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Abstract

Video-based person re-identification (re-ID) aims at
matching the same person across video clips. Efficiently
exploiting multi-scale fine-grained features while building
the structural interaction among them is pivotal for its suc-
cess. In this paper, we propose a hybrid framework, Dense
Interaction Learning (DenseIL), that takes the principal ad-
vantages of both CNN-based and Attention-based architec-
tures to tackle video-based person re-ID difficulties. Den-
seIL contains a CNN encoder and a Dense Interaction (DI)
decoder. The CNN encoder is responsible for efficiently ex-
tracting discriminative spatial features while the DI decoder
is designed to densely model spatial-temporal inherent in-
teraction across frames. Different from previous works, we
additionally let the DI decoder densely attends to interme-
diate fine-grained CNN features and that naturally yields
multi-grained spatial-temporal representation for each video
clip. Moreover, we introduce Spatio-TEmporal Positional
Embedding (STEP-Emb) into the DI decoder to investigate
the positional relation among the spatial-temporal inputs.
Our experiments consistently and significantly outperform
all the state-of-the-art methods on multiple standard video-
based person re-ID datasets.

1. Introduction
Person re-identification (re-ID) tells whether a person-

of-interest has been noticed in a different location by an-
other camera. It is essential to many important surveillance
applications such as tracking [70] and retrieval [89]. In
recent years, significant progresses have been achieved in
image-based person re-ID [42, 59, 63, 22], as well as the
video-based one [87, 41, 80], due to the rapid development
of Convolutional Neural Networks (CNN) [36].

The goal of image-based person re-ID is to match per-
son images captured in different times and locations. To
achieve this goal, recent methods are proposed to bet-
ter dig appearance features while concurrently to main-
tain the robustness with respect to body part misalign-

(a) Left: different identities with similar appearance. Right: the
same identity with misalignment or occlusion.
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(b) Our proposed Dense Interaction Learning (DenseIL).

Figure 1: (a): Two key challenges existed in video-based
person re-ID. (b): To tackle these two challenges, we intro-
duce a DenseIL framework to densely capture multi-grained
spatial-temporal interaction with the guidance of global rela-
tionship, where the preferences (ω) are automatically learned
by our proposed Dense Attention.

ment [43, 54, 7, 91, 73, 63, 67, 33, 32, 22]. Nevertheless, it
is still insufficient to model the discrete relationships among
various misaligned body parts from a single image. This mo-
tivates the exploration on video-based re-ID, which further
takes adjacent frames of the captured person into consid-
eration, and therefore the occluded or missed parts can be
inferred. In this sense, the key point to video-based re-ID
lies in designing an architecture that is suitable for temporal
dynamics, such as leveraging optical flow [9], RNN [92] and
3D CNN [40].

However, the aforementioned methods neglect the im-
portance of spatial-temporal interaction between body parts
within intra- and inter-frame, which limits their effectivity.
As a result, the state-of-the-arts [80, 79] suggest that graph
convolutional network [34] has the merit of modeling spatial-
temporal dependencies and shows promising performance
on video-based re-ID task. However, their models are built
upon the coarse-grained representation while leaving the
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fine-grained information implied in each frame not fully ex-
ploited. As demonstrated in Figure 1a, when different identi-
ties share similar appearance, depending on coarse-grained
knowledge is not enough to distinguish the difference. In-
stead, fine-grained information (such as a shoe, a shoulder
bag, etc.) plays an enormous role in re-identification.

Inspired by this observation, in this paper, we present
Dense Interaction Learning (DenseIL) that not only builds
spatial-temporal interaction between body parts but also
densely exploits fine-grained cues (see Figure 1b). Basi-
cally, DenseIL is composed of a CNN encoder and a Dense
Interaction (DI) decoder. The CNN encoder exerts its ad-
vantage on efficiently encoding spatial context into discrimi-
native features [37]. Our CNN encoder consists of several
CNN Blocks (e.g., Res-Block [21], Dense-Block [31], SE-
Block [30], etc.) and therefore is capable of generating a set
of hidden features from low-level/high-resolution to high-
level/low-resolution.

Our DI decoder comprises stacked self-attention [66],
feed-forward layer, layer normalization [1] and a newly pro-
posed Dense Attention. Specifically, our decoder reuses
the self-attention module explored in vanilla Transformer
to deliberately model spatial-temporal inherent interaction
across frames. After that, the subsequent Dense Attention
module simultaneously attends to both the outputs of the
self-attention module and the intermediate fine-grained CNN
features of the CNN encoder with the guidance of global re-
lationship (i.e., the last self-attention outputs). Thus, the de-
coder can naturally generate a multi-grained spatial-temporal
representation for each video clip.

In contrast to ResNet [21] and DenseNet [31] that asso-
ciate features of preceding layers through summation or con-
catenation, we create dense information flow between CNN
and Attention mechanism with the proposed Dense Attention
scheme. Intuitively, our Dense Attention is designed to better
facilitate the coordination of CNN and Attention mechanism
by extracting hybrid information from both the convolution
and preceding self-attention features in a single attention
function. Acting in this way, the model automatically and
flexibly learns the preference on the fine-grained context
(frame level, extracted by CNN) and global spatial-temporal
interaction across frames (sequence level, modeled by self-
attention) when re-identifying person-of-interest, which will
be beneficial to scale-variations and misalignment problem,
as a by-product of our model design.

Moreover, since the DI decoder is intrinsically
permutation-invariant, we further propose Spatio-TEmporal
Positional Embedding (STEP-Emb) to explicitly enhance the
chronological relation in intra- and inter-frame. By incorpo-
rating STEP-Emb, our DI decoder is able to investigate the
absolute or relative position of the spatial-temporal inputs.

Experiments show that our method significantly out-
performs the state-of-the-arts on three video-based person

re-ID datasets. In particular, we achieve the best perfor-
mance of 87.0% and 97.1% mAP on large-scale MARS and
DukeMTMC-VideoReID datasets respectively.

2. Background

2.1. Related Work

Video-based Person Re-identification. Video-based per-
son re-identification (re-ID) [87] targets on re-identifying a
video clip of the person-of-interest from massive gallery
candidates. The majority of the video-based re-ID al-
gorithms pay close attention to efficiently modeling tem-
poral context and exploiting complementary information
from various frames, by leveraging optical flow [51, 11, 9],
RNN [78, 92, 77, 47], pooling [87, 74], 3D CNN [55, 40, 20],
attention mechanism [41, 17, 45, 39, 85] and graph convolu-
tional network [80, 79]. For example, Mclaughlin et al. [51]
utilize optical flow, RNN and temporal pooling simultane-
ously to take long and short term temporal cues into account.
Qiu et al. [55] and Li et al. [40] both employ 3D CNN to
attain spatial-temporal representation for each video clip.
However, both optical flow and 3D CNN are sensitive to
spatial misalignment between adjacent video frames.

More recently, the rise of attention mechanism [2] con-
vincingly demonstrates high capability of selectively focus-
ing on specific parts of the input signal. Inspired by this, lots
of studies learn the weight of spatial and temporal features
separately from a static perspective [46, 92, 77, 41, 17, 27,
39, 61, 26]. However, they do not take fully advantage of
the relationships between spatial and temporal body parts
across different frames, thus yielding limited capability of
representation.

Attention Mechanism in Computer Vision Community.
The attention mechanism is first proven to be helpful in Neu-
ral Machine Translation [2, 66], of which Transformer [66]
is the most famous one. Existing works in computer vi-
sion community leverage the success of Transformer mainly
by replacing the convolutions with self-attention opera-
tion [53, 68], or by deploying attention as an add-on to
existing convolutional models in tasks like image classifi-
cation [30, 29, 3, 28], object detection [71, 4], segmenta-
tion [16, 83], generative networks [84], inpainting [82], etc.

The tale of attention mechanism still continues. Peo-
ple start to consider borrowing the entire Transformer ar-
chitecture to jointly modeling vision-language representa-
tions [62, 49, 60, 56, 12] or exploiting relations of the objects
in image object detection [5, 94]. While different from afore-
mentioned studies that build the entire Transformer on the
highest-level of CNN spatial features, we only engage the
decoder of Transformer, and replace the vanilla encoder-
decoder attention with the proposed Dense Attention to pay
attention to multi-grained CNN representations.



Encoder-Decoder Framework with Skip Connections.
The encoder-decoder framework is widely applied in the
areas of language [10, 2], speech [6] and vision [48, 93]. For
image and video processing, Ronneberger et al. [58] first in-
troduce concatenation-style skip connections [21, 31] to the
encoder-decoder-based fully convolutional networks [48],
and such framework is further utilized and refined in various
computer vision tasks [50, 15, 64].

In this work, instead of using the conventional summation-
style or concatenation-style skip connections like above
methods, we introduce Dense Attention to densely attend to
multi-grained features generated by the CNN encoder or the
preceding decoder blocks.

2.2. Brief Introduction to Transformer

Transformer [66] is a general encoder-decoder framework
built upon self-attention and encoder-decoder attention that
achieves state-of-the-art results on many language genera-
tion [23, 72, 75] and understanding tasks [14, 81]. It is a
stacked architecture with several blocks. Each block com-
poses two or three basic modules:

A Self-Attention Module. Self-attention is commonly
used to relate different positions of a single sequence and gen-
erate a weighted representation of its inputs. Formally, given
an I-element set X = {x1, x2, · · · , xI}, the self-attention
is defined as:

SelfAttn(Q,K,V) = Softmax(
QKT
√
d
)V, (1)

where Q,K,V (query, key, value) are all from X by a linear
projection, and d is the dimension of hidden states. Note
that, the self-attention module can be employed in either
an encoder or a decoder and is typically associated with a
residual connection and layer normalization LN [1], resulting
in the final output LN(X + SelfAttn(Q,K,V)).

A Feed-Forward Layer. Feed-forward layer is analo-
gous to activated fully-connected layer, that provides non-
linearity to the model. For any i ∈ {1, · · · , I}, FFN(xi) =
w2 max(w1xi + b1, 0) + b2, where the w’s and b’s are the
parameters to be learned. Similarly, this layer is followed
with a residual connection and layer normalization.

An Optional Encoder-Decoder Attention Module. To
realize cross-lingual (i.e., source-to-target) learning, Vaswani
et al. [66] introduce an encoder-decoder attention that ap-
pears in the decoder only. Formally, let {z1, z2, · · · , zI}
be the output of the last layer in the encoder, and H is the
preceding hidden state in the decoder. The encoder-decoder
attention is implemented similar to Equation (1), with the dif-
ference lies in that the query (Q) comes from H, the key (K)
and value (V) come from {z1, z2, · · · , zI}. Eventually, this

module outputs LN(H + EncDecAttn(Q,K,V)). More
details can be found in the original paper [66].

3. Dense Interaction Learning
In this section, we will give a detailed introduction to our

proposed DenseIL. Our framework has a hybrid architecture
and is composed of a CNN encoder and a Dense Interaction
(DI) decoder. In general, with the assistance of the proposed
Dense Attention, the DenseIL can enable the decoder densely
attend to intermediate CNN features, naturally forming a
multi-grained and interacted representation for each video
clip. In the following, we first introduce each component we
used in details and then give three variants for the overall
architecture as demonstrated in Figure 2.

3.1. CNN Encoder

In contrast to the vanilla Transformer that employs self-
attention to construct hidden features for the source inputs,
we use convolution-based transformation to generate hidden
features for the inputs due to both its efficiency and high
performance (e.g., translation equivariance and locality).

Feature Extraction. Given a set of sampled video frames
X = {x1, x2, · · · , xI} with length I , the CNN encoder
extracts the hidden spatial features block by block, where
each block can be an arbitrary CNN structure (e.g., Res-
Block [21], Dense-Block [31], etc.). We denote the spa-
tial features in the l-th block as {zl1, zl2, · · · , zlI}. In order
to fully utilize the previously accumulated experience of
pre-training [87], we make minimal changes on the CNN
architecture. Therefore, our CNN encoder can be initialized
with ImageNet-pretrained parameters [13], endowing it with
more power of robust representation.

Horizontal Partition. Part-based re-ID model has en-
joyed rich success in person re-ID [65, 63, 38, 18], where
each input sample is partitioned into patches by predefined
priori knowledge or external supervision. The spirit of the
part-based schemes lay on utilizing part-level features to
provide more discriminative representation to distinguish the
person-of-interest from others. Inspired by this, we horizon-
tally divide the spatial features {z1, z2, · · · , zI} produced by
CNN encoder into P feature patches, and then perform aver-
age pooling on the divided feature to build a part-level feature
vector zpi ∈ R1×d for each patch, where p ∈ {1, · · · , P},
and d is the number of channels of the spatial features gen-
erated by CNN encoder. Eventually, we stack all feature
vectors and obtain Z = [z11 ; · · · ; zPI ], where Z ∈ RIP×d

and [·] denotes the concatenation operation.

3.2. Dense Interaction Decoder

As the CNN encoder generates the spatial features for
each video clip, we further adopt the Dense Interaction (DI)
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Figure 2: The proposed three model variants for the video-based person re-ID task. (a) The decoder only consists of self-
attention (is equivalent to the encoder of vanilla Transformer). (b) The decoder contains both self-attention and encoder-decoder
attention (is equivalent to the decoder of vanilla Transformer). (c) Our DI decoder involves self-attention and the proposed
Dense Attention (The ⊕ denotes the concatenation operation). All schemes are equipped with our proposed STEP-Emb. We
omit the layer normalization for simplicity.

decoder to model the long-range context, especially for exca-
vating intra-frame and inter-frame relationships. In general,
our DI decoder follows the design philosophy of the self-
attention module and feed-forward layer in Transformer, but
differs in the encoder-decoder attention module, which is
substituted for the proposed Dense Attention module. The
main difference between the vanilla encoder-decoder atten-
tion and our Dense Attention is that ours allows the decoder
to additionally attend to intermediate fine-grained CNN fea-
tures, forming a hybrid dense connection between the multi-
grained CNN and the attention features.

Self-Attention. Our self-attention layer is developed with
a focus on modeling the interaction between feature patches
by reusing the innovations explored in prior works [52, 66,
44]. For the stacked feature vectors Z, we conduct self-
attention in Equation (1), where

Q,K,V = ZWq,ZWk,ZWv, (2)

Z ∈ RIP×d, and Wq,Wk,Wv are three learnable matrices
to project Z into different spaces. In particular, we imple-
ment SelfAttn(·) with the multi-head attention as that
proposed in Vaswani et al. [66]. Our self-attention mod-
ule is also associated with a residual connection and layer
normalization LN(·) as described in Section 2.2.

Recent study [76] also shows that Pre-LN (put the LN(·)
inside the residual connection) demonstrates stronger stabil-
ity than the original Post-LN (place the LN(·) between the
residual blocks). In this paper, we thereby adopt Pre-LN
structure in our DI decoder.

Feed-Forward Layer. We follow the spirit of the feed-
forward layer FFN(·) of vanilla Transformer to endow the
decoder with non-linearity.

The Proposed Dense Attention. Residual networks [21,
31] build skip connections that can easily accumulate the
features from the previous layer to the next layer, and can
achieve great performance in a wide range of tasks. Inspired
by this, we propose the Dense Attention, an operation that
shares similar insights to the residual networks but realizes
skip connections with attention mechanism, instead of sum-
mation [21] or concatenation [31].

Concretely, the Dense Attention simultaneously attends
to the intermediate features Zl = {zl1, zl2, · · · , zlI} extracted
by CNN, where l ∈ {1, · · · , L}, and the high-level features
Hr = {hr

1, h
r
2, · · · , hr

IP } generated from the preceding self-
attention module (and the feed-forward layer) in the r-th
block, where r ∈ {1, · · · , R}. For the intermediate CNN
features Zl, which retain the fine-grained spatial informa-
tion of inputs, we successively perform horizontal partition
and an average pooling operation, denoted as PPool(·),
to compress each partition into a feature vector before fed
into Dense Attention. On the other hand, the features Hr

are directly utilized, which represents the relationship be-
tween partitioned patches across frames. More precisely,
our Dense Attention DenseAttn(Q,K,V) is executed in
a similar way as Equation (1), with modifications that the
query (Q) comes from Hr, the key (K) and value (V) comes
from the concatenation of the pooled intermediate CNN fea-
tures PPool(Zl) and the output of self-attention module
Hr:

Vr = [PPool(Z1), · · · ,PPool(ZL),Hr]Wr
v,

Kr = [PPool(Z1), · · · ,PPool(ZL),Hr]Wr
k,

Qr = HrWr
q,

(3)

where [·] represents the concatenation operation. The de-
tailed distinction among self-attention, encoder-decoder at-



(a) Spatial Pos. Emb. (b) Temporal Pos. Emb.

Figure 3: The spatial and temporal positional embedding
contribute to the proposed STEP-Emb together.

tention and Dense Attention will be elaborated in Section 3.4.

3.3. Spatio-Temporal Positional Embedding

Since attention mechanism has no recurrent operation
like RNN [25] or convolution like CNN (i.e., permutation-
variant), we need explicitly introduce the absolute or relative
position of inputs to the model. Thus, we equip our DI de-
coder with positional embedding as demonstrated in Figure 3.
The positional embedding is twofold: a spatial embedding
and a temporal one. Both of them contribute to the final
Spatial-Temporal Positional Embedding (STEP-Emb).

Spatial Positional Embedding. As illustrated in Fig-
ure 3a, the spatial positional embedding is constructed
based on the partitioned spatial features, denoted as zi =
{z1i , z2i , · · · , zPi } for i-th frame. We use sinusoidal em-
bedding function to format embedding vectors [19, 66]:
SpatialPos(p, j) equals to sin(p/10000j/d) if j is even,
and equals to cos(p/10000j/d) otherwise. Here p ∈
{1, · · · , P} is the index of the partition, and j ∈ {1, · · · , d}
is the index of the hidden dimension. For simplicity, we
denote sp = SpatialPos(p, j).

Temporal Positional Embedding. Compared with image-
based recognition, video sequences additionally leak
motion context for identifying pedestrians. However,
Attention-based architectures (i.e., self-attention) are nat-
urally permutation-invariant [66]. Thus, they are incapable
of explicitly modeling chronological relation between video
frames, leading to a disruption of the intrinsic temporal
structure. To tackle this problem, apart from the spatial
positional embedding, we also build a temporal positional
embedding to imply chronological order of inputs, as shown
Figure 3b. The temporal positional embedding can be formu-
lated as : TemporalPos(i, j) equals to sin(i/10000j/d)
if j is even, and equals to cos(i/10000j/d) otherwise. Here
i ∈ {1, · · · , I} is the index of input frame. For simplicity,
we denote ti = TemporalPos(i, j).

Spatial-Temporal Positional Embedding. Based on the
above two strategies, we derive the final Spatio-TEmporal
Positional Embedding (STEP-Emb), which is constructed by
the summation of the spatial and the temporal embedding.
More precisely, the STEP-Emb for each feature patch zpi can
be represented as: epi = sp + ti. Intuitively, the STEP-Emb

improves the power of capturing long range interaction by
enhancing the structural information between partitioned
patches. We will demonstrate its ability in Section 4.4.

3.4. Overall Architecture

To dive deeply into the CNN-Attention hybrid structure,
we introduce three model variants for the overall architec-
ture. Figure 2 demonstrates the detailed configurations. For
all the three variants, the components in the dashed boxes
can be regarded as the basic building blocks to stack up.
The final outputs of the decoder are processed by a batch
normalization layer and a non-bias classifier layer.

CNN encoder & Vanilla Transformer Encoder (CNN-
TransEnc). We directly cascade the CNN encoder, and
the vanilla Transformer encoder, which mainly comprises
self-attention module (SelfAttn(·)), to model interac-
tions between feature partitions across frames. Therefore,
the query, key and value are all from the preceding self-
attention module. The resulting architecture is illustrated in
Figure 2a.

CNN encoder & Vanilla Transformer Decoder (CNN-
TransDec). We employ vanilla Transformer decoder com-
bined with our CNN encoder as another model variant.
As shown in Figure 2b, compared with CNN-TransEnc,
CNN-TransDec additionally includes the encoder-decoder
attention (EncDecAttn(·)) to pay closer attention to the
highest-level spatial features generated by the CNN encoder.

CNN encoder & Our DI Decoder with Dense Attention
(DenseIL). The aforementioned CNN-TransEnc and CNN-
TransDec only take the last-layer (the highest level) represen-
tations from the CNN encoder as inputs. As a comparison,
our DenseIL (see Figure 2c) is equipped with the proposed
Dense Attention, who is able to simultaneously attend to
multi-scale intermediate spatial features in stacked CNN
blocks and the corresponding interaction modeled by self-
attention module.

Loss Function. We adopt the simplest cross-entropy loss
and batch triplet loss [24] for a fair comparison with the
previous works [61, 26, 20]. The two loss functions are cal-
culated on the global average-pooled sequence-level feature
vectors generated by the DI decoder.

4. Experimental Results

4.1. Datasets and Evaluation Protocol

Datasets. We evaluate our DenseIL on several com-
monly adopted video-based re-ID benchmarks, including
MARS [87], DukeMTMC-VideoReID (DukeV) [57, 74] and
iLIDS-VID [69].



(a) We compare Dense Attention with its
counterparts.

Methods mAP R-1 R-5

Baseline 82.1 87.3 95.6

CNN-TransEnc 85.7 89.4 96.6
CNN-TransDec 85.8 90.2 96.5

w/ Dense Concat. 86.4 89.8 96.8
w/ Dense Sum. 86.2 89.9 96.7
w/ Dense Attn. 87.0 90.8 97.1

(b) DenseIL with / without positional embed-
ding.

Methods mAP R-1 R-5

Baseline 82.1 87.3 95.6

DenseIL 86.3 89.9 97.0w/o Pos. Emb.

w/ Spatial-Emb. 86.6 90.5 97.1
w/ Temporal-Emb. 86.6 90.2 97.1
w/ STEP-Emb. 87.0 90.8 97.1

(c) Different number of blocks (R) with fixed
d = 2048.

# Blocks GFs mAP R-1 R-5

Baseline
16.39 82.1 87.3 95.6

(R = 0)

R = 1 17.43 84.2 88.2 96.3
R = 2 18.31 86.3 89.6 96.9
R = 3 19.18 86.6 90.1 97.1
R = 4 20.06 87.0 90.8 97.1

(d) Dense Attention with multi-grained CNN
features. (Hr is omitted for simplicity).

key / value mAP R-1 R-5

Baseline 82.1 87.3 95.6

Z4 (CNN-TransDec) 85.8 90.2 96.5
Z4 + Z3 86.7 90.6 97.1
Z4 + Z3 + Z2 87.0 90.8 97.1
Z4 + Z3 + Z2 + Z1 86.9 90.5 97.1

(e) Different number of dimensions of hidden
states with fixed blocks R = 4.

# Dims GFs mAP R-1 R-5

Baseline 16.39 82.1 87.3 95.6

d = 256 16.52 86.6 90.1 97.1
d = 512 16.75 86.5 90.3 97.2
d = 1024 17.48 86.8 90.6 97.0
d = 2048 20.06 87.0 90.8 97.1

(f) We vary the number of partitions for each
frame.

# Partitions mAP R-1 R-5

Baseline 82.1 87.3 95.6

P = 1 86.1 89.7 96.9
P = 2 86.8 90.5 97.1
P = 4 87.0 90.8 97.1
P = 8 86.6 90.5 97.0

Table 1: Ablation study on MARS dataset. GFs means GFLOPs. More details are explained in the text.

Evaluation Protocol. Following the common prac-
tices [88, 87, 41, 80], we resort to both Cumulative Matching
Characteristic (CMC) curves at Rank-1 (R-1) to Rank-20
(R-20), and mean Average Precision (mAP) as evaluation
metrics. We do not use re-ranking for all settings.

4.2. Implementation Details

We employ ImageNet-pretrained standard ResNet-50 as
the initialization of our CNN encoder. To be comparable
with the previous works [63, 45, 85, 80], we also remove the
last spatial down-sampling operation in the conv5 x block
for both the baseline and our schemes. Each input frame
is resized to 256 × 128 with frame-level random horizon-
tal flips [45] and sequence-level random erasing [90, 85, 9]
for data augmentation. We adopt a restricted random sam-
pling strategy [41, 45, 80] to randomly sample frames from
equally divided 8 chunks for each video clip. For each
training batch, we randomly sample 16 identities, each with
4 tracklets [24, 80]. We train our network for 800 epoch
with Adam optimizer for both the cross-entropy loss and the
triplet loss [24]. The initial learning rate is set to 0.0002 and
is decayed by 10 every 100 epochs. The algorithm is imple-
mented with PyTorch1 and trained on a 4-GPU machine.

4.3. Study on Design Choices

Spatial-Temporal Interaction Matters. We present the
performance (%) of CNN-TransEnc, CNN-TransDec and
DenseIL (w/ Dense Attn.) on MARS dataset in Table 1a,
from which we can observe that solely allocating self-

1Based on: https://github.com/yuange250/not_so_
strong_baseline_for_video_based_person_reID.

attention module to the decoder (CNN-TransEnc) already
brings effective performance gain (+3.6% mAP), while
the one additionally inserted with encoder-decoder atten-
tion (CNN-TransDec) achieves comparable results (+3.7%
mAP). Such observation demonstrates the strong interaction-
modeling capability of self-attention and exactly verifies one
of our starting point: spatial-temporal interaction matters for
video-based re-ID.

Dense Attention vs. Dense Summation/Concatenation.
Unlike ResNet [21] and DenseNet [31] that combine features
through summation or concatenation, we densely attend to
preceding CNN and self-attention features by our proposed
Dense Attention. Accordingly, we conduct experiments on
densely summing (w/ Dense Sum.) or concatenating (w/
Dense Concat.) preceding CNN features to the decoder. To
be more specific, we perform partition and pooling operation
on the spatial features of each CNN block, and sum / con-
catenate them into the output of each self-attention module.
We follow the same training strategy as described in Sec-
tion 4.2 for both schemes and report mAP and CMC scores
on MARS dataset in Table 1a. As a result, the Dense Atten-
tion (w/ Dense Attn.) reaches the highest performance over
the two counterparts (+0.6% mAP). On the one hand, com-
pared with summation or concatenation, our Dense Attention
is able to adaptively learns the preference on low-level CNN
features or high-level spatial-temporal interaction. On the
other hand, the features learned by the CNN and the attention
module may not lie in the same manifold, and concatenating
them together can result in distribution gap. Instead, our
Dense Attention enable better coordination between CNN
and Attention by a relatively soft connection scheme.

https://github.com/yuange250/not_so_strong_baseline_for_video_based_person_reID
https://github.com/yuange250/not_so_strong_baseline_for_video_based_person_reID
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Figure 4: Visualization of the attention weights learned in Dense Attention. Darker color means higher attention weight.
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Figure 5: Visualization of re-identification results of the
baseline (top) and DenseIL (bottom). The left column of
each case is sampled frames of query sequence and the right
five columns are top-5 retrieved sequences in the gallery
set, where the item annotated with green box is correctly
re-identified, and the red box denotes the wrong results.

How Dense Attention Works? In order to investigate
the functional principle of our Dense Attention, we ad-
just the composition of its key and memory in Equation (3)
and conduct corresponding experiments. More precisely,
let Z1, Z2, Z3 and Z4 be the intermediate features gen-
erated by four CNN blocks (ResNet-50), and Hr be the
features generated from the preceding self-attention mod-
ule. We allow Dense Attention to attend to Hr and part of
{Z1,Z2,Z3,Z4}. The results on MARS dataset are demon-
strated in Table 1d. We can observe that when attending
to Hr and any of {Z2,Z3,Z4}, DenseIL outperforms the
CNN-TransDec counterpart by a large margin. It is also
interesting to see that when further attending to the lowest-
level CNN feature Z1, the performance slightly drops (-0.1%
mAP) compared with {Z2,Z3,Z4}. This might be due to the
fact that the lowest-level CNN feature lacks discriminative
information and is not conducive to the coordination with the
attention scheme in terms of video re-ID task. For a better
understanding of Dense Attention, we randomly feed im-
age samples into DenseIL and map the attention weights of
Dense Attention to colors. The results are visualized in Fig-
ure 4, which suggests that the Dense Attention indeed cares
about multi-grained CNN features simultaneously, while
gives relatively more concern on the highest-level one. We
also demonstrate the retrieval results in Figure 5. We can
observe that, in the left case, although there exists misalign-
ment, movement and occlusion in the query respectively,

our scheme is still able to match the person-of-interest accu-
rately. In contrast, the baseline model misses the sequences
of the same identity. In the right case, the baseline model
re-identities the query incorrectly due to ignoring the fine-
grained information between visually similar identities. In
contrast, DenseIL captures the contour and the fine-grained
characters on her back, yielding a satisfactory re-ID result.

STEP-Emb Tackles Permutation-Invariant Issue. The
philosophy behind STEP-Emb is to empower the DI decoder
to capture long-range interaction by enhancing structural
information between partitioned patches with embeddings.
To verify its functionality, we remove the STEP-Emb (Den-
seIL w/o Pos. Emb.) and demonstrate its performance (%)
on MARS dataset in Table 1b. It can be easily observed
that employing either the Spatial Positional Embedding (w/
Spatial-Emb.) or the Temporal Positional Embedding (w/
Temporal-Emb) undeniably boosts the person re-ID perfor-
mance (+0.3% mAP). As the joint one, STEP-Emb, achieves
the best performance consistently on all metrics. This sug-
gests that STEP-Emb is indispensable for spatial-temporal
positional modeling in our DI decoder.

4.4. Study on Model Variations

Deeper DI Decoder Improves the Performance. As de-
scribed in Section 3, our DI decoder is stacked with R basic
building blocks. Correspondingly, we vary different num-
ber of blocks to investigate how our model performs. Ta-
ble 1c illustrates the performance (%) on MARS dataset with
R = 0/1/2/3/4 blocks. We can observe a consistent perfor-
mance improvement as we increase the number of blocks in
DI decoder.

Wider DI Decoder Improves the Performance. We vary
dimension of hidden states d to discover how the width of
DI decoder affects the re-ID performance. Table 1e demon-
strates the corresponding results, which tell that wider DI
decoder indeed shows larger capability, resulting consistent
performance gain on MARS dataset.

Horizontal Partition Helps Our DI Decoder to Learn
Discriminative Features. Part-based techniques for per-



Methods Proc. Backbone
MARS DukeV iLIDS-VID

mAP R-1 R-5 R-20 mAP R-1 R-5 R-10 R-1 R-5

STAN [41] CVPR18 Res50 65.8 82.3 - - - - - - 80.2 -
Snippet [8] CVPR18 Res50 76.1 86.3 94.7 98.2 - - - - 85.4 96.7
STA [17] AAAI19 Res50 80.8 86.3 95.7 - 94.9 96.2 99.3 99.6 - -
ADFD [86] CVPR19 Res50 78.2 87.0 95.4 98.7 - - - - 86.3 97.4
VRSTC [27] CVPR19 Res50 82.3 88.5 96.5 - 93.5 95.0 99.1 99.4 83.4 95.5
GLTR [39] ICCV19 Res50 78.5 87.0 95.8 98.2 93.7 96.3 99.3 - 86.0 98.0
COSAM [61] ICCV19 SE-Res50 79.9 84.9 95.5 97.9 94.1 95.4 99.3 - 79.6 95.3
STE-NVAN [45] BMVC19 Res50-NL 81.2 88.9 - - 93.5 95.2 - - - -
MG-RAFA [85] CVPR20 Res50 85.9 88.8 97.0 98.5 - - - - 88.6 98.0
MGH [79] CVPR20 Res50-NL 85.8 90.0 96.7 98.5 - - - - 85.6 97.1
STGCN [80] CVPR20 Res50 83.7 90.0 96.4 98.3 95.7 97.3 99.3 - - -
TCLNet [26] ECCV20 Res50-TCL 85.1 89.8 - - 96.2 96.9 - - 86.6 -
AP3D [20] ECCV20 AP3D 85.1 90.1 - - 95.6 96.3 - - 86.7 -
AFA [9] ECCV20 Res50 82.9 90.2 96.6 - 95.4 97.2 99.4 99.7 88.5 96.8

Ours - Res50 87.0 90.8 97.1 98.8 97.1 97.6 99.7 99.9 92.0 98.0

Table 2: We compare the DenseIL with state-of-the-art results.

son re-ID has remained attractive in the last few years [63,
17, 79, 80, 83], we here investigate how horizontal partition
influence the learning of DenseIL. The results are illustrated
in Table 1f, from which we can conclude that the best perfor-
mance is reached when we partition each spatial feature into
four patches. Interestingly but not surprisingly, training with
larger number of partitions does not achieve higher result
(-0.4% mAP). This might be due to more partitions amplify
the misalignment issue existing in video-based person re-ID.

Our DI Decoder is not Limited to Specific CNN Back-
bone. For example, DenseIL is able to boost the mAP of
DenseNet-121 baseline from 82.5% to 86.7% on MARS
dataset, demonstrating great generalization ability on differ-
ent CNN basic structure.

4.5. Computational Complexity

For all settings, we compute the theoretical GFLOPS with
the tool compute flops.py 2 from DETR [5]. From
Table 1c and 1e we can observe that, the deeper and the wider
the DI decoder is, the higher computational complexity we
have. However, such issue can be alleviated with the recently
developed high efficiency Transformer variants [35, 94]. In
addition, for the lightweight version in Table 1e, e.g., d =
256, which brings negligible computational overhead, still
outperforms the baseline by 4.5% mAP.

4.6. Comparison with State-of-the-Art Results

We compare our proposed DenseIL with the best results
reported in recent literatures in Table 2. We can see that our

2https://gist.github.com/fmassa/
c0fbb9fe7bf53b533b5cc241f5c8234c

method achieves significant improvement over all the com-
petitive state-of-the-arts, including the optical flow-based [9],
graph-based [80, 79], 3D CNN-based [40, 20] and attention-
based [17, 27, 39, 61, 26] approaches, in terms of both the
mAP and CMC metrics. For example, our method surpasses
the latest optical flow-based scheme [9] by 4.1% mAP, out-
performs the latest graph-based scheme [80] by 3.3% mAP
on MARS dataset. For attention-based approaches [39, 26],
our method is also superior to all of them by a large mar-
gin. We argue that the performance gain comes from the
usage of both the multi-grained cues and the spatial-temporal
interaction, which are not fully exploited in previous works.

5. Conclusion
In this paper, we successfully leverage Dense Interac-

tion Learning (DenseIL) to alleviate the difficulties of multi-
grained spatial-temporal interaction modeling for video-
based person re-ID. Specifically, by incorporating the pro-
posed Dense Attention and STEP-Emb, we let the DI de-
coder densely attends to intermediate CNN features and
generates an intrinsically multi-grained representation for
each video clip. Experimental results demonstrate that our
approach surpasses all previous methods.

For future works, it is interesting to apply Dense Inter-
action Learning to more video understanding tasks, such as
action recognition, video captioning, etc.
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