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Abstract

Crowd counting is a difficult task because of the diver-
sity of scenes. Most of the existing crowd counting meth-
ods adopt complex structures with massive backbones to
enhance the generalization ability. Unfortunately, the per-
formance of existing methods on large-scale data sets is
not satisfactory. In order to handle various scenarios with
less complex network, we explored how to efficiently use the
multi-expert model for crowd counting tasks. We mainly fo-
cus on how to train more efficient expert networks and how
to choose the most suitable expert. Specifically, we pro-
pose a task-driven similarity metric based on sample’s mu-
tual enhancement, referred as co-fine-tune similarity, which
can find a more efficient subset of data for training the ex-
pert network. Similar samples are considered as a clus-
ter which is used to obtain parameters of an expert. Be-
sides, to make better use of the proposed method, we design
a simple network called FPN with Deconvolution Count-
ing Network, which is a more suitable base model for the
multi-expert counting network. Experimental results show
that multiple experts FDC (MFDC) achieves the best per-
formance on four public data sets, including the large scale
NWPU-Crowd data set. Furthermore, the MFDC trained
on an extensive dense crowd data set can generalize well
on the other data sets without extra training or fine-tuning.1

1. Introduction
Crowd counting is a task that tries to estimate the number

of objects in an image, such as people, cars or animals. This

*Corresponding author
1Code will be available at https://github.com/streamer-AP

Figure 1. The stability of the category pseudo-labels during 5
epochs of alternate training. The first row is result of our method,
and the second row is result of 8-way divide and grow training
method from IG-CNN[16].

task has attracted significant attention because of its various
scenarios application, such as security surveillance, human
traffic control, hot spot discovery etc.

Earlier data sets such as UCSD data set [2], Mall data
set [5], World Expo’10 data set [30] contain low density
crowd image with balanced number[19]. Previous meth-
ods have achieved reliable performance on such data set
[28, 29, 19, 22]. However, when it comes to more com-
plex scenarios[32, 1, 11], the performance of existing meth-
ods will be significantly humiliated. This is because un-
der these scenarios, there is large diversity of visual ap-
pearances because of distorted perspectives, variable scales,
unbalanced distributions and wide range of brightness, etc.
Consequently, single network based methods [12, 15, 17]
may perform well in one special scenes, but worse on oth-
ers.

To deal with complex scenarios, some methods [16,
12, 17, 30] explored multi-expert structure, which usually
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includes a base feature extractors, a routing network or
weighting network and multiple experts networks. Each
expert was designed to handle a specific scale or density,
alleviating the complexity of dealing with the diversity of
scenes with only one expert. The router, essentially a clas-
sifier, selects the optimal expert for every testing sample.

To obtain effective experts, most of multi-expert count-
ing methods [17, 16] applied a differential training technol-
ogy. This technology only backwards the loss on the ex-
pert which gives the most accurate prediction of the current
sample. After training, each training sample is assigned a
pseudo class label, which is the index of the most suitable
experts, to train the router. Existing experimental results
in [16] show that the router’s accuracy in assigning sam-
ples to the optimal expert network is not high. Moreover, as
shown in Figure 1, the generated pseudo labels are unsta-
ble and hard to converge during differential training. This
means after training, the most suitable expert for many sam-
ples is the expert that didn’t use this sample to train. This
goes against the original intention of the algorithm design,
that is, the expert network trained with a specific set will be
more suitable for the samples in this set. This phenomenon
demonstrates that samples on which an expert performs the
best may be not suitable for training this expert together to
further boost the performance. From Figure 1, it can be seen
that the category pseudo-labels obtained by our method are
more stable. This means that expert networks trained us-
ing our method are indeed more suitable for the training the
samples used by these networks.

Actually, since each expert is generated through fine-
tuning the model on a subset of the training data, the key
problem is how to divide the training set into several sub-
sets. A good subset should bring performance improvement
when fine-tune the model on it. However, it is difficult to
divide the entire data set directly. We considered a easier
problem, i.e. how to evaluate the similarity between two
samples. We propose a novel metric to evaluate the simi-
larity between the samples ( referred co-fine-tune similar-
ity), which can reflect the correlation between the parame-
ters of their optimal experts. This similarity can approxi-
mately describe the model’s performance improvement af-
ter fine-tuning on the subset containing these two samples.
Therefore, if a cluster is composed of similar samples, it is
conducive to optimize the base model in a consistent direc-
tion, generating a effective expert for all the samples in this
subset. To obtain this kind of cluster, based on co-fine-tune
similarity, we design a simple clustering method to find po-
tential clusters in dense crowd data sets. Then each cluster
is used to obtain the parameters of an expert. In order to
select the optimal weights for testing data during the infer-
ence, we consider each cluster as a class and train a CNN
classifier as router, which predicts the class label for a test-
ing data. The prediction result is used to retrieve the optimal

expert. In this way, we can dynamically select a suitable
expert for the test image according to its characteristics and
improve the performance greatly.

Furthermore, to reduce the storage space of the param-
eters and avoid over-fitting on clusters, we design a sim-
ple yet efficient crowd counting model (referred to as FDC)
which has a tiny density map regressor. Using FDC as a
base model, we obtain an multi-expert FDC ( referred to as
an MFDC) with our training strategy.

Our main contributions can be summarised as:

• We proposed a novel multi-experts training frame-
work for crowd counting task, which exploits relations
within samples. The proposed pipeline can be inte-
grated with existing methods and improve their perfor-
mance significantly.

• To obtain multiple representative weights, we develop
an effective take-driven similarity and a clustering
method to obtain multiple clusters of the training data.
Each cluster is used to learn a set of parameters, which
is effective for testing samples similar to this cluster.

• Extensive experiments are conducted on four data sets,
namely, STA, STB[32], UCF-QNRF [11], and NWPU-
Crowd [23], to demonstrate that the proposed method
can achieve the state-of-the-art performance.

2. Related Work
Generally speaking, previous crowd counting methods

can be classified into single-model methods and multi-
experts methods. In this section, we analyze methods in
these two trends.

2.1. Single-model methods

To deal with multiple scales, MCNN [32] implements
an effective multi-branch architecture, where each branch
has a distinct receptive field to adapt to targets with a spe-
cific scale range. Its success makes it a fundamental com-
ponent for several works [4, 18, 14], which helps allevi-
ate the problem of dramatic changes in scale. Compared
to branches with different kernel size, Chen [4] designed
a multi-column structure basing on different dilation rate.
These columns share the same features from the back-
bone, increasing computational efficiency. MBTTBF [18]
compared different feature fusion performance on counting
task and design a multi-level bottom-top and top-bottom
fusion method with scale aware feature extraction blocks.
Context-aware [14] re-weighted features by scale from lo-
cal to global guided by different pooling layers.

Some methods [9, 31, 33, 25] introduced attention mech-
anisms to focus on the target area in crowd counting tasks.
SCAR [9] applied spatial-wise and channel-wise attention
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models together to extract contextual information and back-
ground estimation. MRA-CNN [31] conducted attention on
three feature maps with different resolution, and a density
level estimation task guides the attention factor. ACM-CNN
[33] firstly generated a rough feature map and iteratively fo-
cused and fine-tuned the density map for the image’s high-
density area, obtaining a more refined feature map for the
high-density area. Jiang [25] designed ASNet to provide
a coarse density mask and DANet to give scaling factors
and several candidate density map. Comprehensive utiliz-
ing these two networks can apply specific weights for dif-
ferent areas of a testing sample.

These networks are helpful in multi-scale information
extracting. However, the counts of objects with different
density and visual appearances are hard to predict precisely
by a single weight.

2.2. Multi-experts methods

There are also some works [16, 17, 12, 30] that consider
training several networks independently or fine-tuning net-
work weights for the test image during inference.

Cross Scene CNN [30] fine-tuned the network with train-
ing samples whose scenes are similar to that of the testing
samples, to enhances the cross scenes performance. The
similarity is calculated according to the perceptive map and
density map. Nevertheless, the perceptive maps are expen-
sive to annotate or not accessible, especially on a moving
platform such as auto vehicles or drones.

MoCNN [12] applied a mixture of expert CNNs and
a gating CNN to weight the importance among experts.
MoCNN directly predicted the crowd counts for an image,
which is more difficult than learning density map. What
is more, one of the main reasons why we use the multi-
expert network is that we only need to load one expert each
time, but MoCNN made predictions using all the experts
and then weighted sum the results, which required longer
running time and computing resources.

Switch-CNN [17] designed a switch layer before the
multi-column CNN, which predicted the optimal column
for crops of a testing sample. Different columns are as-
signed with convolution kernels of various sizes to widen
the margin between the results of each column, which is
beneficial for training column switch layer. However, the
difference between these pre-defined columns will force the
switch layer focusing on scale variations of crops and ig-
noring the other variations. Furthermore, there are contin-
uously changing on scales and densities, which can not be
handled by a limited number of columns. Even inside a
crop, multiple level scales can exist, and it is hard for a sin-
gle fixed column to deal with such variety.

IG-CNN[16] applied a divide-and-grow strategy to train
multi-experts network. Starting from a same base CNN
density CNN generator, IG-CNN hierarchically generated

…

Weights Memory Weights Retrieval
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… … …
Figure 2. The structure of our proposed model. During inference,
the testing sample and its feature map are used to retrieve the op-
timal weight from the stored weights to generate density map.

two child networks each time by fine-tuning on different
samples clusters. This strategy needs reasonable metric
and classification methods to split data set into clusters.
IG-CNN considered samples on which the optimal loss is
achieved by the same expert as a cluster during the training
time. There is no guarantee that the model fine-tuned by
such a cluster is the optimal one.

The main reason why the previous multi-network meth-
ods can not perform well as expected is that the previous
similarity or distance metrics can not reflect the relationship
between samples under crowd counting task. For multi-
expert system, the key points are how to generate effective
experts and assign optimal experts to testing samples. To
do this, we propose a more efficient and reasonable metric
to evaluate the relation between samples, and develop an
effective method to train router by this metric.

3. Methods
As shown in Figure 2, our method is a multi-expert

method. During training stage, a feature extractor and a
density map generator are trained. Different from existing
methods, we generate multiple weights for the density map
generator and store them in an external memory unit. For
a testing sample, the output of feature extractor concate-
nated with the original image’s feature are used to retrieve
an optimal weight from the memory unit to generate the fi-
nal density map.

The overview of the training process of the proposed
multi-expert method consists of 3 steps: Select informa-
tive samples and calculate the co-fine-tune similarity for
training image crops; Cluster the selected samples, gener-
ate multiple experts and store the parameters of each expert;
Learn the weight retrieval module for selecting the best ex-
pert for a testing sample.

3.1. Co-fine-tune similarity

Generally, given a trained crowd counting model (re-
ferred as base model) and one sample, if fine-tune this
model on the given sample, the performance of the fine-
tuned model on this sample as well as other similar samples
will be improved. Based on the performance improvement
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on the other samples, we could define a similarity between
them. Specifically, let T = {(xi, yi)|i = 0, 1, 2, ..., N}
be the training set with N samples crops. The feature ex-
tractor and density map generator of the given model are
defined as f = Ψ(x, θ1) and d = Φ(f, θ2) respectively,
where θ1 and θ2 are parameters. The loss function is de-
noted as L(ŷ, y), where ŷ = Φ(Ψ(x, θ1), θ2). Then loss on
the i-th sample (xi, yi) of the base model is described as
li = L(Φ(fi, θ2), yi).

Then we fine-tune the density map regressor of the base
model to get a specific and effective set of weights(denoted
as θi2 for sample (xi, yi) and similar samples. The loss on
the j-th sample (xj , yj) of the model Φ(f, θj2) could be cal-
culated as lji = L(Φ(fj , θ

j
2), yi). It is expected that if sam-

ple i is similar to sample j, the fine-tuned model with the
i-th sample will achieve performance improvement on j-
th sample. The more similar, the larger the improvement
will be. So the improvement can be seen as the similarity
between them. To make the similarity symmetrical, we de-
fine the co-fine-tune similarity between i-th sample and j-th
sample by:

s(i, j) =

{
0, li ≤ lji or lj ≤ lij ;
0.5
(

li
lji

+
lj
lij

)
− 1, otherwise.

(1)

For two samples, the proposed co-fine-tune similarity re-
flects mutual improvement between two samples. If the per-
formance on either of the two is improved after fine-tuning
the base model on the other one, the similarity between
them will be positive, and the greater the ratio of mutual
improvement, the greater the similarity is.

However, it is quite time-consuming to calculate the co-
fine-tune similarity of all the samples. Intuitively, hard sam-
ples are important, but we discovered that there were some
unstable samples, on which the loss of the base model was
not stable during the process of training. Although some
of them are not hard samples, fine-tuning on these unstable
samples in the data set will significantly decreased the loss
on these samples. So, we calculate co-fine-tune similarity
among unstable samples rather than hard samples. Besides,
as the loss on stable samples varies little during training,
fine-tune on them will make little difference to the param-
eters. Therefore, the co-fine-tune similarity between these
samples can be directly considered as 0.

To evaluate the instability of samples during the training
process, we adopt the sequence and reversal test by [6] and
only considering the downward trend of the loss function.
We define an indicator I(i, t) in Eq (2) for downward trend
on i-th sample in m-th epoch, described as:

I(i,m) =

{
0, L(ŷmi , yi) > L(ŷm−1i , yi) + ε;

1, otherwise.
(2)

where hyper-parameter ε is used to regulate the tolerance to

slight changes. The stability of sample xa duringM epochs
can be calculated by Eq (3).

Ĵi =

∑M
m=1 I(i,m)

M
(3)

The instability of the i-th sample is larger if Ĵi is closer to
1. The samples whose instability is larger than a threshold
η are chosen to form an unstable set denoted as Q. We
only calculate the co-fine-tune similarity of all the samples
inQ. For simplicity, in the following part, s(i, j) means the
similarity between the i-th sample and j-th sample in Q.

3.2. Clustering methods

To reduce the time cost of fine-tuning in real-time, we
designed a clustering method to classify unstable samples
into several clusters, and each cluster is used to obtain a set
of weights. We design of the clustering algorithm accord-
ing to two principles. First, the co-fine-tune similarity of
all samples within each cluster should be positive. Second,
the number of clusters should be as small as possible to re-
duce the space needed for weights memory. Motivated by
DBSCAN [7], we design a heuristic clustering algorithm,
whose detail is described in Algorithm 1.

The clustering results are denoted as S1, S2, · · · , SK ,
where Si denotes a cluster and K denotes the number of
obtained clusters by the proposed algorithm.

For all the samples that are not in Q, we consider them
as one cluster denoted as S0. Then we use every cluster to
fine-tune the density map regressor of the base model and
obtain K + 1 sets of weights denoted as θ̂k2 , k = 1, · · · ,K.

3.3. Weight retrieval methods

To retrieve the optimal weight for a testing sample, we
consider each cluster in S1, · · · , SK as one class and train a
multi-class classifier. However, a sample belonging to one
cluster may have positive co-fine-tune similarity with part
of samples in other clusters. So instead of simply using the
hard label, we introduce a soft label which is calculated by
the average similarity between samples in clusters.

We adopt ResNet-18 [10] as the backbone of our clas-
sifier. The inputs consist of two parts: the original image
and the corresponding output of features extractors from the
base model. The original image is aligned to the same size
of features extractor’s output by a shallow CNN-Pool-CNN
structure. The cross-entropy loss is adopted for training our
multi-class classifier. For a testing sample x, the prediction
result of our classifier is represented as µ = (µ1, · · · , µK),
where µi is the probability of x belonging to cluster Si. If
every element of µ is small, then the probability of data be-
longing to each class is small and we consider it comes from
cluster S0. We define a threshold, and the final prediction
result is given by Eq (4), whereN is the number of clusters.
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Algorithm 1: The Proposed Clustering Method
Input: similarity matrix s(i, j),Q
Output: K clusters {Si‖i = 1, · · · ,K}

Initialize V as a zero vector;
Copy unstable samples in Q to U;
k ← 0;
for u in U do
T (u)←

∑
v∈Q s(u.idx, v.idx); /* Calculate sum of

its similarity to all other samples in Q */
end for
Sort samples in U according to T descendingly;
for u in U do

if V(u) == 1 then
continue;

end if
V(u)← 1;
k ← k + 1;
Sk ← {u};
Copy unstable samples in Q to V;
Sort V according to s(u.idx, v.idx) descendingly;
for v in V do

if s(u.idx, v.idx) ≤ 0 or V(v) == 1 then
continue;

else
if v is similar to all samples in Sk then
Sk ← Sk ∪ {v};
V(v)← 1;

end if
end if

end for
end for

d(x) =

{
0, max{µ} ≤ 1

N ;

arg maxj {µ} , otherwise.
(4)

Then for each crop of the testing sample x, the weights ob-
tained by Sd(x) will be loaded to the density map generator
for prediction a refined density map.

3.4. The proposed Base Model

The density map generator will be fine-tuned several
times both in the process of co-fine-tuning calculation and
clustering. In addition to the need for large parameter stor-
age space, a model with a large density map generator is
easy to over-fit if the training set is small. To alleviate
these problems, we design a simple base model called FDC,
which consists of the standard Feature Pyramid Networks
(FPN) [13] as a basic feature extractor and dilated convolu-
tion as the density map generator.

The FPN in FDC can flexibly adopt different networks
as backbone, such as ResNet-18, ResNet-34, ResNet-50,

et al. In our method, we mainly use ResNet-18, which is
efficient enough. To align the output of FPN, we added
de-convolution layers as up-samplers. Compared to state-
of-the-art methods, the density map regressor of FDC has
fewer parameters but is still efficient enough.

During the training process, patches are cropped from
the original image with sizes of 224×224, 448×448, 896×
896, and resized into 224 × 224. Four feature maps are
generated by FPN with size from 7×7 to 56×56. Then these
feature maps are up-sampled by multi de-convolution layers
with the stride of 2 to generate feature maps with the same
size of 56 × 56. Then these feature maps are concatenated
and fused by two convolution layers with dilation of 3 to
generate the output density map.

4. Experiments
We evaluate our algorithm against previous state-of-the-

art methods on four public open-view dense crowd data
sets, namely, STA, STB, [32], UCF-QNRF [11], NWPU-
Crowd [23]. To demonstrate the effectiveness of the pro-
posed multi-expert strategy, we also apply the proposed
framework on CSRNet [4] and MCNN [32], and obtain a
multi-expert version of MCNN (referred as M-MCNN) and
a multi-expert version CSRNet (referred as M-CSRNet).
Our proposed FDC with ResNet-18 is denoted as FDC-18
for short, and the multi-expert FDC-18 is referred to as
MFDC-18. Along with these experiments, we also tested
the cross data set performance.

The implementation of our model is conducted by four
GTX 2080Ti GPUs. For training of FDC-18, we set the
batch size to 128, inner iterations to 500, and apply Adam
as the optimizer with a fixed learning rate 10−5. For fine-
tuning on each cluster, we set the inner batch size to 16, the
max inner iterations to 50, and the learning rate to 10−6 de-
caying by the mean absolute error. If the cluster’s number
of samples is smaller than 100, augmentation will be con-
ducted to complete the number of samples to 100. Random
horizontal flip, random blur, random contrast and brightness
are augmentations applied in our experiments.

4.1. Evaluation metrics

Mean Absolute Error (MAE) and Mean Square Error
(MSE) are two main metrics for evaluating the performance
of crowd counting algorithms, and they are defined as:

MAE =
1

N

N∑
i=1

|Ci − Cgt
i | (5)

MSE =

√√√√ 1

N

N∑
i=1

|Ci − Cgt
i |2 (6)

where N is the number of images in test data set, Ci rep-
resents the predicted count, which can be calculated by in-
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Methods MAE(A) MSE(A) MAE(B) MAE(B)
MCNN [32] 110.6 171.1 26.4 41.3
IG-CNN[16] 72.5 118.2 13.6 21.1
CSRNet[4] 68.2 115.0 10.6 16.0
SFCN-101[24] 64.8 107.5 7.6 13.0
CAN[14] 62.3 100.0 7.8 12.2
DM-Count[22] 59.7 95.7 7.4 11.8
SDCNet[27] 58.3 95.0 6.7 10.7
M-MCNN 94.1 127.5 24.1 36.4
M-CSRNet 60.1 98.7 7.2 11.5
FDC-18 65.4 109.2 11.4 19.1
MFDC-18 55.4 91.3 6.9 10.3

Table 1. Comparison with other state-of-the-art crowd counting
methods on STA and STB.

tegrating over the pixels of the predicted density maps, and
Cgt

i is the ground truth.
On some data sets with fine-grained scene labels, we also

test scenes-wise metrics, which are defined by:

Avg.MAE =
1

M

M∑
i=1

1

Ni

N∑
j=1

|Ci,j − Cgt
i,j | (7)

where M is the number of scenes, and Nj means the num-
ber of samples in j-th scene.

4.2. Performance on dense crowd data set

ShanghaiTech dataset [32] includes two parts, STA and
STB. We used official division of the data set To expand the
data set and applied augmentation technologies provided in
[3] ( including horizontal flip, blur, random cropping and re-
size, optical distortion and random contrast and brightness)
and generated 6000 crops using the training data sets. To
make the best performance, for STA, the threshold η is set
to 0.36 and 1000 unstable crops are selected as set Q and
split into 97 clusters. For STB, η is 0.42 and 1500 unstable
crops selected. The performance is shown in Table 1. With
the help of our multi-expert strategy, both M-MCNN and
M-CSRNet achieve considerable improvement. Although
the density map regressor is simple, the performance of
FDC-18 is comparable to that of some larger models (e.g.
CAN [14]). Thanks to multi-expert, MFDC-18 improves
the MAE of FDC-18 by 15.3% on STA, and 39.4% on STB.
Both of them get the lowest MAE as far as we know.

UCF-QNRF [11] is a large counting data set. By the
same augmentation methods mentioned in experiments on
STA and STB, we cropped 24020 samples from training im-
ages. The threshold η is set to 0.41 and 4000 unstable crops
are selected as set Q and split into 357 clusters. The per-
formance is shown in Table 2, and MFDC-18 obtained the
best performance. Compared with the second-best method
(SS-DCNet(cls) [26]), MFDC-18 improves MAE by 7%.
Besides, Compared with the corresponding based models,

Methods MAE MSE
MCNN[32] 277 426
Switch-CNN[17] 228 445
CAN[14] 107 183
CSRNet[4] 98.2 157.2
SDCNet[27] 97.7 167.6
DM-Count[22] 85.6 148.3
SS-DCNet(cls)[26] 81.9 143.8
M-MCNN 234.1 381.8
M-CSRNet 83.1 144.6
FDC-18 93.0 157.3
MFDC-18 76.2 121.5

Table 2. Performance of our proposed methods compared to pre-
vious state-of-the-art methods on UCF-QNRF.

Figure 3. From the top to the third row, they are original im-
ages, ground truth,and density maps predicted by FDC-18. Image
(a) and (b) have similar density map, while image (b) and (c) are
similar according to their co-fine-tune similarity. In the bottom
row, the first image is the predicted density map of image (a) with
the fine-tuned model on image (b). The second and the third one
are the prediction results of image (b) with the fine-tuned model
on image (a) and (c) respectively. The last one is the prediction
results of image (c) with the fine-tuned model on image (b).

M-MCNN and M-CSRNet decrease MAE by 15.5% and
15.3% respectively, while MFDC-18 decreases MAE and
MSE by 18.1% and 22.8% respectively. The improvement
of MFDC-18 is the most significant. We think the reason
is that the regressor of MCNN [32] is too simple to fit well
on each cluster, while the regressor of CSRNet is too com-
plex, leading to overfitting, and the size of FDC’s regressor
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Methods O MAE O MSE O NAE Avg.MAE[S] Avg.MAE[L]
MCNN[32] 232.5 714.6 1.063 1171.9 220.9
CSRNet [4] 121.3 387.8 0.604 522.7 112.0
SCAR[8] 110.0 495.3 0.288 718.3 102.3
CAN[14] 106.3 386.5 0.295 612.2 102.1

SFCN101[24] 105.7 424.1 0.254 712.7 106.8
S-DCNet[27] 90.2 370.5 0.285 567.8 82.9

DM-Count[22] 88.4 388.6 0.169 498.0 88.0
FDC-18 119.39 380.6 0.34 642.7 105

MFDC-18 74.7 267.9 0.184 412.2 67.6
Table 3. Couting performance of the proposed methods and the previous state-of-the-art methods on NWPU-Crowd test set.

Division criteria Luminance level Density level
Methods [0,0.25] [0.25,0.5] [0.5,0.75] 0 (0,100] (100,500] (500,5000] (5000,)

DM-Count[22] 203.64 88.07 61.195 146 7.63 31.19 228.70 2075.78
FDC-18 206.13 119.78 97.1 81.37 20.4 59.57 295.53 2756.7

MFDC-18 138.52 75.24 59.57 5.68 8.55 33.3 215.97 1797.7
Table 4. Comparisons on NWPU-Crowd official subsets with different luminance and density levels.

Figure 4. Performance of the FDC and the MFDC methods on
NWPU-Crowd data set. From left to right, they are ground truth,
density map predicted by FDC, density map predicted by MFDC

is suitable for multi-expert strategy.
NWPU-Crowd [23] is a large-scale crowd counting data

set with 5109 high resolution images. In addition to the
head markers, the bounding boxes, the brightness labels
and density labels of images are also annotated. In exper-
iments, the threshold η is set to 0.64 and 10000 unstable
crops are selected as set Q, split into 592 clusters, and the
performance on NWPU-Crowd test set is shown in Table
3. MFDC-18 largely outperforms all compared approaches
in four evaluation metrics. To better illustrate the proposed
co-fine-tune similarity, Figure 3 shows some qualitative re-
sults. The proposed co-fine-tune similarity is more effective

for describing the relation between samples. In Figure 4, we
show performance of the FDC and the MFDC methods on
three typical images from NWPU-Crowd data set with dif-
ferent scenes, brightness, and crowd distribution. MFDC
significantly improved the prediction results of FDC .

Performances of FDC-18 and MFDC-18 are compared
to previous state-of-the-art DM-Count in different crowd
level and luminance level in Table 4. The results show
that MFDC-18 improves the MAE at all luminance levels,
especially when it comes to images with a low luminance
level. Furthermore, we observe that MFDC-18 is powerful
not only to identify the sample’s without crowd but also pre-
dict accurate counts with high-density samples. The multi-
expert model significantly improves the adaptability of the
model in various situation.

4.3. Ablation Study

In this section, we conduct several experiments to study
the effect of different sample selection methods, the trans-
ferability of the proposed method and training time.

Sample Selection Method. There are two methods for
selecting subset Q. The first method is to select hard sam-
ples on which the loss of the base model is high. The
other one is to select samples with higher instabilities. We
compared these two methods using the FDC trained by the
NWPU-Count data set. The results are shown in Figure 5.
When selecting a small number of samples, the perfor-
mance of the two methods is similar. However, when select-
ing more samples, the performance of the second method is
better. The reason is that when selecting too many samples,
their hardness is not as high as expected. While selecting
by instability can get more effective samples.
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Methods MFDC target MFDC source FDC target FDC source FDC fine-tune
data set MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ST Part A 55.4 91.3 56.9 94.7 65.4 109.2 93.5 153.1 63.1 94.7
UCF-QNRF 76.2 121.5 81.0 145.9 93.0 157.3 255.9 432.2 90.4 133.2
JHU-Crowd 58.1 221.9 72.3 241.2 77.8 263.1 167.6 391.2 78.6 271.5

Table 5. Analysis of the transferability of the proposed method. Target means using the target data to train the model, while source means
using weights trained on NWPU-Crowd data set without any extra training. Fine-tune means using weights pre-trained on NWPU-Crowd
data set, then fine-tuned on target data set.

Figure 5. Comparisons between the two sample selection methods.

Figure 6. The orinate of (a), (b), (c) are MAE, Classification Accu-
racy, Label Consistency and their abssisa is the number of clusters.

Effect of the number of clusters. To verify whether
the obtained cluster number if the optimal, we change it by
merging the smallest clusters or splitting the biggest clus-
ters by KNN on STA. As shown in Figure 6(a), when reduce
or increase the number of the clusters, the performance de-
grades. This proves that the number of clusters adaptively
decided by our clustering method is the best.

Consistency and Classification Accuracy . For a train-
ing sample, if the best expert for it is the expert obtained
by fine-tuning the density map regressor of the base model
on the cluster it belonging to, we think this sample is label
consistent. We introduce label consistency as the rate of the
training samples that are label consistent. The classification
accuracy means the accuracy of the router selecting the best
experts. We conduct ablation study to analyze label con-
sistency and classification accuracy of three different strate-
gies. The results are shown in Figure 6(b) and Figure 6(c).
We can see that the subsets generated by proposed methods
are more consistency and easier for classification, resulting
in lower MAE as number of experts increase.

Transferability. We also conduct transfer experiments
from NWPU-Crowd data set to STA, UCF-QNRF, JHU-
Crowd++[20, 21]. The MFDC-18 and FDC-18 were trained
on NWPU-Crowd data and then tested on the other data sets
(referred to as target data set) without any extra training or
fine-tuning. The result is shown in Table 5. It can be seen
that MFDC-18 trained on NWPU can achieve better per-
formance on target data set than FDC-18 trained on with all

possible strategies, i.e. trained on the NWPU, trained on the
target data set, trained on the source data set and fine-tune
on the target. Compared with MFDC trained on the tar-
get data set, the performance of MFDC trained on NWPU-
Crowd dropped only a little, which demonstrates that the
proposed multi-expert method can endow a network more
powerful generalization ability.

Training time Complexity is essential when training
multi-expert networks. With constant θ training epochs, the
training time of single model isO(n) for n samples, and for
MFDC, it is O(n2). More precisely, the total training time
of FDC is αnθ, where α represents the average training time
of one sample. For MFDC, the training time is formulated
as f(n) = αnθ + 10αρn + αρ2n2 + fc(n), where ρ de-
notes the proportion of unstable samples in all samples. In
our experiments, ρ ranges from 0.15 to 0.2, and the training
time of weight classifier fc(n) is shorter than αnθ.

5. Conclusion
This paper introduces a novel multi-experts training

methods for crowd counting tasks basing on the co-fine-
tune similarity, which estimate the similarity between the
optimal experts for samples. Based on it, representative
clusters of training data are generated to obtain several sets
of experts for density map generation. During inference,
testing samples with different characteristics are treated dif-
ferently by selecting the specific expert fine-tuned with sim-
ilar training samples. Also, this method can work together
with several previous state-of-the-art single methods.

In order to better demonstrate the effectiveness of the
proposed multi-expert strategy, we propose a simple FDC
network. Experiments on several crowd data sets show that
the proposed multi-expert method significantly improves
the performance of base models, especially FDC, and can
achieve state-of-the-art performance on all of those data set.
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