
Effectively Leveraging Attributes for Visual Similarity

Samarth Mishra∗1 Zhongping Zhang∗1 Yuan Shen2 Ranjitha Kumar2

Venkatesh Saligrama1 Bryan A. Plummer1
1Boston University 2University of Illinois, Urbana-Champaign

1{samarthm, zpzhang, srv, bplum}@bu.edu 2{yshen47, ranjitha}@illinois.edu

Abstract

Measuring similarity between two images often requires
performing complex reasoning along different axes (e.g.,
color, texture, or shape). Insights into what might be im-
portant for measuring similarity can can be provided by
annotated attributes. Prior work tends to view these an-
notations as complete, resulting in them using a simplistic
approach of predicting attributes on single images, which
are, in turn, used to measure similarity. However, it is im-
practical for a dataset to fully annotate every attribute that
may be important. Thus, only representing images based
on these incomplete annotations may miss out on key in-
formation. To address this issue, we propose the Pairwise
Attribute-informed similarity Network (PAN), which breaks
similarity learning into capturing similarity conditions and
relevance scores from a joint representation of two images.
This enables our model to identify that two images contain
the same attribute, but can have it deemed irrelevant (e.g.,
due to fine-grained differences between them) and ignored
for measuring similarity between the two images. Notably,
while prior methods of using attribute annotations are often
unable to outperform prior art, PAN obtains a 4-9% improve-
ment on compatibility prediction between clothing items on
Polyvore Outfits, a 5% gain on few shot classification of im-
ages using Caltech-UCSD Birds (CUB), and over 1% boost
to Recall@1 on In-Shop Clothes Retrieval. Implementation
available at https://github.com/samarth4149/PAN

1. Introduction

Learning similarity metrics between images is a cen-
tral problem in computer vision with wide-ranging appli-
cations such as face recognition [24, 39], image retrieval
[11, 28, 53], prototype based few shot image classifica-
tion [19, 40, 43, 48], continual learning of image classi-
fication [3, 36, 41], and fashion compatibility or recom-

*Indicates equal contribution
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Figure 1: In prior work (e.g. [20, 32, 45, 54]), shown in (a),
attributes used for image similarity are predicted for each im-
age and then are used as input to the image similarity model.
However, this can result in loss of important information
about how attributes are expressed (e.g., different shades of
the attribute yellow breast). Thus, in our work, shown in (b),
we avoid this loss of information by using a joint represen-
tation of the two images to compute multiple disentangled
similarity scores, each corresponding to an attribute, and
relevances of each similarity score in the final similarity pre-
diction. This allows for more fine-grained reasoning about
different attribute manifestations, boosting performance.

mendation [7, 44, 45, 46, 47, 56]. There has been a re-
cent trend of learning these metrics by decomposing the
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Figure 2: PAN overview. Given a pair of images, the goal of PAN is produce its similarity score. We begin by using the
image encoder to generate feature vectors for input images. The image features are then fed into the Concept-conditioned
Similarity Module (CSM) that uses these features to generate a set of similarity scores with corresponding relevance weights.
This enables PAN to identify that two images do contain the same attribute, but that they are not relevant to the similarity
score since they are different manifestations of the attribute (see Fig 1 for an example). The final similarity score p ∈ [0, 1] is
produced using a weighted combination of the similarity conditions and their relevance. Note that the different colored lines
(blue, pink) represent information flow pertaining to individual images.

problem into multiple axes of similarity or similarity con-
ditions, which has improved performance on a variety of
tasks [14, 23, 30, 31, 32, 44, 45, 46]. Generally speaking,
methods that automatically learn what these conditions rep-
resent [31, 44] have reported better performance than those
that predefine this knowledge using information like labeled
image attributes and item categories [23, 46, 45, 32]. We
argue this is primarily due to prior work using attributes to
predict their presence on single images (e.g. [20, 54, 45, 32]),
and subsequently using these predictions for predicting sim-
ilarity (Fig 1 (a)). This incurs a loss in information about
the different manifestations of an attribute, differences that
could affect similarity prediction, but may not be distinguish-
able in attribute annotations. While this could be addressed
by collecting a complete set of annotations of every possible
attribute and their different manifestations that could affect
similarity, such a collection would be expensive. In addition,
it is often impossible to articulate every fine-grained attribute
that may affect similarity.

In this paper, we introduce a Pairwise Attribute-informed
similarity Network (PAN) that effectively learns to use su-
pervisory information in the form of attribute labels, avoid-
ing information loss, to create a powerful image similar-
ity model that performs well on a range of diverse tasks.
To illustrate how we do this we refer to the example in
Fig 1(b). The figure shows two birds (of different cate-
gories) from the Caltech-UCSD Birds (CUB) dataset [49],

where they are both labeled positively for the binary at-
tribute has breast color::yellow, indicating that
they have yellow breasts. Prior work (e.g. [20, 32, 45, 54])
directly predicts attributes for each image, which tends to
lose information about subtle differences in the manifesta-
tions of the attributes, like the shades of the color yellow.
Our PAN model avoids this issue by first comparing images
in a feature space rather than attribute space, as illustrated in
Fig 1(b). Using the joint image features it then predicts both
a similarity score and a relevance for different similarity con-
ditions defined by the attributes. Even when the similarity
score may coarsely indicate that the two images are similar
since they have the same attribute, the model can pick up
on finer attribute differences and decide that the mere pres-
ence of the same attribute is of low relevance to a positive
similarity prediction. As our experiments will show, this
difference can make a dramatic impact on the performance
of the learned image similarity model.

One major challenge we face is the considerable differ-
ence in how attributes relate to the similarity functions that
arise in different tasks. For example, in few-shot classifica-
tion, where we use the labeled support images in a nearest-
neighbors classifier, the goal of a visual similarity classifier
would be to simply measure similarity by matching attributes
between the test and support images. In contrast, for tasks
like fashion compatibility, where two images are deemed
similar if they complement each other when worn together



in an outfit, image pairs with different attributes (e.g., black
and orange) can indicate they are highly compatible. Fur-
thermore, simply modeling which attribute pairs indicate
compatibility is insufficient, since two attributes which often
result in compatible pairs could be deemed incompatible
depending on the other attributes that are present. For ex-
ample, black and orange items are often compatible, except
when some other attributes like red are also present. Thus,
visual similarity models must learn a far more complex set of
relationships between attributes when learning fashion com-
patibility. These differences mean that methods that do well
on few-shot classification often perform poorly on fashion
compatibly and vice-versa. PAN, however, can take this into
account via the method we use to convert the incomplete
attribute labels for single images into supervisory signals for
image pairs and improve performance across diverse tasks.

As we will discuss in Sec 3 (and illustrated in Fig 2), PAN
naturally allows for training and automatically learning simi-
larity conditions in the absence of any additional data like
attributes. We also find that PAN can improve performance
even in cases where only sparse attribute labels are available.

Summarizing our contributions:

• We propose a Pairwise Attribute-informed similarity
Network (PAN), which incorporates fine-grained at-
tribute information during training based on a joint
representation of two images enabling us to avoid the
loss of information suffered by prior work.

• While prior methods of incorporating attribute informa-
tion under-perform prior art, PAN outperforms them
on three diverse tasks—by 4-9% on fashion item com-
patibility prediction on Polyvore Outfits [45], 5% on
few shot classification on CUB [49] and over 1% Re-
call@1 on In-Shop Clothing Retrieval [25], demon-
strating PAN’s generality. In comparison to prior ap-
proaches of incorporating attribute supervision, PAN is
better by a wider margin, e.g., it outperforms them by a
sizeable 6-17 % on Polyvore Outfits.

• We propose different methods of using attributes for su-
pervising predictions along similarity conditions, delv-
ing into the interpretations of each, providing insights
for their applicability in different tasks.

• Our analysis also outlines the contributions of the train-
ing procedures, specifically training batch-size. This
has commonly been overlooked in prior work, but could
have significant impact on final model performance. In
doing so, we factor out contribution of the training
procedure in demonstrating PAN’s benefits.

2. Related Work
Visual Similarity Learning. Learning visual similarity can
be used for a wide range of visual tasks. A couple widely

used evaluation tasks for similarity learning are face recogni-
tion [6, 24, 27, 39] and image retrieval [28, 11, 53], the latter
itself subcategorized multiple ways depending on type of
images involved, e.g. fashion images, natural images. Image
retrieval has a fairly direct application in e-commerce. A
major portion of this industry consists of websites selling
clothing and accessories, giving rise to the challenging task
of predicting fashion compatibility [47, 16, 45], which, as
discussed in the introduction, is a form of visual similarity
different from the conventional notion. However, we use
similarity and fashion compatibility interchangeably as they
are addressed in the same manner in our paper.

Some prior visual similarity learning approaches focused
on learning a single similarity space [47, 16, 12]. More re-
cent work [46, 30, 45, 44, 23] found that learning multiple
similarity conditions, each capturing a different concept, per-
forms better. Concurrent to some of these, the role of using
contextual information in image encodings was discussed by
Cucurull et al. [7]. They used a graph convolutional network
(GCN) on images, with similarity links defining the graph
structure, to achieve state of the art performance in fashion
compatibility prediction.

Up until now, methods using predefined similarity con-
ditions [30, 46, 45] have underperformed methods that au-
tomatically learned these conditions [44, 23]. Via PAN, we
show a method of incorporating additional attribute anno-
tations to supervised similarity conditions while improving
final task performance, breaking this trend.

Few Shot Learning. Given the cost associated with acquir-
ing human-annotated labels, learning with few labelled ex-
amples is well sought after in computed vision, with a range
of prior work exploring possible solutions [26, 22, 21, 19].
Given a few examples with labeled classes, [48] classified
novel examples using attention weights to compute a proba-
bility distribution over known classes. They introduced an
episodic training paradigm, later also adopted by [35, 40].
Each episode in an N-way K-shot classification task is a sam-
ple of N classes, with K images from each class available to
the learning algorithm as “labeled” or “support” examples
for learning few shot classification. Each episode is also
accompanied by some query examples which the learner is
supposed to predict class labels for. For training, the learning
algorithm is provided episodes sampled from a base training
dataset, and it is typically evaluated on test episodes sam-
pled from a novel split of the dataset, containing classes
different from those appearing in the base split. Both [48]
and [40] adopted a strategy of minimizing a distance metric
in feature space between query images and a prototypical
support vector for training. Subsequent work [43] improved
few shot classification performance by learning a paramet-
ric distance measure rather than using a closed-form metric
without learnable parameters.

Another body of work uses meta-learning [10, 34, 42]



to initialize a classification model’s parameters allowing for
fast adaptation to a new few-shot task using just a few pa-
rameter updates. [4] performed a thorough study of several
recent few-shot learning methods and proposed a strong
baseline classifier using cosine similarity and data augmenta-
tion. Some recent methods have also employed graph neural
networks for few shot classification [37, 17, 38].

Like [46, 45, 44], PAN lies in the space of decomposing
similarity prediction into multiple similarity conditions, but
unlike them, PAN can use attribute supervision when avail-
able to supervise these conditions and improve performance.
PAN is a general similarity learning approach and its bene-
fits with multiple similarity condition spaces and attribute
supervision can be seen with different image encoders, be it
a simple CNN or a contextual GCN encoder similar to that
used by [7], and on different tasks, like fashion compatibility
and few shot classification.

3. Pairwise Attribute-informed similarity Net-
work (PAN)

Given two images x1 and x2, the goal of our PAN model
is to output a score in [0, 1] representing the probability that
the two images are similar. The primary contribution of our
approach lies in its Concept-conditioned Similarity Module
(Sec 3.1), which takes features h1,h2 ∈ Rd representing
the input images (computed using an image encoder from
Sec 3.2), and predicts their similarity p using a weighted
combination of predictions along multiple axes of similarity
ρ and their relevance ω. As discussed in the introduction,
learning relevance weights over the attribute defined similar-
ity conditions can help us selectively ignore them when said
attributes are present, but are not quite relevant in determin-
ing similarity between the images.

As our experiments demonstrate, the similarity conditions
can be unsupervised as in prior work [31, 44], but the aim of
PAN is to learn to supervise these conditions so they repre-
sent a particular concept (i.e., a particular attribute). These
attributes can represent any concept that has been annotated
in a dataset. For example, for CUB [49] these represent parts
of birds (i.e., the type of beak or tail features). In Polyvore
Outfits [45] and InShop Retrieval [25] these attributes can
contain low-level concepts like colors and textures as well
as high-level concepts like “formal” and “fashionable”. We
discuss how we convert the attributes/concepts, which are
annotated per image, into labels for image pairs in Sec 3.1.1.
Fig 2 provides an overview of our approach.

3.1. Concept-conditioned Similarity Module (CSM)

Given features hi,hj ∈ Rd of two images, our Concept-
conditioned Similarity Module (CSM) generates a set of M
similarity scores ρ = [ρ1, . . . , ρM ] ∈ RM and correspond-
ing relevance weights ω = [ω1, . . . , ωM ] ∈ RM which

represent the importance of each similarity condition to the
final similarity score:

ρ = σ
(
W>

1 |hi − hj |+ b1
)

(1)

ω = softmax
(
W>

2 |hi − hj |+ b2
)

(2)

where M is the number of distinct similarity conditions,
| · | represents an element-wise absolute value, and σ(·)
an element-wise sigmoid function. W 1,W 2 ∈ Rd×M ,
and b1, b2 ∈ RM are learnable parameters. Note that ρ
is supervised using attribute labels, but the relevance scores
ω are treated as a latent variable and automatically learned.
The final similarity score p ∈ [0, 1] is calculated as the sum
of similarity conditions weighed by their relevance, i.e.,

p =

M∑
m=1

ρmωm = ρ>ω. (3)

Note that prior work that predicted multiple similarity
conditions in both the supervised and unsupervised setting
did so based off the features of a single image (e.g., [23, 30,
45, 46]). In contrast, CSM predicts these conditions off a
joint representation of both images. As we show in Appendix
G, this results in a significant boost to performance when
combined with relevance scores. We believe this is due, in
part, to the fact that this joint representation makes it easier
to identify differences in attribute manifestations (due to
taking the difference of features for the two images). Thus,
our approach can more accurately identify when to ignore
attribute predictions.

3.1.1 Defining Similarity Conditions

Depending on the availability of labelled attributes for the
images, we can choose to supervise similarity conditions
to give them semantic meaning. This choice results in two
kinds of similarity conditions as described below:
Unsupervised similarity conditions. Similarity conditions
are treated as latent variables as done in [44]. The benefit
of this approach is that it requires no additional annotations.
Note that all the conditions we predict are based on a joint
representation of the two images, unlike in [44] where they
were computed per-image.
Supervised similarity conditions. Unsupervised similar-
ity conditions need no attribute annotations. However, we
would expect that with some expert knowledge of what might
be important in the image, as provided with attributes, we
can improve performance using these attributes effectively.
Hence, rather than treating each similarity condition as a
latent variable, supervised similarity conditions are trained
to reflect a specific concept. Since attribute annotations are
defined per image, and we predict attributes based off a joint



representation, we convert these labels to represent both
images, as described next.

Suppose the images have M labeled binary attributes.
Each image i is then accompanied with an M dimensional
vector ai ∈ {0, 1}M . For a pair of images i and j, we can
use a function fa : {0, 1} × {0, 1} → [0, 1] to get an M
dimensional vector ai,j = fa (ai,aj). Elements of ai,j

can then be used as labels for supervising the similarity
conditions in the model output scores ρ. Note that if there
are missing entries in ai,j because of missing attribute labels,
these can be handled by zeroing out the loss resulting from
them using a binary mask over the indices of ai,j .

In Section 5.3, we experiment with common logical func-
tions as fa, which map to clear semantic meanings. For
instance, using fa = logical AND, with the similarity
score ρ, the model is asked to predict whether a given at-
tribute appears in both images. Similarly with OR, model
predicts whether the attribute is in either image, with XOR
it predicts whether it is exclusively in one image, and with
XNOR it predicts whether the attribute is in both images
or in neither. A more detailed discussion of opting for these
4 choices for fa is in Appendix G. In practice for a given
dataset, a logical function can be selected using some prior
knowledge about how the attributes relate to the similarity
score, or can be selected empirically using held-out data.

3.2. Types of Image Encoder

As mentioned previously, the image encoder generates a
lower dimensional feature representation h for an image x.
We experiment with three different image encoders.

Convolutional Network. Unless specified otherwise, we
use a simple convolutional neural network (CNN), specifi-
cally a ResNet [13] to obtain our image feature representa-
tion (details in the Appendix C).

Graph Encoder (GE) [7]. For some image similarity tasks
like fashion compatibility, context can be an important cue
in determining how similar two items are. Thus, the sec-
ond encoder we explore is a graph convolutional network
(GCN) that operates on features extracted by a CNN. The
GE (composed of the CNN and GCN) takes in as input both
images from a dataset and an adjacency matrix over them
and simultaneously generates features for all images. This
encoder was also used by Cucurull et al. [7] and we refer
readers to Section 3.1 of their paper for complete details.

ProxyNCA++ [52]. Many tasks may also find context un-
helpful or that GCNs may be too computationally expensive
to use [23]. For example, in retrieval tasks a particular em-
phasis is placed on speed as methods may have to search
through millions of images in order to locate the desired
item. As such, for our last encoder we use a state-of-the-art
retrieval method when evaluating on the In-Shop Retrieval
task [25]. ProxyNCA++ at its core learns a distance metric

between images based on learning proxy feature represen-
tations for each class. Consequently, it relies on annotated
categories for images, and cannot directly be applied for sim-
ilarity metric learning where no such annotation is available.
We refer readers to [52] for complete details of this encoder.

3.3. Model Objective and Training

The final objective function on a pair of images xi and
xj is then defined as:

L(xi,xj , ei,j ,ai,j) = LBCE(ei,j , p) + λLBCE
el (ai,j ,ρ),

(4)

where λ is a tunable hyperparameter, ei,j ∈ {0, 1} is the
ground truth similarity label between images xi and xj ,
LBCE is the binary cross-entropy loss and LBCE

el is the
mean element-wise binary cross-entropy. Note that when
there are no supervision attributes, the second term in Equa-
tion 4 is 0. For training, an equal number of positive and
negative pairs are sampled randomly from the training split
and the model is trained to predict similarity between them.
Details regarding the exact process for each encoder are in
Appendic C.

4. Datasets and Tasks
Polyvore Outfits [45] contains 53K outfits (sets of fashion
items) for training, 5K for validation and 10K for testing.
It also provides fine-grained category information and text
descriptions of items. We use the 205 sparsely annotated
attributes from [33] as labels for supervising similarity condi-
tions. Evaluation involves two tasks. First, in the fill-in-the-
blank (FITB) outfit completion task a model is given a partial
outfit and has to select from four possible answers what item
would best complete it. Performance is measured by how of-
ten the answer was correct. Second, in outfit compatibility a
model is asked to discriminate between good and bad outfits.
Performance is measured using area under a receiver oper-
ating characteristic curve (AUC). Following [45, 7], outfit
compatibility scores are computed by averaging the simi-
larity prediction over all pairs of items in the outfit. There
are 10K FITB questions and 10K each positive and negative
samples for outfit compatibility (20K total) in the test split.

Since current methods get almost perfect performance
on the original outfit compatibility task, we created a more
challenging testing set of the same size by modifying the
procedure outlined in [45], that we refer to as the resampled
set. For outfit compatibility we collected new negative outfits
by replacing only part of a ground truth outfit, unlike the
original split which replaced all items. We randomly selected
the number of items to replace, and each item is replaced
with another of the same type in the same split (i.e., a top
could only be replaced with another top). Similarly, we made
a more challenging FITB task, where a model must select



between 10 candidate answers (the original test had 4). As
with the original sampling, we ensured any replaced items
and candidate answers were of the same type.

CUB-200-2011 [49] consists of 200 classes and a total of
11,768 images of birds. We use the split provided by [4]
for our experiments, which contains 100 base classes, 50
validation and 50 novel classes. The CUB dataset also has
312 fine-grained binary attributes labeled for each image,
with an accompanying score on a 4 point scale indicating the
confidence of the assigned label. We drop all attribute labels
that have a confidence score less than or equal to 2.

We use the 5-way 5-shot classification task for evalua-
tion. Reported accuracies are averaged over 3 training runs
from different random initializations accompanied by 95%
confidence intervals. A test episode consists of a random
sample of 5 classes and 5 support images from the 50 classes
in the novel split of the dataset. 16 query images, distinct
from support images, are also sampled for each of these 5
classes. The accuracy for an episode is the 5-way accuracy
of a classifier over the 16 x 5 = 80 query images. A few shot
learning model is evaluated using its average classification
accuracy over 600 randomly generated test episodes.

In-Shop Retrieval [25] contains 52,712 images of clothes
from 11,967 classes. There are 14,218 query images and
12,612 gallery images for testing. Given a query image, the
task is to retrieve an image of the same item from the gallery
set. Note that the query and gallery sets do not overlap with
the training set. There are 463 attributes of clothes in total,
we use these attribute labels for our PAN-Supervised model.
Methods are ranked based on Recall@1.

5. Results
5.1. Comparison with prior work

Table 1, Table 2, and Table 3 compare the best settings
(encoder, number of unsupervised similarity conditions, etc.)
used by our model to representative state-of-the-art results
reported in prior work on Polyvore Outfits, CUB, and In-
Shop Retrieval, respectively. As shown in Table 1 we obtain
a 4% better FITB accuracy and 9% AUC boost over the
state-of-the-art on the fashion compatibility task using our
more challenging resampled test set for both tasks, while
also increasing FITB accuracy by 8% on the original split.
Similarly, in Table 2 and Table 3 we observe a 5% and
1% performance improvement over the state-of-the-art on
fine-grained few shot classification and In-Shop Retrieval, re-
spectively. Improvement over the diverse set of tasks demon-
strates PAN’s ability to generalize. Our PAN model can
also be useful when no supervision is provided, as our PAN-
Unsupervised model obtains a 3-4% gain over prior work
on Polyvore Outfits and CUB, while also boosting perfor-
mance on In-Shop Retrieval. Note that fashion compatibility
benefited from using a graph image encoder (GE), while few-

Original Resampled
Method FITB AUC FITB AUC

(a) TAN [45] 57.6 0.88 38.1 0.66
SCE-Net [44] 61.6 0.91 43.4 0.68
CSA-Net [23] 63.7 0.91 – –
CGAE [7] 74.1 0.99 60.8 0.67

(b) X + Attr. Multitask-GE 73.8 0.99 57.6 0.65
Attr. Similarity-GE 69.5 0.98 52.9 0.65
PAN-Unsupervised-GE 78.4 0.99 64.1 0.70
PAN-Supervised-GE 82.3 0.99 69.7 0.71

Table 1: Comparison of PAN on fashion compatibility on
Polyvore Outfits to (a) results reported in prior work or
reproduced with the author’s code and (b) other PAN and
attribute supervision approaches.

shot classification reported best performance with a CNN
encoder, which we shall discuss further in Section 5.2.

In addition to comparison with prior work, Table 1, Ta-
ble 2, and Table 3 also provide two alternative methods
of using attributes in an image similarity model. In “X +
Attr. Multitask” we use a hard parameter sharing multitask
approach [2], where we share an image encoder, but have
separate output heads for each of the two tasks (one of them
being attribute classification, the other similarity link pre-
diction). In “Attr. Similarity” we use a standard framework
where we predict attributes for each image and then learn a
classifier implemented as a fully connected layer that takes
both attributes as input and predicts similarity (the general
framework used by [9]). Notably, both baseline methods
that use attributes only improve performance on few-shot
classification, but either make no difference, or are even
harmful to performance on the other two datasets (e.g., Attr.
Similarity reduces FITB performance by 5-8% compared
with the CGAE baseline). In contrast, our PAN-supervised
model outperforms all other methods, including on the fash-
ion compatibility task where we report a staggering 6-17%
boost over the attribute baselines on the resampled test set.

5.2. Choice of image encoder and batch size

Prior work has been inconsistent in its training methods
and controlling for hyperparameters like batch size, which
can significantly affect performance. Table 4 remedies this
by comparing training with the whole training split vs. using
minibatches. It also compares the effect of using a graph
encoder (GE) instead of a simple CNN. We see comparing
the numbers of row 3 of Table 4 to those of prior methods in
Tables 1 and 2 that training with the whole training set can
significantly improve performance, making even a simple
Siamese network trained using a triplet loss outperform most
recent methods on both tasks. We note here that in our
experiments with single batch training, we use a pre-trained
CNN to extract image features, and do not finetune it.



Method Accuracy
(a) Baseline++ [4] 83.58

ProtoNet [40] 87.42
TriNet [5] 84.10
TEAM [34] 87.17
CGAE [7] 88.00 ± 1.13

(b) X + Attr. Multitask-GE 89.29 ± 0.57
Attr. Similarity 92.21 ± 0.21
PAN-Unsupervised 92.60 ± 0.10
PAN-Supervised 92.77 ± 0.30

Table 2: Comparison of PAN on 5-way 5-shot classifica-
tion on CUB-200-2011 to (a) results reported in prior work
or reproduced with the author’s code and (b) other PAN
and attribute supervision approaches. Intervals provided are
95% confidence intervals over 3 different runs with different
random model initializations

Method Recall@1
(a) MS [50] 89.7

NormSoftMax[55] 89.4
HORDE [15] 90.4
Cont. w/M [51] 91.3
ProxyNCA++[52] 90.9

(b) ProxyNCA++ & Attr. Multitask 90.8
ProxyNCA++ & Attr. Similarity 86.4
ProxyNCA++ & PAN-Unsupervised 91.4
ProxyNCA++ & PAN-Supervised 92.1

Table 3: Comparison of PAN on In-Shop Clothing Retrieval
to (a) results reported in prior work and (b) other PAN and
attribute supervision approaches.

It is also notable that using GE performs worse than
the simpler Siamese Network baseline on CUB, which we
believe is due to differences between tasks. Specifically, in
fashion compatibility links exist between items that may be
very different from each other. Thus, the additional context
provided through the GE may be more important than in
CUB, which has less variation between linked items since
they all contain the same bird.

5.3. Choice of attribute combination fa

As discussed in Section 3.1.1, choosing fa as one of com-
mon logical functions can lead to different interpretations of
the attribute supervision provided. Table 5 compares these
functions that convert image attribute labels to pairwise la-
bels for use in our PAN model.

At first glance, predicting 1 when either both images
have an attribute or neither of them does (i.e. using XNOR)
seems like an intuitive choice. This would indicate how many
attributes match between two images. However, some func-
tions like fashion compatibility, where images may match
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Figure 3: Sensitivity to λ from Eq. (4).

because they contain different attributes, XNOR would
not be appropriate since any non-shared attributes would
be ignored (i.e. have a supervision label 0). AND, which
encourages models to predict 1 only when both images have
the attribute has same issue. However OR would not face
the issue since it can be 1 when either of the images has an
attribute, allowing the model to use its relevance weights
to decide whether a combination of attributes is relevant
for similarity. In Table 5, we see OR perform the best on
fashion compatibility on Polyvore Outfits.

Notably, we also see that OR is still competitive with
XNOR on the CUB dataset, where the goal is to determine
similarity in the more conventional sense, i.e., similar images
should have matching attributes. This task seems like a good
fit for XNOR. However, on CUB, many of the attributes
are mutually exclusive (e.g., a bird either has a “red beak”
or a “black beak”, but not both). If a model can reason
jointly about dissimilar attributes inferring that they should
not coexist, it can correctly function on this task. Relevance
weights in our model allow for this joint reasoning over
different attributes. Thus, training the model to predict 1
when either image has an attribute (OR supervision), can



Single Batch Polyvore Outfits-Resampled CUB-200-2011
Method Training M FITB AUC M Accuracy
Siamese Network – – 36.4 0.63 – 76.87 ± 0.72
X + Attr. Multitask – – 37.2 0.63 – 81.96 ± 1.01
Siamese Network X – 44.7 0.69 – 89.01 ± 0.25
X + Attr. Multitask X – 46.1 0.69 – 75.82 ± 0.42
Attr. Similarity X – 31.1 0.63 – 92.21 ± 0.21
PAN-Unsupervised X 50 27.3 0.62 200 92.60 ± 0.10
PAN-Supervised X 206 28.2 0.62 312 92.77 ± 0.30
X + Attr. Multitask-GE X – 57.6 0.65 – 89.29 ± 0.57
Attr. Similarity-GE X – 52.9 0.65 – 87.02 ± 1.27
PAN-Unsupervised-GE X 50 64.1 0.70 200 89.55 ± 0.48
PAN-Supervised-GE X 206 69.7 0.71 312 90.16 ± 0.51

Table 4: Effect of batch size and image encoder on performance on the fashion compatibility and few-shot tasks. GE refers to
the graph image encoder. Refer to Section 5.2 for discussion.

Polyvore Outfits CUB-200-2011 In-Shop
Original Resampled

Attribute supervision label (fa) FITB AUC FITB AUC Accuracy R@1
Present in either (OR) 82.4 0.99 69.7 0.71 92.77 ± 0.27 91.5
Present in both (AND) 76.3 0.98 62.4 0.62 92.61 ± 0.36 91.6
Present in both or neither (XNOR) 76.1 0.99 60.8 0.66 92.60 ± 0.41 92.1
Present exclusively in one (XOR) 69.0 0.98 51.8 0.65 92.61 ± 0.20 91.6
AND concat XOR ∗ 78.9 0.99 64.7 0.71 92.39 ± 0.13 91.9

Table 5: Effect of different kinds of attribute supervision resulting from different functions fa. ∗includes twice the number of
similarity conditions as others

also perform well on this task, and from the empirical results
in Table 5, we see that it does.

Providing both the AND and XOR outputs (as a con-
catenation) seems lucrative since it seems more informative
than OR, but we found that the model uses its additional
capacity to overfit to training data. This is also challenging
to use since attribute predictions are noisy (see Appendix F
for attribute recognition performance).

The In-Shop retrieval task involves fetching matches from
a gallery of different views of an object. XNOR is ideal
for matching different views in this case, since matching
attributes can be directly translated to the inference that two
views belong to the same object, therefore, are similar.

5.4. PAN sensitivity to λ

Figure 3 shows PAN’s sensitivity to different weights (λ)
of the attribute supervision loss. Performance is plotted for
both the testing and validation sets. On Polyvore Outfits, we
see that the PAN-Supervised-GE model performs well when
attribute supervision weight is relatively high (best accuracy
at λ = 10). Model performance decreases on either side of
this, with a heavier decrease when λ is increased significantly
(to 100). On the CUB dataset, we see a somewhat different
behavior where the best model performance is achieved at
λ = 10−5, which is much lower, indicating relatively lower

attribute supervision is optimal for the task. Note that on the
In-Shop task we set λ = 1 and did not tune it on that task,
demonstrating that PAN can be readily adapted to improve
performance on other tasks/models.

6. Conclusion
We presented PAN, a method of incorporating additional

attribute annotations in image datasets to learn a better simi-
larity predictor. We saw that PAN’s method of decomposing
similarity prediction into multiple conditions is general, func-
tions with a range of different image encoders and is flexible
in using attribute annotation, possibly sparse, when avail-
able. PAN outperformed state of the art on a diverse set of
three tasks—by 4-9% on fashion item compatibility predic-
tion on Polyvore Outfits, 5% on few shot classification on
CUB and over 1% Recall@1 on In-Shop Clothing Retrieval—
contrary to prior approaches of using attribute supervision,
which were unable to outperform methods that automatically
learned concepts in different similarity conditions. In show-
ing these benefits of PAN we factored out contributions from
training parameters like batch-sizes, hopefully informing
future work with our analysis.
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Appendices

A. Similarity as edge prediction
To accommodate training with the graph encoder (GE),

we formulate learning similarity as an edge prediction task
on graph with nodes as images as done in [7]. Each node
in the graph represents an image and the edges represent
ground truth similarity information. Edges are stored as
an adjacency matrix A ∈ RN×N where Ai,j = 1 if there
exists an edge between node i and node j, i.e., if the images
corresponding to the nodes are labelled to be similar in the
dataset. Ai,j = 0 otherwise. Note that this is a general
formulation and encoders other than the GE can be trained
this way. The graph defined just does not play any role in
the model’s outputs in that case.

B. Similarity prediction for end tasks
Fashion Compatibility Prediction. The goal of this task is
to predict whether a given set of items is compatible. We
compute the compatibility score of an outfit (group of items)
by averaging the likelihood of edge existence over all pairs
of items in the outfit. Area under a receiver operating charac-
teristic curve (AUC) is used here to evaluate the performance
on this task. For this task, at inference time, a model with
GE uses no ground truth context information in the form of
edges since none is available.
Fill-in-the-blank (FITB). The FITB task is to select the
best compatible item given a partial outfit and a set of can-
didate items. Concretely, a question consists of n items
q1, q2, ..., qn. Each question hasm choices o1, o2..., om. Our
models compute the compatibility score s between all item
pairs and sij represents the score between qi and oj . The
score of oj is calculated as

∑n
i=0 sij . The item that obtains

the highest score is chosen as our final candidate. Perfor-
mance is measured in terms of answer accuracy. When a GE
is used, edges are added to represent compatibility between
the items in the question, i.e., edges are added between each
qi and qj for i, j ∈ [n], at inference time.
Few shot classification. Each 5-way 5-shot classification
episode has 5 support examples or 5 “shots” for each of the
5 classes and 16 query examples from each class. The task
is to classify query examples into one of the 5 classes. For

a given query example, the model predicts the probability
of existence of an edge between it and the support examples
for each of the classes. The average edge probability over
support examples for a given class is treated as a score of
belongingness to that class. The model then predicts the
class of the given example as the one with the highest score.
The accuracy of the model for an episode is its accuracy in
classifying the 16 x 5 = 80 query examples.

C. Implementation details

In this section we describe the training details of our
models and different baselines referred to in Section 4.1 in
the main paper.

C.1. Pairwise Attribute-informed similarity Net-
work (PAN)

Our PAN model uses image features encoded by a pre-
trained CNN. We use a Resnet-18 [13] feature extractor for
few shot classification on CUB and a Resnet-50 for fashion
compatibility prediction on the Polyvore Outfits dataset. The
Resnet-50 used is pretrained on Imagenet [8]. However, we
use the feature extractor from a Siamese Network (details
below in section C.2) for CUB since the novel split of CUB
shares some images with the Imagenet dataset. The size
of the image input to these feature extractors is 224 x 224,
and the features output from Resnet-18 are 512 dimensional
while those output from Resnet-50 are 2048 dimensional.

For models evaluated on CUB, the graph encoder contains
a 3 layer graph convolutional network (GCN) where the
features output at each layer are 350 dimensional. The same
for Polyvore Outfits is a 2-layer GCN, the features being 200
dimensional at the output of each layer.

In the training of models using the graph encoder, we
use dropout with drop probability of 0.5 at each GCN layer.
As an additional method of regularization, in each epoch of
training, each edge in the adjacency matrix A is dropped
with a probability 0.15.

For training the PAN models, we use an Adam [18] op-
timizer with learning rate 0.001. The models for few shot
classification on CUB are trained for 1000 epochs and the
ones for fashion compatibility prediction on Polyvore Outfits
for 4000 epochs, validation being done after each epoch of
training.

C.2. Siamese Network for few shot classification

We train a Siamese Network [1, 19] for few shot classi-
fication on CUB, primarily as a CNN feature extractor for
the PAN models. Training examples are obtained by sam-
pling triplets of images (x, y, z), where x and y belong to the
same class and z belongs to a different class. The network is



trained to minimize the following triplet loss

L = max(||f(x)− f(y)||2 − ||f(x)− f(z)||2 + α, 0)
(5)

where f is the ResNet-18 feature extractor, ||·||2 is the `2
norm, and α is a margin parameter.

We use the same splits for CUB as [4], 100 classes in
the base split and 50 each in the novel and val splits. In
one epoch of training, the network sees all possible positive
pairs of images in the training dataset (base split of CUB),
with negative examples sampled randomly from one of the
remaining classes. We trained the network for 200 epochs,
validating every 2 epochs using average accuracy on 100
few shot classification episodes drawn from the val split. We
used Adam [18] optimizer with a learning rate of 0.001 and
the margin parameter α was chosen to be 0.2. A mini-batch
size of 96 triplets was used for training. We used random
resizing and cropping, color jittering and random horizontal
flips as data augmentation for training.

C.3. Single batch training

When training with a single batch (i.e., the entire dataset
is used for training at once), fine-tuning the CNN with lim-
ited GPU memory is not possible. Thus, to minimize the
GPU memory required for each image, we use a pretrained
CNN to get fixed-length feature representations for images.
For methods like a Siamese Network and “X + Attr Multi-
task” we train a classifier implemented as a fully connected
layer to predict links between images, using a single batch
consisting of pre-extracted features from the entire training
set. These features are extracted from a CNN trained us-
ing mini-batches either as a Siamese Network or with an
additional attribute prediction head, as is done for “X + Attr
Multitask”.

D. PAN — Behavior with different number of
similarity conditions

In Figure 4 we plot the performance of the PAN-
supervised and the PAN-unsupervised models with different
numbers of similarity conditions. For supervision, we ran-
domly shuffled the order of attributes and selected the first
n.

In Figure 4(a), where we plot only the FITB accuracy
of the models on the resampled Polyvore Outfits split, we
see that when there are few supervised attributes, the per-
formance of the fully supervised model is poor. However,
when the similarity conditions are allowed to be free (in
the unsupervised model), the performance is higher. The
supervised model starts performing better as the number of
different attributes that are annotated increases. The increase
in performance of the unsupervised model with increasing
number of similarity conditions is much less pronounced,

thus showcasing the role of supervision using attribute anno-
tations in fashion compatibility prediction performance on
Polyvore Outfits.

A different trend is seen in the case of few shot classi-
fication on CUB (in Figure 4(b)), where the unsupervised
model has performance close to that of the fully supervised
model. There is a general increase in performance with more
similarity conditions in both the unsupervised and the su-
pervised models, but the performance is high enough with
a few similarity conditions. This indicates that good perfor-
mance on the few shot classification task can be achieved
with a few unsupervised similarity conditions, and super-
vision using attributes provides a small boost most of the
time. The relatively good performance on this task may
be the result of the relative simplicity of the task, where
few-shot classification can be thought of as trying to simply
match attributes. In comparison, in fashion compatibility,
the relationship between attributes is far more complicated,
as discussed in the introduction of our paper. Images with
different attributes can be deemed highly similar (or more
compatible), while some attribute combinations may indicate
dissimilarity/incompatibility even if subsets of them would
normally indicate similarity. This requires a far more com-
plex function to reason about attributes, which our results
seem to indicate is difficult to capture without supervision.

We also find that using supervised attributes often requires
a critical mass, i.e., a variety of attributes are required to
outperform the unsupervised model reliably. Our results on
Polyvore Outfits demonstrate that these need not be dense
annotations. Attributes on that dataset were automatically
labeled after curating a set of visual concepts manually from
common words that appear in the items’ description and/or
title, resulting in a very sparsely annotated dataset.

E. Choosing number of similarity conditions
for unsupervised models

Figures 5(a) & 5(b), show the validation set performances
of the unsupervised models in the two tasks—predicting
compatibility on Polyvore Outfits and few shot classification
on CUB. We chose the models with the best validation accu-
racy for comparison in Tables 1, 2 and 4 of the main paper.
In particular, for both tasks, we found that the best perfor-
mance was achieved at 50 unsupervised similarity conditions
(M = 50) and beyond that the model seems to overfit.

F. Attribute Recognition Experiments
We train the PAN models using supervision from the

logical OR of attributes, and have seen that this helps in im-
proving similarity prediction performance. Here, we inspect
if the supervision results in meaningful predictions along
different supervised similarity conditions. On pairs of im-
ages from the test split of the data, we compute the average
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Figure 4: Comparing performance with different number of similarity conditions on the test set. For providing supervi-
sion with n attributes (where n may be less than the total number of attributes labelled in the dataset), the first n of a fixed
random order of attributes were chosen.
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(b) Few shot classification on CUB

Figure 5: Validation set performance of the PAN models with unsupervised similarity conditions

precision (AP) of the attribute scores output by our model
where the ground truth comes from the OR of the attribute
labels. Missing attribute labels and their score predictions
are excluded. The mean AP (mAP) is then computed by
averaging the APs over the different attributes.

In Figure 6, we compare the mAP values as described
above for our PAN-Supervised model using different values
of the hyperparameter λ. In both Figures 6(a) and 6(b), the
brown dotted horizontal line is the mean average precision of
a set of scores generated uniformly at random from the range
[0, 1]. From both figures, we see that increasing the weight
of attribute supervision increases the mAP. Combining the
results of Figure 6 with those of Figure 3 in the main paper,

on the Polyvore Outfits dataset we see a positive correlation
between the end-task performance and the mAP on attributes.
λ = 10 results in both the best end-task performance as well
as the best mAP. This suggests that if we were to improve
our model to better recognize joint attributes, we would im-
prove compatibility predictions as well. On the CUB dataset
however, we see a possible trade-off, where the attribute
prediction performance is better for a higher lambda, but
end-task performance is better for a lower value of lambda.
This is in line with what we observe in Section D, where
we see a smaller role of attribute supervision in improving
few shot classification performance on CUB as compared
to its effect in fashion compatibility prediction on Polyvore
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(a) Attribute recognition on Polyvore Outfits.
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(b) Attribute recognition on CUB

Figure 6: Mean average precision (mAP) of attribute prediction.

Outfits.

G. More questions

How useful are relevance weights to model perfor-
mance? To find out, we experimented with an approach that
predicts output similarity scores as PAN does and simply
averages them to get the final similarity prediction between
two images. On CUB, the 5-way 5-shot accuracy of this
model was 85.25± 0.28 (over 3 runs with different random
initializations) compared to 92.77± 0.30 with the relevance
weighted sum. The FITB accuracy on the resampled split
of PO, for it was 63.6 compared to 69.7 with the relevance
weights. Thus simply averaging similarity predictions was
found to perform poorer, highlighting the importance of
using relevance weights.
What is the reason behind using the logical functions
that were used for attribute combination fa? We defined
fa : {0, 1}×{0, 1} → [0, 1] as some function that maps two
input attribute labels to a pair-wise label for supervision. The
definition lends quite some flexibility in choosing what fa
can be, where possibilities include both binary (i.e. outputs
only take on values 0 or 1), or fractional outputs (in the entire
range [0, 1]). fa can be either a non-parametric function, or
could involve parameters (e.g. it could be a linear combina-
tion or could be non-linear like a multi-layer perceptron).
To narrow down this range of choices, for our experiments,
we restrict fa to only binary values leaving the exploration
of other choices to future work. Fractional outputs of the
attribute combination fa could have benefits in certain sce-
narios, for instance, it could be used for ranking images by
some form of attribute strength as done in “relative attributes”
[29].

Restricting fa to binary outputs results in a total of 16

possibilities. Out of the 16, ruling out functions that are
non-commutative, there are 8 possible choices remaining.
This set largely consists of common logical functions. We
can further narrow this down to 4 choices, which are the
ones we experimented with in Section 5 of the main paper.
Of the 8, the functions left out were the constants (always 0
or always 1) and NAND and NOR. The first two do not
provide information regarding the inputs, and the latter two
are simply negatives of AND and OR respectively.

As a form of sanity-check, we also experimented with
randomizing the attribute labels to ensure that supervision
indeed helps (even if it is sparse), rather than there being
some form of a regularizing effect from random labels. On
the resampled split of PO, the FITB accuracy of a model that
was trained with such random labels was 58.0, compared to
69.7 for a supervised model with OR attribute combination,
verifying the role of attribute supervision.

Is it possible to train a model with both supervised and
unsupervised similarity conditions? An excellent ques-
tion and certainly a possibility. However, in our experiments,
we found that such a model could (ab)use its additional ca-
pacity to overfit to training data. On the CUB dataset, a
“hybrid” model with 312 each of supervised and unsuper-
vised similarity conditions could achieve a 5-way 5-shot
accuracy of 91.38 ± 0.24. On the resampled split of PO,
a model with 150 each supervised and unsupervised con-
ditions had a FITB accuracy of 62.90. Note that in this
experiment, we had to restrict to fewer than 206 attributes
because of GPU memory constraints, but even so, this model
had more (a total of 300) similarity conditions than both the
PAN-Supervised and PAN-Unsupervised models reported in
Table 1 of the main paper. We leave to future work, a more
in-depth analysis of this model and a possible way of effec-



(a) Attributes sorted according to increasing average rank

(b) Attributes sorted according to increasing variance

Figure 7: Attributes’ mean ranks and standard deviations
by relevance score and contribution to the similarity score
over multiple training runs. See Sec. G for discussion. (Best
viewed under zoom)

tively utilizing both unsupervised and supervised similarity
conditions.
Do the attribute importance scores always reflect human
intuition? On the CUB dataset, we found some variance
across the attribute importance scores for the same examples
in different training runs starting from the same initializa-
tions. Fig 7 shows the variance in average ranks of different
attributes across 3 different training runs of PAN-supervised.
Ranks are computed based on both the relevance score (left)
and the contribution to the similarity score (right) with the
highest score being rank 1. The average ranks are computed
by first computing for each run, the average rank of a given
attribute in terms of its score from the PAN model across all
pairs of images in the novel (or test) split of the dataset. This

results in 3 average ranks (one per run). The average of these
and the standard deviation (using error bars) are plotted in
the figure.

We see that after the first three attributes sorted by rank
(Fig. 7 (top)), the variance in the average rank increases
by a lot. There are other attributes with smaller variance
(Fig. 7 (bottom)) but at a much higher rank (meaning they
have low relevance or contribution). Thus, in the case of
CUB, PAN has learnt a relevance predictor, that has fairly
high variance dependent on initialization for most attributes.
This behavior is likely a consequence of two factors: first,
attribute labels were sparse and noisy and so PAN learned
to treat some similarity conditions as latent or unsupervised.
For some attributes, this variance in relevance score is also
possibly a consequence of that attribute not being useful
for determining similarity. As a consequence, the model
appeared to override these less important attributes to instead
learn some general similarity metric. This would manifest
itself as that attribute having low recognition performance
coupled with high contribution to the overall similarity score
in some runs, but not others, resulting in high variance in an
attribute’s overall rank across initializations. Thus, we found
PAN’s attribute relevance predictions to be too noisy to be
reliably consistent with human intuition, especially for the
CUB dataset.


