4.0, Mary Joyce: CC BY-NC 4.0, Donna Pomeroy:
CC BY-NC 4.0, icosahedron: CC BY 4.0, Donna Pomeroy: CC BY-NC 4.0, tnewman: CC BY-NC 4.0, phylocode: CC BY-NC 4.0, Marisa or Robin Agarwal: CC BY-NC 4.0, Donna
Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Tom Benson: CC BY-NC-ND 4.0, tam topes: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, Mark Rosenstein: CC BY-NC-SA
4.0, Marisa or Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, slsfirefight: CC BY-NC 4.0, Thomas Koffel: CC BY-NC 4.0, Chris Evers:
CC BY-NC 4.0, jaliya: CC BY-NC 4.0, Chris Evers: CC BY-NC 4.0, Victor W Fazio III: CC BY-NC-ND 4.0, Chris Evers: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, Andrew Cannizzaro:
CC BY 4.0, 116916927065934112165: CC BY-NC-ND 4.0, gyrrlfalcon: CC BY-NC 4.0, kolasafamily: CC BY-NC 4.0, summermule: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0,
Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, David R: CC
BY-NC-ND 4.0, summermule: CC BY-NC 4.0, slsfirefight: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, petecorradino: CC BY-NC 4.0, Mike Leveille: CC BY-NC 4.0, greglasley:
CC BY-NC 4.0, tegmort: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Tom Benson: CC BY-NC-ND 4.0, flyfisherking: CC BY-NC 4.0, Jean-Lou Justine: CC BY 4.0, Judith Lopez
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