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Abstract

We introduce N-ImageNet, a large-scale dataset targeted
for robust, fine-grained object recognition with event cam-
eras. The dataset is collected using programmable hard-
ware in which an event camera consistently moves around
a monitor displaying images from ImageNet. N-ImageNet
serves as a challenging benchmark for event-based object
recognition, due to its large number of classes and sam-
ples. We empirically show that pretraining on N-ImageNet
improves the performance of event-based classifiers and
helps them learn with few labeled data. In addition, we
present several variants of N-ImageNet to test the robust-
ness of event-based classifiers under diverse camera tra-
jectories and severe lighting conditions, and propose a
novel event representation to alleviate the performance
degradation. To the best of our knowledge, we are the
first to quantitatively investigate the consequences caused
by various environmental conditions on event-based ob-
ject recognition algorithms. N-ImageNet and its variants
are expected to guide practical implementations for deploy-
ing event-based object recognition algorithms in the real
world. Code is available at https://github.com/
82magnolia/n_imagenet/.

1. Introduction

Event cameras are neuromorphic vision sensors that en-
code visual information as a sequence of events, and have
a myriad of benefits such as high dynamic range, low en-
ergy consumption, and microsecond-scale temporal reso-
lution. However, algorithms for processing event data are
still at their nascency. This is primarily due to the lack
of a large, fine-grained dataset for training and evaluating
different event-based vision algorithms. While the num-
ber of event camera datasets surged in the past few years,
many fine-grained datasets lack size [39], whereas large-
scale real-world datasets lack label diversity [50]. Large
amounts of publicly available data are one of the key fac-

Figure 1: Sample events from N-ImageNet displayed along
with their RGB counterparts from ImageNet [46]. Positive,
negative events are shown in blue and red, respectively.

tors in the recent success of computer vision. For example,
ImageNet [46] triggered the development of accurate, high
performance object recognition algorithms [15, 23] whereas
MS-COCO [29] led to the advent of eloquent image cap-
tioning systems [60].

We provide N-ImageNet, an event camera dataset tar-
geted for object recognition that surpasses all existing
datasets in both size and label granularity as summarized
in Table 1 and Figure 2. Since it is infeasible to manu-
ally obtain real-world instances of thousands of object cat-
egories, we opt to generate events by moving the sensor in
front of an LCD monitor which displays images from Ima-
geNet [46] as in [39, 27] using programmable hardware.

N-ImageNet is projected to function as a challenging
benchmark for event-based object recognition algorithms.
As shown in Table 1, evaluations of various classifiers on
N-ImageNet demonstrate a large room for improvement, in
contrast to popular benchmarks such as N-Cars [50] and N-
Caltech101 [39]. We also experimentally justify the effec-
tiveness of N-ImageNet pretraining. Models pretrained on
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Dataset
# of

Samples
# of

Classes
Top

Accuracy
Robustness

Quantifiable?

N-Cars [50] 24029 2 95.8 [50] ⨉
N-Caltech101 [39] 8709 101 90.6 [13] ⨉
CIFAR10-DVS [27] 10000 10 69.2 [47] ⨉
ASL-DVS [4] 100800 24 94.6 [20] ⨉
N-MNIST [39] 70000 10 99.2 [20] ⨉
MNIST-DVS [49] 30000 10 99.1 [20] ⨉
N-SOD [44] 189 4 97.14 [44] ⨉
DVS128-Gesture [2] 1342 11 99.62 [19] ⨉
N-ImageNet 1781167 1000 48.93 ◯

Table 1: Comparison of N-ImageNet with other existing
benchmarks for event classification.

N-ImageNet show a large amount of performance gain in
various object recognition benchmarks, and are capable of
rapidly generalizing to new datasets even with a small num-
ber of training samples.

We further analyze the robustness of event-based object
recognition algorithms amidst changes in camera trajecto-
ries and lighting conditions. Event cameras can operate
in highly dynamic scenes and low light environments, but
events produced in such conditions tend to have more noise
and artifacts from motion blur [9]. We record variants of
N-ImageNet under diverse camera trajectories and light-
ing, and quantify the significant performance degradation of
event-based classifiers under environment changes. To the
best of our knowledge, our dataset is the first event cam-
era dataset capable of providing quantitative benchmarks
for robust event-based object recognition, as shown in Ta-
ble 1. In addition, we propose a simple event representation,
called DiST (Discounted Sorted Timestamp Image), that
shows improved robustness under the external variations.
DiST penalizes events that are more likely to be noise, and
uses sorted indices of event timestamps to ensure durability
against speed change.

To summarize, our main contributions are (i) N-
ImageNet, the largest fine-grained event camera dataset
to date, thus serving as a challenging benchmark, (ii) N-
ImageNet pretraining which leads to considerable perfor-
mance improvement, (iii) N-ImageNet variants that en-
able quantitative robustness evaluation of event-based ob-
ject recognition algorithms, and (iv) an event camera rep-
resentation exhibiting enhanced robustness in diverse envi-
ronment changes.

2. Related Work
Event Camera Datasets With rising interests in event-
based vision, the field has seen a wide range of event cam-
era datasets targeted towards various computer vision tasks,
such as object detection [42, 8], optical flow estimation [61,
45], and image reconstruction [48, 33, 56, 55, 54, 58, 28].

For event-based object recognition in particular, diverse
datasets [39, 49, 27, 4, 50, 34, 18, 2, 6, 30, 52, 53, 44]
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Figure 2: Comparison of N-ImageNet (the red star in the
upper-right corner) against existing datasets (distributed in
the area shaded in gray) in terms of dataset size and class
count. Note that the axes are displayed in log scale.

have been proposed, and can be categorized depending
on whether the recordings consist of real-world objects or
monitor-displayed images. N-Cars [50] and ASL-DVS [4]
contain event data obtained by directly capturing vari-
ous real-world objects. Such datasets typically have a
smaller number of labels compared to datasets acquired
from monitor-displayed images since it is difficult to ac-
quire fine-grained labels of real-world recordings.

Datasets such as N-MNIST, N-Caltech101 [39], MNIST-
DVS [49] and CIFAR10-DVS [27], which belong to the
latter category, are recorded by moving an event camera
around monitors displaying images of well-known datasets
like MNIST [25] and Caltech101 [11]. Monitor-generated
event camera datasets can be considered synthetic in some
aspects, but contain abundant labels from their original im-
age datasets, which are beneficial for training and evalu-
ating event-based object recognition algorithms. We fol-
low the data acquisition procedure of these datasets, and
generate a large-scale, fine-grained dataset by transforming
ImageNet [46] data to event camera recordings. Further-
more, our experiments demonstrate that leveraging such a
large-scale event dataset greatly improves the performance
of event-based object recognition algorithms.

Event-Based Object Recognition Event camera data ex-
hibits unique characteristics, namely asynchronicity and
sparsity. Existing event-based object recognition algo-
rithms could be classified by whether such characteristics
are utilized. A large body of literature proposes mod-
els that perform asynchronous updates in a sparse man-
ner [26, 38, 40, 35, 43, 2, 24, 50, 32, 5]. Recently pro-
posed MatrixLSTMs [32] exhibit competitive results when
evaluated on popular event-based object recognition bench-
marks such as N-Cars [50] and N-Caltech101 [11]. Ma-
trixLSTMs handle streams of event data using sparse up-
dates of LSTMs [16], where an adaptive ‘grouping’ opera-



tion is used to update the network outputs asynchronously.
Algorithms that avoid the direct exploitation of the

sparse and asynchronous nature of event data also pre-
vail [14, 57, 13, 37, 17, 22, 4]. These methods place more
weight on performance, typically surpassing their sparse
and asynchronous competitors in accuracy when tested on
various object recognition datasets. Event Spike Tensors
(EST) [14, 13] aggregate events using a learned kernel, re-
sulting in a highly versatile representation of event data.
Relatively simple encodings of event camera data have also
been proposed, as in EV-FlowNet [61] and EV-Gait [57],
where events are accumulated to form a four-channel im-
age consisting of event counts and the newest timestamps
of each pixel. We evaluate the performance of the afore-
mentioned object recognition algorithms on N-ImageNet.
Due to its scale and label diversity, N-ImageNet is capable
of providing reliable assessments on different event-based
object recognition algorithms.

Robustness in Event-Based Object Recognition Event
cameras are known to successfully function in low-light
conditions and dynamic scenes. However, the robustness of
event-based classifiers under such conditions is a relatively
unstudied problem. Most existing works [59, 42, 50] either
only display qualitative results or experiment with synthetic
adversaries. Sironi et al. [50] shows the robustness of their
proposed event representation in various real-world objects,
but the analysis is only made qualitatively. Wu et al. [59]
quantitatively investigates the effect of noise on event-based
classifiers, but the experiments are conducted on synthetic
noise. Although there exist previous works such as Wang
et al. [57] where real event camera noise is investigated, the
experiments are carried out with a static camera under con-
stant, ambient lighting. The N-ImageNet variants recorded
under diverse lighting and camera trajectories enable realis-
tic, quantitative assessment on the robustness of event-based
object recognition algorithms.

3. Method Overview
3.1. Dataset Acquisition

N-ImageNet Dataset Following the footsteps of previous
image-to-event conversion methods [39, 27, 49], we acquire
N-ImageNet from an event camera that observes monitor-
displayed images from ImageNet [46]. Since events are
triggered by pixel intensity changes, external stimuli are so-
licited to generate event data. One viable solution for gener-
ating constant stimuli would be to keep the camera still and
make the displayed images move, as in [27, 49]. However,
as pointed out by Orchard et al. [39], such methods suffer
from artifacts induced by the refresh mechanisms of mon-
itors. Removing such artifacts requires an additional post-
processing step in the frequency domain [27, 49], which is

Figure 3: Custom hardware designed to convert RGB im-
ages to event camera data.

costly due to the immense number of images in ImageNet,
and may alter the inherent subtleties in the raw measure-
ments.

Instead, we opt to move the event camera around an LCD
monitor displaying still images from ImageNet [46], as pro-
posed in Orchard et al. [39]. We devise custom hardware
to trigger perpetual camera motion as shown in Figure 3.
The device consists of two geared motors connected to a
pair of perpendicularly adjacent gear racks where the up-
per and lower motors are responsible for vertical and hori-
zontal motion, respectively. Each motor is further linked to
a programmable Arduino board [3], which can control the
camera movement. In all our experiments, the event cam-
era is vibrated vertically and horizontally on a plane parallel
to the LCD monitor screen. The amplitude and frequency
of vibration are controlled by the program embedded in the
Arduino microcontroller [3].

Once the device is prepared, the event camera is mounted
at the forefront of the device for recording event data. We
use the 480×640 resolution Samsung DVS Gen3 [51] event
camera for recording event sequences, and a 24-inch Dell
P2419H LCD monitor for displaying RGB images from
ImageNet [46]. The acquisition process is performed in a
sealed chamber, to ensure that no external light will adul-
terate the recorded events. Under this setup, both the train-
ing and validation splits of ImageNet are converted to N-
ImageNet. Thanks to the large scale and label granularity of
ImageNet, N-ImageNet serves as a challenging benchmark
for event-based object recognition and significantly boosts
the performance of event-based classifiers via pre-training.
These amenable properties of N-ImageNet will be further
examined in Section 4.1.

Datasets for Robustness Evaluation We additionally
present a benchmark to quantitatively assess the robustness
of event-based object recognition algorithms. Event repre-
sentations are vulnerable to alternations in camera motion
or illumination, as even small changes can trigger a wide
variety of event sequences. We simulate such changes using
the programmable camera trajectory and monitor brightness



Dataset Frequency (Hz) Amplitude (mm) Shape

Original 5 3 Square↺
Validation 1 8.33 4.5 Vertical
Validation 2 5 3 Horizontal
Validation 3 5 6 Vertical
Validation 4 5 6 Horizontal
Validation 5 5 6 Square↺

Table 2: Validation datasets made with various camera mo-
tion. ↺ indicates counterclockwise rotation. The ampli-
tudes of square trajectories represent the lengths of the di-
agonals.

Dataset Brightness Level Gamma Illuminance (lux)

Original 50 1 70.00
Validation 6 0 0.7 12.75
Validation 7 0 1 23.38
Validation 8 100 1 95.50
Validation 9 100 1.5 111.00

Table 3: Validation datasets generated under various bright-
ness conditions.

from our hardware setup, and generate variants of the N-
ImageNet validation split. We use these validation datasets
to quantitatively evaluate the performance degradation of
existing object recognition algorithms in Section 4.2.

Specifically, we present nine validation datasets to test
the robustness of event-based object recognition algorithms
amidst changes in motion or illumination. Table 2 lists five
datasets with different camera trajectories. The frequency,
amplitude, and trajectory shape of the camera movement
are modified with the Arduino microcontroller [3]. Table 3
shows the monitor configurations of four additional valida-
tion datasets, designed to examine the effect of scene bright-
ness changes on event-based classifiers. Note that Valida-
tion 6 and 9 datasets are intended to model scenes with ex-
ceedingly low/high illumination by using extreme monitor
gamma values. We also report the illuminance measured at
the position of the event camera since the same numerical
configurations of different monitors may yield distinct dis-
played results. In all cases, other configurations are kept the
same as the original N-ImageNet dataset.

3.2. Robust Event-Based Object Recognition

As many event-based classifiers are typically trained and
tested in datasets captured in predefined conditions [39, 4],
the performance degradation is inevitable in challenging
scenarios that arise in real-life applications. In Section 4.2
we evaluate the robustness of existing object recognition al-
gorithms with N-ImageNet variants and demonstrate that
external changes indeed incur performance degradation.
Even the best-performing event-based algorithms [14, 5] are
fragile to diverse motion and illumination variations. Iron-

ically, the main benefits of event cameras include the fast
temporal response and high dynamic range.

We introduce Discounted Sorted Timestamp Image
(DiST), which is designed specifically for robustness
against changes in camera trajectory and lighting. The in-
tuition behind DiST is twofold: (i) noisy events incurred
from severe illumination can be suppressed with the evi-
dence of the spatio-temporal neighborhood, and (ii) relative
timestamps are robust against the speed of camera motion
compared to raw timestamp values.

A typical output of an event camera is a sequence of
events E = {ei = (xi, yi, ti, pi)}, where ei indicates bright-
ness change with polarity pi ∈ {−1,1} at pixel location
(xi, yi) at time ti. Given an event camera of spatial res-
olution H ×W , let Nρ(x, y, p) denote the set of events in
E of polarity p, confined within a spatial neighborhood of
size ρ around (x, y). For example, N0(x, y, p) would indi-
cate the set of all events of polarity p at the pixel coordinate
(x, y).

DiST aggregates a sequence of events E into a 2 channel
image S ∈ RH×W×2. DiST initiates its representation as the
timestamp image [41]. The timestamp image is a 2 channel
image, which stores the raw timestamp of the newest event
at each pixel, namely So(x, y, p) = Tnew(N0(x, y, p)),
where Tnew(⋅) indicates the newest timestamp.

We first define the Discounted Timestamp Image (DiT)
SD, obtained by subtracting the event occurrence period of
the neighborhood from the newest timestamp in So,

SD(x, y, p) = So(x, y, p) − αD(x, y, p). (1)

Here α is a constant discount factor and D(x, y, p) is the
neighborhood event occurrence period,

D(x, y, p) = Tnew(Nρ(x, y, p)) − Told(Nρ(x, y, p))
C(Nρ(x, y, p)) , (2)

where Told(⋅) is defined similarly as Tnew(⋅) and ρ > 1. For
each pixel, the discount D(x, y, p) represents the time range
(Tnew(⋅) − Told(⋅)) in which events are generated from the
neighborhood Nρ, normalized by its event count C(⋅).

The discount mechanism is designed to be robust against
event camera noise. Figure 4 illustrates the typical patterns
for event sequences (left) and the resulting representation
of DiST that resolves the discrepancies due to noise (right)
in the 1-D case. Two dominant factors of event camera
noise are background activities and hot pixels [9, 12]. Back-
ground activities are low frequency noise [12] more likely
to occur in low-light conditions, caused by transistor leak
currents or random photon fluctuations [9, 36, 21]. Figure 4
(a) indicates background activities, whose low frequency re-
sults in higher discounts from Equation 2. Hot pixels are
triggered by the improper resets of events [9, 12], and are
often spatially isolated [12] (Figure 4 (c)). Such pixels have



Figure 4: Suppressing event camera noise with the discount
mechanism. One-dimensional events with a single polarity
are shown. Events colored in red are the newest event of
each pixel and the neighborhood regions Nρ are shaded in
gray. (a), (b), and (c) denote background activity, normal
events, and hot pixels, respectively. Both the background
activity and hot pixels in the raw event sequence (left) result
in large discounts and are suppressed by DiST (right).

a small neighborhood count C(⋅) and thus are highly dis-
counted in Equation 2.

The final representation of DiST, S is the normalized
sorted indices of SD,

S = argsort(SD)/max
x,y,p

argsort(SD),33 (3)

where argsort denotes the operation that returns the
sorted indices of a tensor. The transformation from SD to S
is similar to Alzugaray et al. [1]. However, DiST performs
a global sort where all pixels in SD are sorted with a single
ordering scheme, instead of the local, patch-wise sorting in
Alzugary et al. [1]. The global sort allows for an efficient
implementation of DiST, which is further explained in the
supplementary material.

By using the normalized relative timestamps, i.e., sorted
indices, DiST is resilient against the camera speed. To il-
lustrate, consider the sequences of one-dimensional events
(x, t, p) displayed in Figure 5. While the absolute values
of the timestamps [41] are directly affected by the speed
change, DiST remains constant.

We expect DiST to serve as a baseline representation
for robust event-based object recognition. Its robustness
against camera trajectory and scene illumination changes
will be quantitatively investigated in Section 4.2.

4. Experimental Results

In this section, we empirically validate various proper-
ties of N-ImageNet. With its large scale and label diver-
sity, N-ImageNet is not only a useful benchmark to assess
various event-based representations, but can also boost the

(a) Fast camera motion. (b) Slow camera motion.

Figure 5: Robustness of DiST against event camera speed.
Similar to Figure 4, one-dimensional events are displayed
and red events denote the newest event. While the times-
tamps of red events vary with the camera speed, their rela-
tive timestamps obtained from sorting remain constant.

performance of existing algorithms via pre-training (Sec-
tion 4.1). In Section 4.2, we investigate the robustness of
event-based classifiers against diverse external conditions,
along with the efficacy of our proposed event representa-
tion, DiST.

Event Representations for Object Recognition We in-
troduce the event representations used throughout our ex-
periments. The representations are inputs to the object
recognition algorithms, while the backbone classifier is
fixed to ResNet34 [15]. This is because most event-based
object recognition algorithms [14, 5] only differ in the input
event representation and share a similar classification back-
bone. Eleven event representations are selected for evalua-
tion on N-ImageNet and its variants, as shown in Table 4.

Two of the representations are learned from the
data, namely MatrixLSTM [5] and Event Spike Tensor
(EST) [14]. After the events are passed through LSTM [16]
for MatrixLSTM and multilayer perceptrons for EST, the
outputs are further voxelized to form an image-like repre-
sentation.

The remaining representations can be classified based on
how the timestamps are handled. Two of these representa-
tions discard temporal information, and only use the loca-
tions of events. Binary event image [7, 37] is generated by
assigning 1 to pixels with events, and 0 to others. Event
histogram [31] is an extension of the former, additionally
keeping the event count of each pixel.

Three representations use the raw timestamps to lever-
age temporal information. Timestamp image [41] caches
the newest timestamp for each pixel. Event image [57, 61]
is a richer representation that concatenates the event his-
togram [31] and timestamp image [41]. Time surface [24]
extends the timestamp image [41] in a slightly different
manner, by passing each timestamp through an exponen-
tial filter. This allows the surface to place more weight on
the newest events, which enhances the sharpness of the rep-
resentation. The aforementioned representations with raw
timestamps can be vulnerable to camera speed changes, as



Representation Description
# of

Channels Accuracy(%)

MatrixLSTM [5]
Learned with

LSTM 3 32.21

Event Spike
Tensor [14]

Learned with
MLP 18 48.93

Binary Event
Image [7]

Binarized
event occurence 2 46.36

Event
Histogram [31] Event counts 2 47.73

Event Image [57]
Event counts and

newest timestamps 4 45.77

Time Surface [24]
Exponential of

newest timestamps 2 44.32

HATS [50]
Aggregated

newest timestamps 2 47.14

Timestamp
Image [41]

Newest
timestamps 2 45.86

Sorted Time
Surface [1]

Sorted newest
timestamps 2 47.90

DiT
Discounted

newest timestamps 2 46.1

DiST
Sorted discounted

timestamps 2 48.43

Table 4: N-ImageNet validation accuracy evaluated on var-
ious event representations.

pointed out in Section 3.2.

We further include representations targeted to enhance
robustness. HATS [50] improves the robustness against
event camera noise. Specifically, the outliers are smoothed
by aggregating neighboring pixels of the time surface [24].
We use a slightly modified version of HATS [50] for more
competitive results, and the details are provided in the sup-
plementary material. Surface of active events with sort nor-
malization [1], which we will refer to as sorted time sur-
face, is robust against camera speed changes as the sort-
ing generates relative timestamps. DiST, as explained in
Section 3.2, is robust against both event camera noise and
speed changes. We additionally report results on the variant
of DiST without sorting, namely the Discounted Timestamp
Image (DiT). Evaluation on DiT can shed light on the im-
portance of the sorting operation in DiST.

Implementation Details All inputs are reshaped into a
224 × 224 grid to restrict GPU memory consumption and
shorten inference time. All models are trained from scratch
with a learning rate of 0.0003, except for the learned rep-
resentations (MatrixLSTM [5] and EST [14]). The weights
are initialized with ImageNet pre-training for these repre-
sentations to fully replicate the training setup specified in
the original works. We train these models with a learning
rate of 0.0001. Further information regarding experimental
details is provided in the supplementary material.

4.1. Evaluation Results with N-ImageNet

Event-based Object Recognition Table 4 displays the
evaluation results of existing event-based object recognition
algorithms on N-ImageNet. The accuracy of the best per-
forming model on N-ImageNet (48.9%), is far below that of
the state-of-the-art model on ImageNet [10] (90.2%). The
clear gap indicates that mastering N-ImageNet is still a long
way to go.

Other examined models also exhibit a stark contrast in
their reported accuracy on existing benchmarks and per-
formance on N-ImageNet. For example, the test accu-
racy of the event histogram [32] on N-Cars is 94.5%, and
the test accuracy of MatrixLSTM [5] on N-Caltech101 is
86.6%. These models show a validation accuracy of around
30 ∼ 50% in N-ImageNet, further supporting the difficulty
of N-ImageNet. N-ImageNet is a large-scale, fine-grained
benchmark (Table 1) compared to any other existing bench-
mark and the inherent challenge will foster development in
event classifiers that could readily function in the real world.

Assessment on Representations The evaluation of var-
ious representations on N-ImageNet allows us to make a
systematic assessment of different design choices to handle
event-based data. Interestingly, the performance of repre-
sentations without temporal information (binary event im-
age [37, 7] and event histogram [31]) are superior to rep-
resentations directly using raw timestamps (timestamp im-
age [41], time surface [24], and event image [57, 61]). The
wide variations in raw timestamps deteriorate the general-
ization capacity of representations that directly utilize this
information. This notion is further supported by the fact that
the representations using relative timestamps (sorted time
surface [1] and DiST) outperform those using raw times-
tamps.

It should also be noted that our proposed robust represen-
tation, DiST, successfully generalizes to large-scale datasets
such as N-ImageNet, and shows performance on par with
strong learned representations. EST [14] is the best per-
forming model in Table 4, capable of learning highly ex-
pressive encodings of event data, thanks to its event ag-
gregation using multilayer perceptrons. The performance
of DiST is very close to that of EST, although it does not
incorporate any learnable module in its event representa-
tion. The suppression of noise from discounting, and the
resilience to variations in camera speed from using relative
timestamps help DiST to generalize. If we either omit the
discount (sorted time surface [1]) or the sorting mechanism
(DiT), the performance is inferior to DiST, indicating the
importance of the discounting and sorting operations. We
further investigate the robustness of DiST in Section 4.2.



Dataset N-Cars CIFAR10-DVS ASL-DVS N-Caltech101

# of classes 2 10 24 101

Random 90.80 62.57 29.57 68.12
ImageNet 91.48 70.36 53.43 80.88
N-ImageNet 94.73 73.72 58.28 86.81

Table 5: Test accuracy of N-ImageNet pretrained models on
existing event-based object recognition benchmarks, com-
pared with ImageNet pretraining and random initialization.

Figure 6: Test accuracy of N-ImageNet pretrained models
in resource constrained settings. Each model is trained for
5 epochs with varying amounts of training data.

Efficacy of N-ImageNet Pre-Training Apart from be-
ing a challenging benchmark, the main motivation of N-
ImageNet is to provide a large reservoir of event data to pre-
train powerful representations for downstream tasks, echo-
ing the role of ImageNet in conventional images. We val-
idate the effectiveness of N-ImageNet pre-training by ob-
serving the capacity to generalize in new, unseen datasets.
Four standard event camera datasets are used for evalua-
tion: N-Caltech101 [39], N-Cars [50], CIFAR10-DVS [27],
and ASL-DVS [4]. For seven event representations from
Table 4, ResNet34 [15] is pre-trained on N-ImageNet and
compared with ImageNet pre-training and random initial-
ization. The seven representations selected are as follows:
binary event image [7], event histogram [31], timestamp im-
age [41], event image [57], time surface [24], sorted time
surface [1], and DiST. In experiments explicated below, we
report the averaged test accuracy of the seven representa-
tions on each dataset. Additional details about the experi-
mental setup are specified in the supplementary material.

Table 5 displays the average test accuracy after training a
fixed number of epochs for different initialization schemes.
Note that we only use 800 samples from ASL-DVS [4]

Factor Trajectory Brightness

Change Amount Small Big Small Big

Validation Dataset
Number 1, 2 3, 4, 5 7, 8 6, 9

MatrixLSTM [5] 33.00 25.62 28.91 23.60
Event Spike Tensor [14] 36.97 32.35 24.89 22.36
Binary Event Image [7] 36.68 31.82 30.94 25.54
Event Histogram [31] 38.72 32.49 33.01 27.72
Event Image [57] 36.52 30.96 32.26 27.04
Time Surface [24] 37.82 33.46 34.19 28.74
HATS [50] 38.95 33.28 33.26 28.22
Timestamp Image [41] 38.31 33.70 33.27 28.04
Sorted Time Surface [1] 38.92 33.69 33.47 28.38
DiT 38.21 33.61 32.66 28.42
DiST 40.88 35.85 35.87 30.88

Table 6: Mean accuracy measured on N-ImageNet variants
with changes in camera trajectory and brightness.

for training, as using the whole dataset made all model
performances saturate near 99%. Networks initiated with
N-ImageNet pre-trained weights outperform models from
other initialization schemes by a large margin. Notably, the
benefits of pre-training intensify as the number of classes
in the datasets increases. This could be attributed to the
fine-grained labels of N-ImageNet, which help models to
generalize in challenging datasets where numerous labels
are present. Furthermore, N-ImageNet pre-trained models
outperform its competitors in N-Cars and ASL-DVS, which
are recordings of real-world objects. This indicates that al-
though N-ImageNet contains events from monitor displayed
images, models pre-trained on it could seamlessly general-
ize to recognizing real-world objects.

As a practical extension to the previous experiment, we
validate the generalization capability of N-ImageNet pre-
trained models under resource-constrained settings. We
train the same set of models for 5 epochs with initialization
schemes from the previous experiment, under varying num-
bers of training samples. Figure 6 shows that N-ImageNet
pre-training incurs a large performance improvement across
all four evaluated datasets. The performance gain is further
increased when the number of training samples is small.
Such results imply that N-ImageNet pre-training provides
strong semantic priors that enable object recognition algo-
rithms to quickly adapt to new datasets, even with a few
labeled samples.

4.2. Robust Event-Based Object Recognition

Validation Accuracy of N-ImageNet Variants Using the
N-ImageNet variants created under various external condi-
tions as described in Section 3.1, we examine the robust-
ness of event-based object recognition algorithms. Table 6



shows the validation accuracy averaged over the trajectory-
modified datasets and brightness-modified datasets. All
models displayed in Table 4 are evaluated on the N-
ImageNet variants. We group datasets according to the vari-
ation factor, i.e., brightness and trajectory, and the amount
of discrepancy between the original setup and the modified
setup.

All tested models exhibit a consistent deterioration in
performance when evaluated on the N-ImageNet variants.
Furthermore, the amount of performance degradation in-
tensifies as the amount of environment change increases,
as shown in Table 6. These observations imply that many
event-based object recognition algorithms are biased on
their training setups, and thus fail to fully generalize in chal-
lenging, unseen environments. In spite of the consistent per-
formance drop however, DiST outperforms its competitors
under all external variations shown in Table 6. Notably, the
ablated versions of DiST, i.e. sorted time surface [1], DiT,
and timestamp image [41], all perform poorly compared to
DiST. Along with the validation accuracy on the original N-
ImageNet, this reinforces the necessity of both the discount-
ing and sorting modules of DiST. DiST’s capacity to gener-
alize in unseen environmental conditions demonstrates its
effectiveness as a robust representation for event-based ob-
ject recognition.

Representation Consistency To further investigate the
robustness of DiST, we quantify the content-wise consis-
tency of various event representations. Seven represen-
tations from Table 4 are compared against DiST. Other
three representations (MatrixLSTM [5], EST [14], event
image [57]) are omitted as they have different number
of channels, which may incur unfair comparison. For
each representation, we assess the structural similarity in-
dex measure (SSIM) between the original representation
from N-ImageNet and the representation obtained from N-
ImageNet variants. To further elaborate, suppose Eorig and
Evar are event sequences derived from the same image in
the ImageNet validation dataset. Let Rorig and Rvar be the
event representations obtained from Eorig and Evar respec-
tively. We report SSIM(Rorig,Rvar), which measures how
consistent each representations are amidst external condi-
tion changes.

As displayed in Figure 7, the contents of DiST are more
consistent than other competing representations, which can
be observed from its highest SSIM value. The contribution
of discounting is greater than that of sorting in representa-
tion consistency, which can be seen from the SSIM differ-
ence of DiT and DiST. However, sorting is crucial for robust
object recognition, as can be observed from Table 6, where
a clear gap exists between DiT and DiST. Thus, the inter-
play between discounting and sorting as a whole enhances
the robustness of DiST, further leading to improved perfor-

Figure 7: Structural similarity measure (SSIM) between the
representations from N-ImageNet and its variants, grouped
by changes in motion and brightness. High SSIM indicates
that the structure of the representation is stable under ex-
ternal variations. Note that ‘Time’ and ‘Exp’ denote times-
tamp image [41] and time surface [24], respectively.

mance in N-ImageNet variants.
Apart from the robustness of DiST, it must be noted that

the N-ImageNet variants serve as the first benchmark for
quantifying robustness in event-based classifiers. Although
DiST shows a consistent improvement from previous mod-
els in robustness, it does not fully recover the original N-
ImageNet validation accuracy reported in Table 4. We ex-
pect the N-ImageNet variants to spur future work in robust
representations for event-based object recognition.

5. Conclusion
In this paper, we introduce N-ImageNet, a large-scale

dataset for robust, fine-grained object recognition with
event cameras. The performance of numerous event-based
classifiers on N-ImageNet demonstrates the potential of our
dataset as a challenging benchmark. N-ImageNet pretrain-
ing is empirically proven to be beneficial, boosting the per-
formance of many existing object recognition algorithms,
even under resource-constrained settings. Assessments car-
ried out on the variants of N-ImageNet enable the quantita-
tive evaluation of event classifiers’ robustness, and demon-
strate the bias present in many event-based object recogni-
tion algorithms. As a first step towards remedying such bi-
ases, a novel representation, DiST, is proposed that outper-
forms all the tested models in N-ImageNet variants. We ex-
pect N-ImageNet to foster the development of event-based
object recognition algorithms that could readily function in
real-life applications.
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