
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

Tiange Xiang
University of Sydney

txia7609@uni.sydney.edu.au

Chaoyi Zhang
University of Sydney

chaoyi.zhang@sydney.edu.au

Yang Song
University of New South Wales

yang.song1@unsw.edu.au

Jianhui Yu
University of Sydney

jianhui.yu@sydney.edu.au

Weidong Cai
University of Sydney

tom.cai@sydney.edu.au

Abstract

Discrete point cloud objects lack sufficient shape de-
scriptors of 3D geometries. In this paper, we present a
novel method for aggregating hypothetical curves in point
clouds. Sequences of connected points (curves) are initially
grouped by taking guided walks in the point clouds, and
then subsequently aggregated back to augment their point-
wise features. We provide an effective implementation of
the proposed aggregation strategy including a novel curve
grouping operator followed by a curve aggregation opera-
tor. Our method was benchmarked on several point cloud
analysis tasks where we achieved the state-of-the-art clas-
sification accuracy of 94.2% on the ModelNet40 classifica-
tion task, instance IoU of 86.8% on the ShapeNetPart seg-
mentation task and cosine error of 0.11 on the ModelNet40
normal estimation task. Our project page with source code
is available at: https://curvenet.github.io/.

1. Introduction

The point cloud is a primary data structure in a string of
indoor/outdoor computer vision applications. A large vari-
ety of 3D sensors (e.g. LiDAR sensors) are now able to cap-
ture real-world objects, and their projections to digital forms
can be made by sampling discrete points on the surface.
To reach a better understanding of the 3D targets, effective
point cloud analysis techniques and methods are in great de-
mand. With the thriving of deep learning, the pioneer works
[27, 29] and their followers [21, 6, 44, 1, 43, 7, 18, 48] pro-
cessed point clouds through well-designed neural networks
to learn the latent mappings between input point coordinates
and the ground truth labels. Differing from conventional
2D vision tasks, the points are usually in irregular and un-
ordered forms, hence, effective design of feature aggrega-
tion and message passing schemes among point clouds still
remains challenging.

Local feature aggregation is a basic operation that has
been widely studied recently. For each key point, its neigh-
borhood point features are first grouped by pre-defined rules

Local aggregation Non-local aggregation Curve aggregation (ours)

Figure 1. Common aggregations and the curve aggregation.
Blue circles denote key points, orange circles denote query points
or query range. In curve aggregation, query features will be aggre-
gated into all points.

(e.g. KNN). The relative position encodings between the
query point and neighboring points will be computed sub-
sequently and then passed into various point-based trans-
formation and aggregation modules for local feature ex-
traction. Although the above operations help depict local
patterns to some extent, long-range point relations are ne-
glected. While the non-local module [35] provides a solu-
tion to aggregate global features, we argue that the global
point-to-point mapping might still be insufficient to extract
underlying patterns implied by the point cloud shapes.

To this end, we propose to improve the point cloud ge-
ometry learning through generating continuous sequences
of point segments. We posit that such continuous descrip-
tors are more adequate for depicting the geometry of point
cloud objects, compared to popular existing local and non-
local operators nowadays. We denote such continuous de-
scriptors as curves. By regarding a point cloud as an undi-
rected graph, where the discrete points serve as the graph
nodes and the neighbor point connections as the graph
edges, a curve can therefore be described as a walk in the
graph. Figure 1 intuitively compares the local aggregation,
non-local aggregation, and our curve aggregation operators.
In this paper, we first revisit the local feature aggregation in
its general form and provide in-depth discussions on why
long-range feature aggregation strategies are desired (Sec.
3.1). We then formulate our method formally by defining
the curve grouping policy (Sec. 3.2) and the aggregation be-
tween curve features and point features (Sec. 3.3). A novel

ar
X

iv
:2

10
5.

01
28

8v
2

 [
cs

.C
V

]
 2

9
Ju

l 2
02

1

https://curvenet.github.io/

point cloud processing network, CurveNet, is constructed
by integrating the proposed modules along with several ba-
sic building blocks into a ResNet [4] style network.

Our main contributions are three-fold: (1) We propose a
novel feature aggregation paradigm for point cloud shape
analysis. Sequences of points (curves) are grouped and
aggregated for better depiction of point cloud object ge-
ometries. A novel curve grouping operator along with a
curve aggregation operator are proposed to achieve curve
feature propagation. (2) We study potential drawbacks of
grouping loops and provide our solutions to alleviate them.
Moreover, a dynamic encoding strategy is proposed so that
curves can contain richer information while suppressing po-
tential crossovers. (3) We embed the curve modules into a
network named CurveNet, which achieves state-of-the-art
results on the object classification, normal estimation, and
object part segmentation tasks.

2. Related Works
3D point cloud processing. One of the greatest challenges
to point cloud analysis is processing unstructured represen-
tations. Starting from indirect representation transformation
methods [17, 11, 30, 14] that first transform the point cloud
into another representation (e.g. octree, kdtree) to ease the
analysis difficulty, many recent works [27, 47, 6] extract
features from the raw point cloud directly.

As one of the pioneer direct approaches, Point-
Net/PointNet++ [27, 29] utilize shared MLPs to learn point-
wise features. Following them, recent works have extended
the point-wise method to various directions, which include
designing advanced convolution operations [12, 43, 38, 20],
considering a wider neighborhood [15, 50, 36, 22], and the
adaptive aggregation of it [6, 44, 49, 45]. The success of the
above methods is inseparable from the help of feature ag-
gregation operators, which achieve the direct message pass-
ing of discrete points in deep networks.

Current feature aggregation operators can be generally
classified into two categories: local feature aggregation and
non-local feature aggregation. As a representative of lo-
cal aggregation operator, EdgeConv [36] learns semantic
displacement between key points and their feature-space
neighbors. The thrive of non-local aggregation operator
starts from the non-local network [35], with which global
features are transformed and aggregated together to learn
many-to-one feature mappings. With the recent success of
applying Transformer [34] in vision tasks, Guo et al. [3]
designed a point cloud processing architecture comprised
of simple Transformers.

Beyond the local and non-local feature aggregation op-
erators, we suggest that point cloud analysis can be bet-
ter achieved with special consideration of shape segments,
edges, and curves. By aggregating the additional curve fea-
tures, latent feature information can be enriched.

Sampling techniques for 3D point cloud. Sampling
technologies aggregate indicative point patterns and are
hence essential to all point cloud processing methods.
Voxelization-based approaches [28, 37, 39, 24] transform
the discrete point space into 3D grid (voxels), where the
input point clouds behave as the discrete sampling on a
continuous 3D space. However, the quality of such sam-
pling is highly sensitive to the subdivision frequency. Simi-
lar to voxelization-based sampling methods, view-based ap-
proaches [33, 10, 40] start from capturing 2D snapshots of
point clouds from different angles, and make predictions
based on the 2D images. The loss of spatial information is
inevitable during such image samplings.

Advanced sampling methods from recent literatures
overcome the above drawbacks, and obtain promising re-
sults on basic point cloud analysis tasks. GS-Net [42]
exploits an Eigen-Graph to group points with similar Eu-
clidean distance and geometric information. PointASNL
[44] samples both adjacent and global points for a com-
plete description of point cloud objects. Unlike the above
methods, PAT [45] models point clouds with the help of a
Transformer [34] and learns the point sampling through a
Gumbel-Softmax gate. RandLA-Net [6] reviews multiple
sampling techniques and adopts the random sampling for
efficiently processing large scale point clouds. In a con-
current work, MeshWalker [13] also experiments on tak-
ing random walks on mesh surfaces for better mesh anal-
ysis. Differing from all existing sampling methods, we
take guided walks to group contiguous segments of points
as curves, which contain rich information describing object
shapes and geometry.

3. Methods
In this section, we present the proposed operators to

group and aggregate curves for any point cloud P = {p}
and its point-wise features F = {f}. As aforementioned, a
curve represents a connected sequence of points in the point
cloud, and can be formally defined as:

Definition 1. Curves in point cloud. Given P, F and an
isomorphic graph G = (F,E) with the connectivity E
computed by the KNN algorithm on P. A curve c with
length l in feature space, is generated as a sequence of point
features in F, such that c = {s1, · · · , sl|s ∈ F}. To group
curves, we consider a walk policy π defined on the isomor-
phic graph G that starts a walk (curve) from a starting point
s1 and transits for l steps.

3.1. Rethinking Local Feature Aggregation

The general purpose of local feature aggregation is to
learn the underlying patterns within a local space of k
elements. For each point p, the neighborhood N =
{p1, · · · ,pk} is first grouped by a deterministic rule, and

La
ye

r 1
La

ye
r 2

La
ye

r 3

A

B

C

C

B

A

Max-Pooling Avg-Pooling

Figure 2. Left: A point cloud projected on the 2D plane. Left
top: Three key points and their k=9 query neighbors. Left bot-
tom: A possible curve through the three key points connected by
red lines. Curve aggregation fuses the features along the curve.
Right: Visualizations of the averaged channel g of a ModelNet40
chair object under different layers of local feature aggregation and
different pooling strategies.

KNN is the most frequently used grouping algorithm [6, 44,
21, 47] due to its computational efficiency. Then, pair-wise
differences Φ between every two elements in N are com-
puted and stacked together. Finally, shared MLPs are em-
ployed to further aggregate the computed encodings leading
to the locally aggregated features g. Formally, the above lo-
cal feature aggregation process can be formulated as:

g = pooling({MLP(Φ(f , f j)|f j ∈ N)}). (1)

Using Manhattan distance Φ(f , f j) = f − f j as the rel-
ative encoding is the most natural practice and has been
widely adopted. However, we argue that such encoding
method does not provide abundant relative signals since
most g in a point cloud contains nearly identical informa-
tion in the same feature channel (regardless of pooling strat-
egy), especially in shallow layers, as shown in Figure 2. As
the raw point cloud sampled from an explicit representation
R of 3D objects is unordered, the point cloud P can be re-
garded as a set of random variables sampled in a particular
probability density function (PDF) U modeled on R, such
that P ∼ U(R). After propagating through a certain num-
ber of network layers, F becomes the transformation over
the random variable set P.

We first consider an extreme case where F represents
the initial point features, such that F = P. Using a sim-
ple 2D plane (Figure 2 left) as an exemplary R, the sparse
points are scattered on a compact subspace of R2. In Fig-
ure 2 left top, three key points are highlighted with their
KNN computed neighbors. It can be practically observed
that, after sampling the points, {pA − pj

A} and {pB − pj
B}

are most likely to have similar values, as the key points are
surrounded by their query neighbors in a similar pattern.
However, point C at the boundary (an edge or an irregu-
lar segment of surface in 3D space) stands as an exception.

Restricted by the geometry of R, the distribution of point
C query neighbors is considerably different than A and B,
which leads to varying {pC − pj

C}.
Based on the above observation, we claim that in any

structured PDF that ensures the same sampling behaviour
on similar geometries, g in Eq. 1 is dependent on the distri-
bution of F and P. Point cloud objects, which have similar
geometry information at most parts, turn out encoding sim-
ilar and indistinguishable information in g. As shown in
Figure 2 right, the chair’s back and seat have close features,
especially in shallow layers. One possible strategy to enrich
g is using more relative encoding rules rather than element-
wise difference solely [6, 1]. In this paper, we enrich the
local features g by combining the features aggregated from
curves, as illustrated in Figure 2 left bottom. Each curve
covers a long path in the point cloud encoding unique geo-
metric information, which could be used to further increase
point feature diversity.

3.2. Curve Grouping

In this subsection, we present the details on grouping
curves in the feature space of point clouds. The starting
point of a curve is essential to the overall grouping qual-
ity. To group n curves simultaneously, the starting point set
in Rn×||f || needs to be determined beforehand. Borrowing
the top-k selection method from [2], we employ a sigmoid
gated MLP to learn the selection score for each of the point
features in F. The starting points are the points with top n
scores. To enable gradient flow, we multiply the scores back
to F via a self-attention manner.

After the construction of the starting point set, a walk
W then starts from one of the starting points s1 and transits
for exactly l steps. The points traveled by W are grouped
to form a curve c. Given an intermediate state of curve si
(si numerically equals fi when grouping curves in feature
space) arrived after walking for i steps, we are interested in
finding a walk policy π(si) that determines the next state
of curve at the i + 1 step. With a predefined π(·), a curve
c = {s1, · · · , sl} can be finally grouped by executing the
following equation iteratively for l times:

si+1 = π(si), 1 <= i ∈ Z+ <= l. (2)

A good π(·) is essential to guarantee an effective curve
grouping. Instead of a deterministic policy, we present a
learnable π(·) that can be optimized along with the back-
bone network. In more detail, for a state s, we apply MLPs
on a state descriptor hs ∈ R2||s|| to decide the next step. A
state descriptor is constructed as the concatenation of point
feature si and a curve descriptor ri, which will be intro-
duced later in this subsection. Selection logits α on all
neighboring points in Ns can therefore be learned via the
MLPs. We then feed α to a scoring function (e.g. softmax)
to distribute each of the neighbors a score-based multiplier

si
si-1 si

si+1

si-1

s1 s2

s3

s4
s5

si
si-1

N!s
si

si-1

s1 s2

s3

s4
s5

! 𝑓(α)1
! 𝑓(α)2

! 𝑓(α)3

! 𝑓(α)4
! 𝑓(α)5𝑓=argmax

one-hot

𝑓=softmax

Eq. 3.

Eq. 5.

si-1

si
c⃗#

q#$

(s#$)

q#%

q#&

q#'
q#(

s#%

s#&

s#'s#(

s!"

si

θ

d!" =
cos(θ)+1

s!#

si
θ

d!
=1 support vector

curve trajectory

forward backward

candidate trajectory (vector)

key point query point

curve descriptor

tolerance

Figure 3. Top: An overview of our curve grouping process. Bot-
tom: Visualization of the proposed dynamic momentum and the
crossover suppression strategies.

within [0, 1]. The point with the greatest score is then the
output of our π(·). Formally, we formulate π(s) as:

α = {MLP(hsj |sj ∈ Ns)}, (3)

π(s) = F[arg max(softmax(α))], (4)

where hsj is the state descriptor of a KNN neighbor sj . In
forward propagation, Eq. 4 determines the next state with
the computed α. However, during backward propagation,
arg max obscures gradients, and hence the MLP in Eq. 3 is
not able to be updated as expected.

Given the computed α, we present an alternative equa-
tion to Eq. 4 that discards the arg max gate and enables
gradient flow. First, we generate a hard one-hot style score
vector for α instead of soft scores obtained from softmax
function. By using gumbel-softmax [9, 23, 45] 1 as the scor-
ing function, logits can be converted into an one-hot vector
based on the arg max index. Gradients through gumbel-
softmax are computed identically to the ones through soft-
max. Then, we broadcastly multiply the query neighbors
by the one-hot score vector and sum the multiplications to-
gether. The final result of the above operations is numer-
ically identical to the ones computed by Eq. 4. Conse-
quently, our learnable policy is defined as follows:

π(s) =

k∑
1

(gumbel-softmax(α) ·Ns)), (5)

where · denotes broadcast multiplication along the feature
dimension. An overview of the above pipeline is shown in
Figure 3 bottom.

By extending the curve with the highest score point, π(·)
essentially determines the traveling direction of the curve
based on the state descriptors in the neighborhood. We
firstly follow a simple approach that constructs the state de-
scriptor hsj as the direct concatenation of s and the neigh-
bor sj . However, such naive approach can easily lead to

1Gumbel samplings are disabled for avoiding any randomness.

(a) (b)

(c) (d)

self loop repeat loop

small cycle big cycle

Figure 4. Four possible loops in a curve. The orange circle de-
notes current curve head, and the red arrow denotes current curve
traveling direction.

loops, as Eq. 3 will always have the same output for the
same input at each point. A loop is a c = {s1, · · · , sl}
with repeated s, which carries redundant and limited infor-
mation, and hence should be avoided. Figure 4 shows four
kinds of possible loops, among which self loop can be eas-
ily avoided by excluding the key point itself during KNN
computation. To avoid the other loops, the simple state de-
scriptor formation will not suffice.
Dynamic momentum. The key to avoid loops lies in a dy-
namic encoding of state descriptor with consideration of
current curve progress. We maintain a curve descriptor
ri ∈ R||s|| that encodes the prefix of the curve at step i.
The state descriptor hsj for each neighbor of the key point
si now becomes the concatenation of sji and ri.

Inspired by [8], we update ri following the momentum
paradigm. However, we find that setting a fixed momentum
coefficient β is limited in terms of the final result. We pro-
pose that the prefix r of a curve can be better encoded by a
dynamic momentum variant, such that:

β = softmax(MLP([ri−1, si])),

ri = βri−1 + (1− β)si,
(6)

where [·] represents concatenation. Figure 3 bottom illus-
trates the dynamic momentum paradigm.
Crossover suppression. Although the dynamic momentum
strategy avoids loops, curves may still encounter crossovers.
Unlike loops, small number of crossovers may imply use-
ful patterns and should not be avoided completely. How-
ever, when a large number of crossovers occurs, same node
will be included repeatedly, hurting the curve representa-
tion. Therefore, we propose to suppress crossovers by in-
vestigating the curve’s traveling direction.

We first construct a support vector −→c i = si − ri−1 rep-
resenting the general direction of the current curve at step
i. Subsequently, for each query neighbor of the curve head
si, we compute the candidate vector as −→q j

i = sji − si. The

CIC

CIC

TSH

. . .

“Chair”

CIC

KNN

FPS

MLP

MLP

LPFA

Curve Intervention
Convolution

CA TSH
segmentation

classification

Local Point-Feature
Aggregation

LPFA

CurveNet

MLP MLP

AP

MLP

MLP MLP

Concat

3 x N

Cin x N

N = N/4 if stride

Cout x N

C x N

idx:	N x k

F: C x N

F: C x N

C x N x k

Cout x N

C x N

MLP

CA

Curve Grouping
Sec 3.2

Top-K Selection
n x N

C x n	x l

C x N

C x N

LPFA

MLP

Concat(P, Pk, Pk-P)Fk - F
F: C x N idx:	N x k P: 3 x N

9 x N x k

C x N x k

C x N x k

C x N x k

C x N x k

MLP

Average Pooling
C x N x k

C x N

Curve Aggregation

Task-Specified Head

MLP

Linear

S

Max Pooling Linear + DP

C x n	x l

C x n	C x l F: C x N

Cmid x l Cmid x nCmid x N

N	x l N	x n
Cmid x l Cmid x n

Cmid x N Cmid x N

2Cmid x N

C x N

: matrix
multiplication

AP: Attentive
Pooling

C x N

Average Pooling Max Pooling

512 x N

1024 x N

1024 x N

1024 x 1 1024 x 1

2048 x 1

512 x 1

#classes x 1

Up + CIC

Up + CIC

Linear + DP

#classes x N

1024 x N1

128 x N’

64 x N

512 x N1

64 x N

Inside CIC

Outside CIC

. . .

Linear

192 x N

256 x N

Figure 5. CurveNet overview. The network is comprised of a stack of building blocks. FPS denotes the farthest point sampling method
[29]. Dotted blocks and lines are optional regarding different blocks. Building blocks are matched in abbreviation and color.

included angle θ between −→c and −→q j indicates whether the
curve is about to go straight or make a turn. We suppress
crossovers by scaling down αj that has large θ (i.e. likely
to turn around and cause potential crossovers).

Specifically, we determine the angle distance between−→c
and −→q j through cosine similarity and the measurement for
each vector pair strictly falls into the range [−1, 1]. A value
close to −1 represents the two vectors are in the opposite
direction (should be suppressed) and 1 represents they are
in the same direction (should not be suppressed). Consider-
ing there exist boundaries in the latent space, a curve can-
not go straight forever without making a turn. We therefore
set a tolerance threshold angle θ̄ 2, so that only the candi-
date vector with included angle greater than θ̄ needs to be
suppressed. Following the above intuition, we then con-
struct the crossover suppression multiplier dj by shifting
and clipping the cosine similarity score into [0, 1]. Poten-
tial crossovers are suppressed by scaling the candidate logit
αj with dj . An illustration of the crossover suppression
strategy is outlined in Figure 3 bottom.

3.3. Curve Aggregation and CurveNet

As discussed in Sec 3.1, the purpose of curve aggrega-
tion is to enrich the intra-channel feature variety of the rel-
ative encodings φ and eventually provides a better descrip-
tion to g. For notation simplicity, we define the number of
feature channels as C, the number of points as P , and a ba-

2Learning such value yields poorer results in our experiments.

sic Attentive-Pooling operator [6] as AP. In AP, the input
features ∈ RC×∗ are scaled in the self-attention style and
summed up along the ∗ dimension, resulting in RC×1.

Given the grouped curves C = {c1, · · · , cn} ∈
RC×n×l, to aggregate the features in curves, we consider
both inter-relations among the curves and intra-relations
within each curve. We first learn an inter-curve feature
vector finter ∈ RC×l and an intra-curve feature vector
fintra ∈ RC×n by applying AP on C along different axis.
Point features F together with fintra and finter are then
fed to three individual bottleneck MLPs to reduce feature
dimensions. We apply matrix multiplication on the re-
duced F with reduced fintra and finter separately to learn
the respective curve-point mappings. Softmax functions
are employed to convert the mappings into scores. In an-
other branch, the reduced fintra and finter are further trans-
formed with two extra MLPs, which are then fused with the
computed mapping scores by matrix multiplication sepa-
rately. The above process ends up with two fine-grained fea-
ture vectors f ′intra and f ′inter in the same shape of RC×P .
We concatenate f ′intra and f ′inter along the feature axis and
feed into a final MLP. The output of our curve aggregation
is the residual addition to the origin input.

We embed our Curve Grouping (CG) block and Curve
Aggregation (CA) block into a Curve Intervention Convo-
lution (CIC) block. In each CIC block, curves are first
grouped (Sec 3.2) and then aggregated to all point features
(Sec 3.3). We stack 8 CIC blocks together to construct a
ResNet [4] style network, referred to as CurveNet. Our Cur-

veNet initially learns a relative local encoding of the input
point coordinates through the Local Point-Feature Aggrega-
tion (LPFA) block, which projects the relative point differ-
ence into a higher dimension. CurveNet eventually makes
predictions through the Task-Specified Head (TSH) regard-
ing of different point cloud processing tasks. For classi-
fication task, the extracted point features are first pooled
and then passed into two fully-connected layers. For seg-
mentation task, we use an attention U-Net [25] style de-
coder that concatenates attentive shortcut connections from
the encoder. Figure 5 gives an overview of our CurveNet.
Network structure and building block details are presented
in the supplemental materials.

4. Experiments
We present experimental results for our point cloud ob-

ject analysis methods on object classification, shape part
segmentation, and normal estimation tasks.

4.1. Implementation Details

In all experiments, Dropout layers [32] were adopted
in final linear layers with probability 0.5 [36]. We used
LeakyReLU as the activation function in the backbone sub-
network and ReLU in the task-specific heads. θ̄ was set
to 90◦. To eliminate the influence of randomness, random
seed was fixed in all experiments, which were implemented
in the PyTorch framework [26].

For classification tasks, we used SGD with momentum
0.9 as the optimizer and set the number of neighbors in
KNN to 20. For segmentation tasks, the number of KNN
neighbors was set dynamically according to different radius
with no more than 32. The point features were interpolated
similar to [27] during upsampling. The distances between
predictions and ground truth labels were minimized through
cross entropy loss.

4.2. Benchmarks

Object classification. ModelNet 10/40 datasets [39] are
the most commonly used datasets for object shape classi-
fication benchmarks, which collect meshed CAD models
across a variety of objects. ModelNet10 dataset is com-
prised of 4899 individual models that are distributed into
10 different categories. We split the training and testing
samples following the same schema as in [19]. In a larger
homogeneous dataset, ModelNet40 consists of 12311 mod-
els that are classified into 40 categories. In both datasets,
we only used the coordinates of 1024 uniformly sampled
points as network inputs. The points were normalized into
unit spheres before feeding into networks. A random scal-
ing multiplier within the range [0.66, 1.5] was first multi-
plied on the sampled points. Then, each point was trans-
lated along the three directions by random displacements
within [-0.2, 0.2]. The scaling and translation settings were

Table 1. ModelNet10 (M10) and ModelNet40 (M40) classification
accuracy (%). ‘nr’ denotes using normal vectors as extra inputs.
‘*’ denotes methods evaluated with voting strategy [20].

Methods Input #point M10↑ M40↑
PointNet [27] xyz 1024 - 89.2
PointNet++ [29] xyz 1024 - 90.7
DGCNN [36] xyz 1024 - 92.9
PointASNL [44] xyz 1024 95.7 92.9
RS-CNN [20] xyz 1024 - 92.9
RS-CNN [20] * xyz 1024 - 93.6
Grid-CNN [43] xyz 1024 97.5 93.1
PCT [3] xyz 1024 - 93.2
PAConv [41] xyz 1024 - 93.6
PAConv [41] * xyz 1024 - 93.9
A-CNN [12] xyz, nr 1024 95.5 92.6
PosPool [21] * xyz 2048 - 93.2
SO-Net [15] xyz, nr 5000 95.7 93.4
CurveNet (Ours) xyz 1024 96.1 93.8
CurveNet (Ours) * xyz 1024 96.3 94.2

Table 2. ShapeNet part results in mean intersection of union (%).

Methods Input #point mIoU↑
PointNet [27] xyz 2048 83.7
DGCNN [36] xyz 2048 85.1
PointCNN [16] * xyz 2048 86.1
PointASNL [44] xyz 2048 86.1
RS-CNN [20] * xyz 2048 86.2
PAConv [41] xyz 2048 86.0
PAConv [41] * xyz 2048 86.1
PCT [3] * xyz 2048 86.4
PointNet++ [29] xyz, nr 2048 85.1
SO-Net [15] xyz, nr 1024 84.6
CurveNet w/o curves (Ours) xyz 2048 85.9
CurveNet (Ours) xyz 2048 86.6
CurveNet (Ours) * xyz 2048 86.8

Table 3. Normal estimation results in avg cosine-distance error.

Methods Input #point Error↓
PointNet [27] xyz 1024 0.47
DGCNN [36] xyz 1024 0.29
RS-CNN [20] xyz 1024 0.15
PCT [3] xyz 1024 0.13
CurveNet w/o curves (Ours) xyz 1024 0.16
CurveNet (Ours) xyz 1024 0.11

consistent to the ones used in [11, 20]. We trained the mod-
els for 200 epochs, starting with a learning rate of 0.1 and
cosineannealling scheduled to 0.001 in 200 epochs. Batch
size was set to 32 for training, and 16 for validation.

Table 1 reports the comparison results between our Cur-
veNet and the most recent methods. With only 1024 uni-

A curve Another curve Curve aggregated feature Point feature

Figure 6. Visualizations of curves and curve features. Left:
Loops are avoided and crossovers are suppressed in the grouped
curves. Right: Point features can be enriched by combining the
long-range curve features.

formly sampled points, our method achieved the state-of-
the-art result on the large scale ModelNet40 dataset at
93.8% without voting [20] and reached 94.2% when av-
erages 10 prediction votes. We also achieved 96.3% on
the ModelNet10 subset, which is the second best result
among all methods with the same training data. Moreover,
CurveNet is a highly memory-efficient architecture that re-
quires only 4.1 G GPU memory for training while DGCNN
[36] requires 5.9 G. We visualize the grouped curves, the
local aggregated features, and the curve aggregated fea-
tures on two randomly selected channels in Figure 6. The
curves are able to cover long-range semantics and hence
bring channel diversity to a great extent.
Object part segmentation. We validated our method on
the ShapeNetPart dataset [46] for the 3D shape part seg-
mentation task. The dataset collects 16881 shape models
across 16 categories. Most objects in the dataset have been
labeled with less than 6 parts, results in a total number of
50 different parts. Our training and testing split scheme fol-
lows [27, 29], such that 12137 models were used as training
samples while the rest were used as validation. 2048 points
were uniformly sampled from each model to be the input to
our networks. We trained the models for 200 epochs with
batch size 32, starting with a learning rate of 0.05 which de-
cayed by 0.1 at the 140th and 180th epoch. The momentum
and weight decay are set to 0.9 and 0.0001, respectively. We
inserted a simple SE [5] module before the last linear layer
of our CurveNet. Same to [20, 1], the one-hot class label
vector and global feature vectors are also adopted.

Mean intersection of union (mIoU) results across in-
stances are reported in Table 2, and the category-wise mIoU
scores are presented in the supplemental materials. Our
method achieves state-of-the-art overall mIoU of 86.6%,
surpasses all existing methods. Without grouping any
curves, our base architecture reaches 85.9%, proving the
effectiveness of involving curves in point cloud shape seg-
mentation task. Moreover, we visualized four cases qual-
itatively along with the learned curves in Figure 7. The

C
ur
ve
s

Pr
ed
ic
tio
ns

Re
fe
re
nc
es

Figure 7. Visualizations of curves and segmentation results.
Random selected curves are plotted with random colors.

grouped curves were able to explore both short and long
range shape relations. Model complexity is reported and
analyzed in the supplementary materials.
Object normal estimation. Object surface normal is es-
sential to 3D modeling and rendering. Differing from un-
derstanding objects part by part, estimating normal requires
a comprehensive understanding of the entire object shape
and geometry. We validate our CurveNet on estimating
normal by using ModelNet40 dataset, where each point in
the point cloud has been labeled with its three-directional
normal. CurveNet architecture is constructed similarly to
the one used in segmentation task, excluding the one-hot
class label vector and global feature vectors. Models are
trained with an initial learning rate of 0.05 and cosineaneal-
ing scheduled to 0.0005 in 200 epochs.

Table 3 shows the average cosine-distance error compar-
isons of CurveNet and state-of-the-art methods. Without
any curves, our base CurveNet architecture achieves an av-
erage error of 0.16, which is closed to [20, 3]. When curves
are involved, our full CurveNet demonstrates a superior per-
formance with 0.11 average error, setting a new benchmark
to the normal estimation task.

4.3. Ablation Studies

We conducted extensive experiments on ModelNet40
dataset to study our proposed method comprehensively. Un-
less explicitly specified, implementation details remained
the same as the ones described in the benchmark section.
All the ablative studies were examined without voting.
Component studies. The impact of individual component
of CurveNet was examined by simply removing or replac-
ing them from the full CurveNet architecture. We con-
ducted experiments on replacing LPFA with the common
local feature aggregation as in Eq. 1, disabling the dynamic
momentum and the crossover suppression strategies, and re-
placing the proposed CA operator to the vanilla non-local

Table 4. Component study results. Top-1 classification accuracy
and per point cloud (per batch) inference time are reported. LPFA:
the Local Point-Feature Aggregation, CG: the Curve Grouping op-
erator, DM: the Dynamic Momentum strategy, CS: the Crossover
Suppression strategy, and CA: the Curve Aggregation operator.

CG
Model LPFA DM CS CA Acc (%) latency (ms)

A 93.1 37.6(140)
B X 93.3 37.5(143)
C X X X 93.4 44.3(145)
D X X X 93.3 44.1(144)
E X X X 93.1 45.0(146)
F X X X 93.4 44.8(143)
G X X X X 93.8 45.2(146)

A curve Another curve Curve aggregated feature Point feature

Figure 8. How far do the curves go? Left are two objects with
distinct shapes. Right are the average euclidean distances to the
start node and the last node of all curves with 30 steps in group 1.

module (i.e. intra-relations and inter-relations are not sepa-
rated). The results are reported in Table 4.

We observed that, although using LPFA solely cannot
bring significant performance improvement (models A and
B), with the intervention of curves, the presence of LPFA is
able to make a huge difference in terms of the classification
result (models F and G). As shown in models C and D, both
the proposed dynamic momentum and crossover suppres-
sion strategy are empirically effective as expected. More-
over, from model E, we find that the proposed curve aggre-
gation operator plays the most significant role in the Cur-
veNet. When aggregating grouped curve features through
the vanilla non-local module, the accuracy is dropped by
0.7%, with no benefit on the inference latency.
Shallow layer vs deep layer. In Sec. 3.1, we claimed that
shallow features after local aggregation lack single channel
diversity, and curve features could be more desired at shal-
low layers than at deep layers of a network. We conducted
experiments on aggregating curves with various quantities
and lengths on different groups of our CurveNet, the results
are shown in the supplemental materials (Figure 1). Ag-
gregating curves at shallow layers (group 1/2) yield better
results than at deep layers (group 3/4), which proved our
claim empirically.
Curve quantity vs curve length. Curve quantity n and

A
cc

ur
ac

y
(%

)

Figure 9. Left: Comparison on sparser training and testing inputs.
Right: Comparison on noisy inputs, with voting enabled.

length l are the two hyper parameters determining the net-
work performance directly. Short curves cannot capture
long-range patterns, while long curves require better guid-
ance and may contain redundant information. To study the
relations between curve quantity and curve length, we con-
ducted experiments on fixed total point number in curves.
Figure 1 bottom right in the supplemental materials shows
that although a long curve (length 50) is able to achieve the
best result, the network performance degrades as the curve
extends further. Aggregating longer curves is also computa-
tional inefficient, as the transition of nodes cannot be com-
puted parallelly. To verify whether the curves are trapped in
a local region, we present the average Euclidean distances
between each node of the curves to the starting/last point in
Figure 8. The curves are capable of jumping out of the max-
imum local KNN range to explore longer range relations.
Sparser input points and noisy testing points. Curve
grouping could be sensitive to point cloud sparsity and
noise. We conduct extensive experiments on (1) training
and testing with sparser input points and (2) training on
1024-point raw coordinates and testing with noisy points
[44]. As shown in Figure 9 left, our CurveNet achieves the
best results on all experiments regarding of different num-
ber of input points. For noise tests, we add an extra max
pooling layer following the first LPFA block. Our CurveNet
outperforms [31, 27] in all experiments and achieves on par
results to [44], demonstrating the robustness to noise.

5. Conclusion

In this paper, we proposed a long-range feature aggre-
gation method, namely curve aggregation, for point clouds
shape analysis. We first discussed the potential drawbacks
of the existing local feature aggregation paradigm, and
claimed the need for the aggregation of point cloud geome-
try. We then presented our method in two sequential steps:
the rules for grouping curves in a point cloud and the in-
tegration of the grouped curve features with the extracted
point features. During the process, potential problems were
defined and resolved. Our method achieved state-of-the-art
results on multiple point clouds object analysis tasks.

References
[1] Qendrim Bytyqi, Nicola Wolpert, and Elmar Schömer.

Local-area-learning network: Meaningful local areas
for efficient point cloud analysis. arXiv preprint
arXiv:2006.07226, 2020.

[2] Hongyang Gao and Shuiwang Ji. Graph U-Nets. arXiv
preprint arXiv:1905.05178, 2019.

[3] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. arXiv preprint arXiv:2012.09688, 2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[5] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018.

[6] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11108–
11117, 2020.

[7] Zeyu Hu, Mingmin Zhen, Xuyang Bai, Hongbo Fu, and
Chiew-lan Tai. JSENet: Joint semantic segmentation and
edge detection network for 3D point clouds. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 222–239, 2020.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[9] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[10] Asako Kanezaki, Y Matsushita, and Y Nishida. RotationNet:
Learning object classification using unsupervised viewpoint
estimation. CoRR abs/1603.06208, 3, 2016.

[11] Roman Klokov and Victor Lempitsky. Escape from cells:
Deep kd-networks for the recognition of 3D point cloud
models. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 863–872, 2017.

[12] Artem Komarichev, Zichun Zhong, and Jing Hua. A-CNN:
Annularly convolutional neural networks on point clouds. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7421–7430, 2019.

[13] Alon Lahav and Ayellet Tal. Meshwalker: Deep mesh under-
standing by random walks. ACM Transactions on Graphics
(TOG), 39(6):1–13, 2020.

[14] Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided
cnn with spherical kernels for 3D point clouds. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9631–9640, 2019.

[15] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-Net: Self-
organizing network for point cloud analysis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 9397–9406, 2018.

[16] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution on X-
transformed points. In Advances in neural information pro-
cessing systems, pages 820–830, 2018.

[17] Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and
Leonidas J Guibas. FPNN: Field probing neural networks
for 3D data. In Advances in Neural Information Processing
Systems, pages 307–315, 2016.

[18] Cheng Lin, Changjian Li, Yuan Liu, Nenglun Chen, Yi-
King Choi, and Wenping Wang. Point2skeleton: Learning
skeletal representations from point clouds. arXiv preprint
arXiv:2012.00230, 2020.

[19] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Point2Sequence: Learning the shape representation
of 3D point clouds with an attention-based sequence to se-
quence network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 8778–8785, 2019.

[20] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8895–
8904, 2019.

[21] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A
closer look at local aggregation operators in point cloud anal-
ysis. arXiv preprint arXiv:2007.01294, 2020.

[22] Zhe Liu, Shunbo Zhou, Chuanzhe Suo, Peng Yin, Wen Chen,
Hesheng Wang, Haoang Li, and Yun-Hui Liu. LPD-Net: 3D
point cloud learning for large-scale place recognition and en-
vironment analysis. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2831–2840,
2019.

[23] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. arXiv preprint arXiv:1611.00712, 2016.

[24] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[25] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee,
Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven
McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Atten-
tion U-Net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999, 2018.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:
An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 8024–8035, 2019.

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[28] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view CNNs for object classification on 3D data. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5648–5656, 2016.

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[30] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
OctNet: Learning deep 3D representations at high resolu-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3577–3586, 2017.

[31] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4548–4557,
2018.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[33] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3D shape recognition. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 945–953,
2015.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[35] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018.

[36] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph CNN for learning on point clouds. ACM Transactions
On Graphics (TOG), 38(5):1–12, 2019.

[37] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In Ad-
vances in neural information processing systems, pages 82–
90, 2016.

[38] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3D point clouds. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9621–9630, 2019.

[39] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.

[40] Jin Xie, Guoxian Dai, Fan Zhu, Edward K Wong, and Yi
Fang. DeepShape: Deep-learned shape descriptor for 3d
shape retrieval. IEEE transactions on pattern analysis and
machine intelligence, 39(7):1335–1345, 2016.

[41] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiao-
juan Qi. Paconv: Position adaptive convolution with dy-
namic kernel assembling on point clouds. arXiv preprint
arXiv:2103.14635, 2021.

[42] Mingye Xu, Zhipeng Zhou, and Yu Qiao. Geometry sharing
network for 3d point cloud classification and segmentation.
In AAAI, pages 12500–12507, 2020.

[43] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang,
and Ulrich Neumann. Grid-GCN for fast and scalable point
cloud learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5661–
5670, 2020.

[44] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and
Shuguang Cui. PointASNL: Robust point clouds process-
ing using nonlocal neural networks with adaptive sampling.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5589–5598, 2020.

[45] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3323–3332, 2019.

[46] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3D shape collections. ACM Transac-
tions on Graphics (ToG), 35(6):1–12, 2016.

[47] Chaoyi Zhang, Yang Song, Lina Yao, and Weidong Cai.
Shape-oriented convolution neural network for point cloud
analysis. In AAAI, pages 12773–12780, 2020.

[48] Chaoyi Zhang, Jianhui Yu, Yang Song, and Weidong Cai.
Exploiting edge-oriented reasoning for 3d point-based scene
graph analysis. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[49] Wenxiao Zhang and Chunxia Xiao. PCAN: 3D attention map
learning using contextual information for point cloud based
retrieval. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 12436–12445,
2019.

[50] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
Pointweb: Enhancing local neighborhood features for point
cloud processing. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5565–
5573, 2019.

