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Abstract

Computer vision applications such as visual relationship
detection and human object interaction can be formulated
as a composite (structured) set detection problem in which
both the parts (subject, object, and predicate) and the sum
(triplet as a whole) are to be detected in a hierarchical fash-
ion. In this paper, we present a new approach, denoted Part-
and-Sum detection Transformer (PST), to perform end-to-
end visual composite set detection. Different from exist-
ing Transformers in which queries are at a single level,
we simultaneously model the joint part and sum hypothe-
ses/interactions with composite queries and attention mod-
ules. We explicitly incorporate sum queries to enable better
modeling of the part-and-sum relations that are absent in
the standard Transformers. Our approach also uses novel
tensor-based part queries and vector-based sum queries,
and models their joint interaction. We report experiments
on two vision tasks, visual relationship detection and human
object interaction and demonstrate that PST achieves state
of the art results among single-stage models, while nearly
matching the results of custom designed two-stage models.

1. Introduction

In this paper, we study problems such as visual relation-
ship detection (VRD) [29, 21] and human object interac-
tion (HOI) [11, 35, 4] where a composite set of a two-level
(part-and-sum) hierarchy is to be detected and localized in
an image. In both VRD and HOI, the output consists of a set
of entities. Each entity, referred to as a “sum”, represents a
triplet structure composed of parts: the parts are (subject,
object, predicate) in VRD and (human, interaction, object)
in HOI. The sum-and-parts structure naturally forms a two-
level hierarchical output - with the sum at the root level and
the parts at the leaf level. In the general setting for compos-
ite set detection, the hierarchy consists of two levels, but the
number of parts can be arbitrary.

Many existing approaches in VRD [29, 16, 30, 54, 54]
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Figure 1: Overview of visual composite set detection by Part-
and-Sum Transformer (PST).

and HOI [36, 4, 24, 14, 10] are based on two stage pro-
cesses in which some parts (e.g. the subject and the object
in VRD) are detected first, followed by detection of the as-
sociation (sum) and the additional part (the predicate). Sin-
gle stage approaches [50, 49, 15, 19] with end-to-end learn-
ing for VRD and HOI also exist. In practice, two-stage
approaches produce better performance while single-stage
methods are easier to train and use.

The task for an object detector is to detect and local-
ize all valid objects in an input image, making the output
a set. Though object detectors such as FasterRCNN [33]
are considered end-to-end trainable, they perform instance
level predictions, and require post-processing using non-
maximum suppression to recover the entire set of objects in
an image. Recent developments in Transformers [44] and
their extensions to object detection [3] enable set-level end-
to-end learning by eliminating anchor proposals and non-
maximum suppression.

In this paper, we formulate the visual relationship de-
tection (VRD) [29, 21] and human object interaction (HOI)
[11, 35, 4] as composite set (two-level hierarchy) detection
problems and propose a new approach, part-and-sum Trans-
formers (PST) to solve them. PST is different from exist-
ing detection transformers where each object is represented
by a vector-based query in either a one-level set [3]. We
show the importance of establishing an explicit “sum” rep-
resentation for the triplet as a whole to be simultaneously
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modeled/engaged with the part queries (e.g., subject, ob-
ject, and predicate). Both the global and the part features
have also been modeled in the discriminatively trained part-
based model (DPM) algorithm [9] though the global and
part interactions there are limited to relative spatial loca-
tions. To summarize, we develop a new approach, part-and-
sum Transformers (PST), to solve the composite set detec-
tion problem by creating composite queries and composite
attention mechanism to account for both the sum (vector-
based query) and parts (tensor-based queries) representa-
tions. Using systematic experiments, we study the roles of
the sum and part queries and intra- and inter-token attention
in Transformers. The effectiveness of the proposed PST al-
gorithm is demonstrated in the VRD and HOI tasks.

2. Related Work
The standard object detection task [27] is a set prediction

problem in which each element refers to a bounding box. If
the prediction output is a hierarchy of multiple layers, e.g.
person → face → nose, standard sliding window based
approaches [33] that rely on features extracted from the en-
tire window no longer suffice. Algorithms performing infer-
ence hierarchically exist [57, 34, 38] but they are not trained
end-to-end. Here we study problems that require predic-
tions of a two-level structured set including visual relation-
ship detection (VRD) [29, 21] and human object interaction
(HOI) [11, 35, 4]. We aim to develop a general-purpose al-
gorithm that is trained end-to-end for composite set detec-
tion with a new Transformer design, which is different from
the previous two-stage [29, 16, 30, 54, 54, 36, 4, 24, 14, 10]
and single-stage approaches [50, 49, 15, 19]. The con-
cept of sum-and-max [34] is related to our part-and-sum
approach but the two approaches have large differences in
many aspects. In terms of structural modeling, the prob-
lem of structured prediction (or semantic labeling) has been
long studied in machine learning [22, 41] and computer vi-
sion [37, 42].

Transformers [44] have recently been applied to many
computer-vision tasks [7, 39, 40, 48, 18]. Prominently, the

object detector based on transformer (DETR) [3] has shown
comparable results to well-established non-fully differen-
tiable models based on CNNs and NMS, such as Faster
RCNN [33]. Deformable DETR [58] has matched the per-
formance of the previous state-of-the-art while preserving
the end-to-end differentiability of DETR. A recent attempt
[60] also applies DETR to the HOI task. Our proposed Part-
and-Sum Transformers (PST) is different in the algorithm
design with the development of composite queries and com-
posite attention to simultaneously model the global and lo-
cal information, as well as their interactions.

3. Part-and-Sum Transformers for Visual Re-
lationship Detection

In this section, we describe the PST formulation for vi-
sual composite set detection. We use VRD as the example,
and the formulation can be straightforwardly extended to
HOI by assuming that the subject is always human and the
predicate as the interaction with the object.

Given an image I , the goal of VRD is to detect a set
of visual relations S = {Ri}Ni=1. Each visual relation Ri,
a sum, has three parts: subject, object and predicate, i.e.,
Ri = {si, pi, oi}. For each Ri, the subject and object have
class labels si and oi and bounding boxes sbi and obi . The
predicate has a class label pi. VRD is therefore a composite
set detection task, where each instance in the set is a com-
posite entity consisting of three parts.

3.1. Overview

The overview of the proposed PST is shown in Fig-
ure 1 (a). Given an input image, we first obtain the im-
age feature maps from a CNN backbone. The image fea-
tures with learnable position embeddings are further en-
coded/tokenized by a standard [3] or deformable [58] trans-
former encoder. Those tokenized image features and a set
of learnable queries are put into a transformer decoder to
infer the classes and positions of every composite data. Un-
like standard object detection, composite set detection not
only detects all object entities but also entity-wise struc-
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ture/relationships. For accurate modeling composite data,
we propose composite query based Part-and-Sum trans-
former decoder, to learn each composite/structure data on
both entity and relationship levels, as shown in Figure 1 (b).
In the following sections, we detail the PST model and the
corresponding processes of training and inference.

3.2. Part-and-Sum Transformer (PST)

To construct the PST model, we first describe the vec-
tor based query, tensor based query, and composite queries
that are used for composite set prediction. We then formu-
late the composite transformer decoder layer based on the
composite queries.

3.2.1 Query Design for Composite Data

Vector based query A standard decoder used in DETR
takes a set of vector based queries as input, as shown in
Figure 2 (a). When applying this formulation to the rela-
tionship detection task, one can use feedforward networks
(FFNs) to directly predict a subject-predicate-object triplet
from the output of each query. This straightforward ex-
tension of DETR, while serving as a reasonable baseline,
is sub-optimal as each query mixes the parts and their in-
teraction altogether inside a vector. This makes the parts
and their interaction implicitly modeled, limiting the ex-
pressiveness and representation capability of the visual re-
lationship model.
Tensor based query To explicitly model the parts and their
relationships (e.g. Subject, Predicate, and Object), we pro-
pose a tensor-based query representation using disjoint sub-
vectors as sub-queries. Specifically for VRD, in a ten-
sor based query representation, three sub-queries represent
Subject, Predicate, and Object. All queries together form a
M × P ×D matrix, where M is the number of queries, P
is the number of entities in a relationship (P = 3), and D
is the feature dimension of sub-queries. This formulation
enables part-wise decoding in the transformer decoder, as
shown in Figure 2 (b). Technically, the vector based query
represents each relationship as a whole/Sum, whereas ten-
sor based query models the parts disjointly. The difference
in the query design leads to a difference in the learned con-
texts: self-attention layers among vector based queries mine
inter-relation context, while self-attention layers among part
queries mine the inter-part context.
Composite query On the one hand, vector based query is
able to capture the relationship as a sum/whole, but there
exists an intrinsic ambiguity in the parts. On the other hand,
tensor based query models each part explicitly, but it lacks
the knowledge of the relationships as a sum, which is im-
portant for the subject-object association. Based on the ob-
servation above, we propose a composite query representa-
tion. Formally, each composite query Qi is composed of

part queries QP
i (a tensor query) as well as a sum/whole

query qGi (a vector based query). In VRD, each composite
query Qi is composed of three sub-queries to represent Sub-
ject, Predicate, and Object; and one sum query to represent
the relationship. Qi = {QP

i , q
G
i }, and QP

i = {qsi , q
p
i , q

o
i },

where qsi , qpi and qoi denote subject, predicate and object
sub-queries. Assuming M composite queries in the de-
coder, the overall query is a M ×D × 4 tensor, where D is
the dimension of sub-queries.

3.2.2 Part-and-Sum Transformer Decoder

As the composite query includes both part and sum queries,
we separately decode the part queries QP and the sum query
qG. To enable mutual benefits of part and sum learning,
we also set up part-sum interaction. Additionally, we pro-
pose a factorized self-attention layer for further enhancing
part level learning. The architecture of Part-and-Sum Trans-
former Decoder is illustrated in Figure 2 (c).
Part-and-Sum separate decoding. The PST decoder has a
two-stream architecture, for part and sum queries decoding,
respectively. Each decoding stream contains a self-attention
layers (SA), cross-attention layers (CA), and feed-forward
neural networks (FFN). Let f and φ denote respectively SA
and CA layers for part queries. Decoding the part queries is
written as:

fPart(Q
P ) = SA(QP

1 , ...,Q
P
M )

= SA(qs1, q
p
1 , q

o
1, ..., q

s
M , qpM , qoM )

φPart(Q
P , I) = CA([QP

1 , ...,Q
P
M ], I),

(1)

where I denotes the tokenized image features from the
Transformer Encoder. Similarly, decoding the sum queries
can be written as:

fSum(Q
G) = SA(qG1 , ..., q

G
M )

φSum(Q
G, I) = CA([qG1 , ..., q

G
M ], I)

(2)

Each entity has both part and global embeddings via two
separate sequential modules FFN(φ(f(Q), I)). The self-
attention exploits the context among all queries. Part-and-
Sum separated decoding effectively models two different
types of contexts: the self-attention in part queries ex-
plores the inter-component context, for example, when one
part query predicts “person”, it reinforces related predicates
such as “eat” and “hold”; while self-attention for global
queries exploits the inter-relationship context, for example,
a sum query that predicts “Person read book”, is a clue to
infer “person sit” relationship. These contexts provide the
interactions needed for the accurate inference of the struc-
tured output.
Factorized self-attention layer. To make the interactions
within a group-wise part query more structured, we de-
sign a factorized self-attention layer, as shown in Figure 2
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(b). Instead of doing self-attention among all part queries
as in Eq. 1, a factorized self-attention layer first conducts
intra-relation self-attention, and then conducts inter-relation
self-attention. The intra-relation self attention layer lever-
ages the contexts of the parts to benefit relationship predic-
tion, for example, subject query and object query are “per-
son” and “horse” helps predict predicate “Ride”. The inter-
relation self-attention layer leverages the inter-relation con-
text, to enhance the holistic relation prediction per image,
which is particularly important for multiple interactions de-
tection for the same subject entity. More details are in the
supplementary materials.
Part-Sum interaction. Part query decoding embeds more
accurate component information, while global embedding
contains more accurate component association. These two
aspects are both important to the structured output detec-
tion, and are mutually beneficial to each other [8]. Thus,
we design interaction between the two decoding streams,
enabling part-sum conditions. Specifically, after FFNs in
the decoder, for each part embedding qki , k ∈ {s, o, p}, we
combine it with the sum query embedding, while for each
sum query qGi , we fuse all three part query embeddings. The
part-sum interaction is formulated as:

qki = N (qki + qGi ), k ∈ {s, o, p}

qGi = N (qGi +
∑

k∈{s,o,p}

qki ),
(3)

where N is layer normalisation [1].

3.3. Model Training and Inference

Composite prediction. For each composite query Qi =
{qGi , qsi , qoi , q

p
i }, we predict the classes of subject, object

and predicate; and the bounding boxes for subject and ob-
ject. Specifically, for each part query, we predict corre-
sponding classes by using a one-layer linear layer, and pre-
dict boxes using a shallow MLP head. Besides, we can also
construct the global representation from group-wise part
queries, by concatenating all part queries, and denote this
as qspo

i = [qsi , q
o
i , q

p
i ]. The part query predication is:

b̂ki = fk
box(q

k
i ), k ∈ {s, o}

p̂ki = fk
cls(q

k
i ), k ∈ {s, o, p}

p̂spo
i = f spo

cls (q
spo
i )

(4)

where f∗
cls are the FFNs for subject, object and predicate

classification; and f∗
box are the FFNs for predicting the boxes

of subject and object; f spo
cls is an FFN for predicting relation

triplet.
For Sum query prediction, we predict classes and boxes

of all parts from a Sum query qGi , that is:

b̂Gi = gkbox(q
G
i ), k ∈ {s, o}

p̂Gi = gkcls(q
G
i ), k ∈ {s, o, p}

(5)

where g∗cls are FFNs for subject, object and predicate clas-
sification; and g∗box are the FFNs for predicting the boxes
of subject and object in the global level. Note that the last
layer in fcls is a Softmax layer, while the last layer in fbox is
a Sigmoid layer.
Composite bipartite matching. We conduct composite
group-wise bipartite matching, i.e. considering all compo-
nents belonging to a relation jointly in computing set-to-set
similarity. Specifically, for a relation, there are three Part
queries (subject, object and predicate), and a triplet embed-
ding. The bipartite matching algorithm finds a permutation
σ of the M predictions {ŷi}Mi=1 so that the total matching
cost is minimized

σ̂ = argmin
σ∈P

M∑
i

Cmatch(yi, ŷσ(i)), (6)

where P is a set of all possible permutation of M elements,
and σ(i) is the ith element of the permutation σ.

We define the following matching cost between the ith
ground truth yi and the corresponding ith prediction deter-
mined by permutation σ:

Cmatch(yi, ŷσ(i)) = CPart
match(yi, ŷσ(i)) + CSum

match(yi, ŷσ(i))

=
∑

t∈{s,p,o,spo,Gs,Gp,Go}

−1{cti ̸=∅}p̂
t
σ(i)(c

t
i)

+
∑

t∈{s,p,o,Gs,Go}

1{cti ̸=∅}Lbox(b
t
i, b̂

t
σ(i)).

(7)

where p̂tσ(i)(c
t
i) is the probability of classifying t as cti com-

puted by Eq. 4 and 5, and b̂tσ(i) is a predicted bounding box
(Gs and Go denote the subject and object embeddings from
a Sum query branch). Lbox includes GIoU and L1 losses,
same as [3]. Here we use a union box of the subject and
object in a relation to represent the target box of a corre-
sponding predicate.
Training loss. Given two-level Part and Sum outputs, we
compute classification losses and box regression losses on
both levels. Once we obtained the best permutation σ that
minimizes the overall matching cost between y and ŷ, we
can compute the total loss as

L(y, ŷ) =
M∑
i=1

(
LPart(y, ŷ) + LSum(y, ŷ)

)
LPart(y, ŷ) =

∑
t∈{s,p,o,spo}

− log p̂tσ(i)(c
t
i) + Lbox(b

t
i, b̂

t
σ(i)))

LSum(y, ŷ) =
∑

t∈{Gs,Gp,Go}

− log p̂tσ(i)(c
t
i)) + Lbox(b

t
i, b̂

t
σ(i))

(8)

Note that Eq. 8 is very similar to Eq. 7, except that a nega-
tive log-likelihood loss is used to train classifiers, for more
effective learning.
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Table 1: Phrase and relationship detection result comparison (%) under various Transformer architectures on the VRD dataset. For a fair
comparison, all transformer decoders are based on the same CNN backbone and Transformer encoder, using the same number of queries.

Query Type Transformer Decoder Design Phrase Detection Relationship Detection
No. Vanilla Tensor Composite Vanilla Part Part-and-Sum k = 1 k = 70 k = 1 k = 70

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
(a) ✓ ✓ 26.17 29.43 27.66 32.71 17.88 19.41 19.97 23.08
(b) ✓ ✓ 26.69 31.46 28.67 34.35 19.36 22.63 21.89 25.89
(c) ✓ ✓ 30.40 34.86 32.29 37.68 23.28 26.30 25.46 29.65
(d) ✓ ✓ 25.70 29.66 28.01 34.11 17.75 20.20 20.17 24.53
(e) ✓ ✓ 30.63 33.82 32.55 40.63 23.57 27.63 26.48 31.83

4. Experiments

We evaluate our method on two composite set detection
applications: Visual Relationship Detection (VRD), and
Human Object Interaction detection (HOI).
Datasets. (1) For the VRD task, we evaluate the proposed
PST on VRD dataset [29], containing 5,000 images, and
100 entity categories and 70 predicate categories. Relation-
ships are labeled as a set of <subject, predicate, object>
triplets, and all subject and object entities in relationships
are annotated with an entity category and a bounding box.
We follow the data split of [29] and use 3,700/300/1,000
images for training/validation/test. There are 37,993 visual
relationship instances that belong to 6,672 triplet types, and
1,169 relation types that only appear in the test set, which
are used for zero-shot relationship detection. (2) For HOI
task, we conduct an evaluation on HICO-DET dataset [4],
including 38,118 training images and 9,658 testing images.
In this dataset, there are the same 80 object categories as
MS-COCO [27] and 117 verb categories, and objects and
verbs construct 600 classes of HOI triplets. One person is
able to interact with multiple objects in various ways at the
same time in this dataset.
Task Settings. For the VRD task, we test PST on Phrase
Detection and Relationship Detection [29, 54]. In Phrase
Detection, the model detects one bounding box for each re-
lationship, and recognizes the categories of subject, object
and predicate in the relationship. In Relationship Detection,
the model detects two individual bounding boxes for both
subject and object entities in the relationship, and classifies
the subject, predicate and object in the relationship. In both
tasks, we consider two settings: single and multiple pred-
icates between a pair of subject and object entities, with k
representing the number of predicates between a pair.
Performance Metrics. (1) In VRD, we use relationship
detection recall@K as the evaluation metric, as the true re-
lationships annotations are incomplete. Following the eval-
uation in [29], for each detected relationship, we compute
joint probability of subject, predicate and object category
prediction as the score for that relationship, and then rank
all detected relationships to compute the recall metric. For
a relationship to be detected correctly, all three elements are
required to be correctly classified and the IoU between the
predicted bounding boxes and groundtruth bounding boxes
are greater than 0.5. (2) In HOI, we use mean average pre-

cision (mAP) [11] as the evaluation metric. An HOI detec-
tion is considered correct only when the action and the ob-
ject class are both correctly recognized and the correspond-
ing human and object bounding boxes detection have higher
than 0.5 IoU with the groundtruth boxes.
Implementation Details. On both VRD and HOI task,
PST shares configurations. PST uses the standard ResNet-
50 network as the backbone, followed by a Transformer
encoder with six encoder layers, the same as Deformable
DETR [58]. The proposed PST decoder contains six layers
of the proposed two-stream Part-and-Sum decoder layers.
All feed-forward networks are two-linear-layer shallow net-
works. We set up auxiliary losses after each decoder layer,
and use 400 composite queries, with three part queries rep-
resenting the subject, object and predicate in a visual rela-
tion or human, object and interaction in a HOI, respectively.
Note that, in our experiment, we use the vanilla multi-head
self-attention module [44] as a self-attention layer, and use
a deformable multi-head cross-attention module as a cross-
attention layer. More details are in the supplementary.

4.1. Part-and-Sum Transformer Analysis

Part-and-Sum Transformer Decoder We first compare
and analyze different Transformer designs, with different
query types on VRD. The various Transformer designs are
compared in Figure 2. Vector based query is the most
straightforward way to detect structured outputs using a
Transformer, by formulating an individual structure entity
as a vector query, and feeding queries into a vanilla Trans-
former decoder [58] to learn embeddings for each relation.
Then, three one-linear-layer heads are used to predict the
classes of subjects, objects and predicates, and two three-
layer MLP heads to regress the boxes. The result compari-
son are shown in Table 1.

We can see that (1) with vanilla transformer decoder,
tensor based query outperforms vector based query (in (a)
vs (b)), with the margin 1.01/1.64% and 2.03/2.81% at
R@50/100 on Phrase and Relationship detection (k = 70).
It is because vector query models the structure entity as a
whole, and embeds multiple parts in one query. This design
increases the difficulty of Hungarian matching. (2) For Ten-
sor based query, Part Transformer outperforms the Vanilla
Transformer with a clear margin (in (b) vs (c)). This ben-
efit mainly comes from the factorized design in the self-
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attention layer, and the relation-level constraint (in Eq. 8).
The former enhances the intra-relation context, reducing
the ambiguity of entity recognition, for example, Subject
“Person” and Object “horse” are important clues to infer
Predicate “Ride”. The latter learns the relation as a whole
to reduce the entity instance confusion [54]. (3) Despite
the part-and-sum benefit inside the composite query, vanilla
transformer with composite query degrades (in (d) vs (a)),
compared with using the vanilla query. It shows that di-
rectly mixing Part and Sum queries cannot benefit struc-
tured output learning, because per Sum query contains mul-
tiple parts, and some relations may share the same entity
instance, which could confuse the similarity computation
in self-attention modules. To leverage two-level informa-
tion and context effectively, PST decodes Part and Sum
queries separately, with group-wise part-sum interaction.
By comparing (d) vs (e), this design outperforms vanilla
transformer, with the margin 4.54/6.52% and 6.31/7.30% at
R@50/100 on Phrase and Relationship detection (k = 70).
Factorized self-attention layer We check the effectiveness
of the factorization self-attention layer in the Part query de-
coding stream. We compare the performance of PST with
factorization self-attention layer vs PST with vanilla self-
attention layer on VRD, and the results are shown in Ta-
ble 2. It shows that factorized self-attention design leads
to 1.18/2.66% improvement at R@50/100 on Relationship
detection (k = 70).
Part-Sum interaction We compare two Part-Sum inter-
action schemes: Vanilla Self-attention vs Summation op-
eration. The results are shown in Table 2. From it, we
can see that Part-Sum bidirectional summation works bet-
ter than self-attention interaction, mainly due to the deter-
mined grouping configuration between part and sum queries
in PST as shown in Figure 2(c) 1.

Table 2: Ablation study on Part-Sum Transformer designs. We
report Relationship detection result comparison (%) on VRD.

Relationship Detection
Module k = 1 k = 70

R@50 R@100 R@50 R@100

Factorization SA ✗ 22.14 26.48 25.30 29.17
✓ 23.57 27.63 26.48 31.83

Part-Sum Interaction Self-Attention 22.04 25.42 23.89 28.87
Part↔Sum 23.57 27.63 26.48 31.83

Composite prediction Given the two-stream design of
Part-and-Sum decoding, we obtain the predictions from
both part and sum levels. Thus, we study the various
inference schemes: predicting structure data from part
query branch, or from sum query branch, or combining
two branches. To combine predictions from part and sum
queries, for classification probability, we average the pre-

1In PST, the component order of a composite query is fixed. On VRD,
for instance, the first part query is for Subject, the second for Object, and
the third for Predicate. The grouping between part queries and sum query
is also fixed by design, i.e. the first sum query and the first group of part
queries represent the same relation instance.

diction probability of group-wise part and sum queries; for
box prediction, we just average predicted positions of left-
top and right-bottom points. The results comparison are
shown in Table 3, and it shows that Part only inference
slightly outperforms Sum only inference, and combining
the predictions from two levels is able to bring a minor im-
provement for relationship detection 2.

Table 3: Result comparison of various inference schemes.

Relationship Detection
Inference k = 1 k = 70

R@50 R@100 R@50 R@100
Part only 23.57 27.63 26.48 31.83
Sum Only 22.06 25.43 25.76 30.45
Part-Sum 24.34 27.01 27.03 31.90

4.2. Visual Relationship Detection

We compare PST with existing visual relationship detec-
tion solutions on the VRD datasets [29].
Competitors. Existing visual relationship detection solu-
tions can be classified into two categories: (I) Stage-wise
methods: These approaches first detect objects using pre-
trained detector, and then use the outputs of the object de-
tector as fixed inputs of a relationship detection module.
Specifically, we compare with: (1) VRD-Full [29] which
combines the visual appearance and the language features
of candidates boxes to learn relationships. (2) NMP [16]
which builds a relationship graph and optimizes it by node-
to-edge and edge-to-node message passing mechanisms. (3)
CDDN [5] which proposes a context guided visual-semantic
feature fusion scheme for predicate detection. (4) LSVR
[53] which learns a better representation by aligning the fea-
tures on both entity and relationship levels. (5) RelDN [54]
which uses contrastive loss functions to learn fine-grained
visual features. (6) BCVRD [17] which proposes a new
box-wise fusion method to better combine visual, semantic
and spatial features. (7) HGAT [30] which proposes to use
object-level and triplet-level reasoning to improve relation-
ship detection. (II) End-to-End methods: These approaches
detect objects and relationships jointly. Specifically, we
compare with: (1) CAI [59] - leverages the subject-object
context to detect relationships. (2) KL distillation[50] - uses
a linguistic model to regularize the visual model learning.
(3) DR-Net [6] - designs a fully connected network to mine
object-pair relationships. (4) Zoom-Net [49] - leverages
multi-scaled relation contexts. (5) VTransE [52] - learns
to map the visual features to the relationship space.
Results. The visual relation detection comparisons on VRD
dataset are shown in Table 4. For clarity, the stage-wise
methods are grouped in the first block, and end-to-end
methods are in the second block. The proposed PST be-
longs to the second block, and particularly it is the first

2We report the results by part query only based inference in both VRD
and HOI experiments for clarity.
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Table 4: Phrase and relationship detection result comparison (%)
on VRD dataset. - denotes that the results are not reported in the
original paper. k is the number of predicates associated with each
subject-object pair. Note on VRD dataset, the maximum number
of predicates is k = 70. The first block is for the stage-wise de-
tection methods, and the second block is for end-to-end detection
methods. Our method belongs to the latter. †: the reported results
of BC-VRD are based on Faster R-CNN for a fair comparison.

Method Phrase Detection Relationship Detection
k = 1 k = 70 k = 1 k = 70

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
VRD-Full [29] 16.17 17.03 20.04 24.90 13.86 14.70 17.35 21.51

LSVR[53] 18.32 19.78 21.39 25.65 16.08 17.07 18.89 22.35
BC-VRD [17]† 19.72 20.95 24.47 28.38 15.87 16.63 19.91 22.86
MLA-VRD [55] 23.36 28.12 - - 20.54 24.91 - -

NMP [16] - - - - 20.19 23.98 21.50 27.50
HGAT [30] - - - - 22.52 24.63 22.90 27.73

RelDN-IMG [54] 26.37 31.42 28.24 35.44 19.82 22.96 21.52 26.38
MF-URLN [51] 31.50 36.10 - - 23.90 26.80 - -

RelDN [54] 31.34 36.42 34.45 42.12 25.29 28.62 28.15 33.91
DR-Net [6] - - 19.93 23.45 - - 17.73 20.88

VTransE [52] 19.42 22.42 - - 14.07 15.20 - -
CAI [59] 17.60 19.24 - - 15.63 17.39 - -
ViP [23] 22.80 27.90 - - 17.30 20.00 - -

KL distilation[50] 23.14 24.03 26.32 29.43 19.17 21.34 22.68 31.89
Zoom-Net [49] 24.82 28.09 29.05 37.34 18.92 21.41 21.37 27.30

PST (ours) 30.63 33.82 32.55 40.63 23.57 27.63 26.48 31.83

holistic end-to-end VRD solution (directly outputs all pre-
dicted relationships without any post-processing). It is evi-
dent that PST outperforms the existing end-to-end methods
on both Phrase and Relationship Detection tasks, e.g. sur-
passing the second best end-to-end method Zoom-Net [51]
with a margin of 5.81%/5.73% in Phrase Detection, and
4.65%/6.22% in Relationship detection at R@50/100 when
k = 1. It shows that PST is able to learn the relationships
between all entities effectively.

From the comparisons with the stage-wise VRD meth-
ods, PST outperforms the second best method HGAT [30]
with a margin of 2.8% at R@50 in the Relationship de-
tection, but lags behind the best method RelDN [54] with
a margin of 0.71% and 1.32% on Phrase and relationship
detection at R@50 with k = 1. We note that RelDN
is a sophisticated two-stage method that:(1) leverages two
CNNs for the entity and predicate visual feature learning;
(2) tunes the thresholds of three margins in metric learn-
ing based losses functions; (3) combines multi-modality in-
formation (visual, semantic and spatial information) for re-
lationship prediction. By contrast, PST predicts relations
just based on visual features and detects relationships end-
to-end and holistically without any post-processing. PST is
simple, without any hand-designed components to represent
the prior knowledge.

4.3. Human Object Interaction Detection

Competitors. We compare our model with two types
of state-of-the-art HOI methods: the two-stage methods
[36, 12, 32, 11, 45, 13, 25, 46, 31, 43, 28, 20, 2, 56, 24,
14, 10, 4] and the single-stage methods [19, 26, 60]. The
two-stage methods aim to detect individual objects in the

first stage. Then, they associate the detected objects and
infer the HOI predictions in the second stage. Two-stage
methods rely on good object detections in the first stage
and mostly focus on the second stage where language pri-
ors [13, 31, 28, 20, 2, 56, 24, 10] and human pose fea-
tures [45, 25, 28, 20, 24] may be leveraged to facilitate
the inference of HOI predictions from detected object. The
single-stage methods aim to bypass the object detection step
and directly output HOI predictions in one step. Previous
single-stage methods [19, 26] are not end-to-end solutions.
They employ multiple branches with each branch outputs
complementary HOI-related predictions and rely on post-
processing to decode the final HOI predictions. The most
related to our approach is HoiT [60] which is an end-to-end
single stage solution. HoiT employs DETR-like structure
and predicts an HOI triplet from each vector query.
Results. Table 5 shows the results of our method and the
other state-of-the-art HOI methods on HICO-DET dataset.
We see that most of the two-stage models have mAP around
20 (default, full) on the HICO-DET test set. The best two-
stage model is DRG [10] which achieves 24.5 mAP. How-
ever, it is a complex model and requires three-stage train-
ing. In comparison, as end-to-end single stage models, our
model and the contemporary HoiT [60] model are able to
achieve 20+ mAP without using a dedicated object detec-
tor or extra pose or language information. Our model with
composite queries has mAP of 23.9 and achieves the state-
of-the-art performance for single-stage HOI.

4.4. Ablation Study

We report more components analysis of our proposed
part-and-sum transformer model (PST) here.
Shared-stream vs independent-stream decoding Our
part-and-sum transformer (PST) consists an independent-
stream decoder for part queries and sum queries, i.e. part
queries and sum queries are feed into variant self-attention
layers, cross-attention layers and FFNs, and decoded inde-
pendently. We compare this design with a shared-stream
design, where part and sum queries are decoded by the
same layers. The results are shown in Table 6 where
the independent-stream design is shown to outperform the
shared-branch design on both relationship detection and
phrase detection tasks. We hypothesize that part queries
and sum queries represent different aspects of a relation-
ship, and it is better to decode these two kinds of queries
independently.
Varying the number and dimension of the queries We
show the comparisons for the tensor-based query strategy
vs the vector-based query strategy by varying their numbers
and dimensions. Specifically, we use 500 tensor queries in
PST, and each query contains three sub-vector queries of
256 dimension. For a fair comparison, we also employ 500
vector queries but of 256×3 dimension. Note that increas-
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Table 5: Comparison with state-of-the-art HOI methods on HICO-DET dataset. For “Detector”, “COCO” refers to an off-the-shelf object
detector trained on COCO. “HICO-DET” means the COCO pretrained object detector is further finetuned on HICO-DET. “Pose” refers to
using human pose as additional features. “Language” refers to adopting the language priors.

Default Known Object
Method Backbone Detector Pose Language Full↑ Rare↑ NonRare↑ Full↑ Rare↑ NonRare↑

Two-stage methods
Shen et al.[36] VGG19 COCO 6.46 4.24 7.12 - - -
HO-RCNN[4] CaffeNet COCO 7.81 5.37 8.54 10.41 8.94 10.85
InteractNet[12] ResNet-50-FPN COCO 9.94 7.16 10.77 - - -

GPNN[32] ResNet-101 COCO 13.11 9.34 14.23 - - -
iCAN[11] ResNet-50 COCO 14.84 10.45 16.15 16.26 11.33 17.73

PMFNet-Base[45] ResNet-50-FPN COCO 14.92 11.42 15.96 18.83 15.30 19.89
PMFNet[45] ResNet-50-FPN COCO ✓ 17.46 15.65 18.00 20.34 17.47 21.20
No-Frills[13] ResNet-152 COCO ✓ 17.18 12.17 18.68 - - -

TIN[25] ResNet-50 COCO ✓ 17.22 13.51 18.32 19.38 15.38 20.57
CHG[46] ResNet-50 COCO 17.57 16.85 17.78 21.00 20.74 21.08

Peyre et al.[31] ResNet-50-FPN COCO ✓ 19.40 14.63 20.87 - - -
IPNet [47] Hourglass COCO 19.56 12.79 21.58 22.05 15.77 23.92

VSGNet[43] ResNet-152 COCO 19.80 16.05 20.91 - - -
FCMNet[28] ResNet-50 COCO ✓ ✓ 20.41 17.34 21.56 22.04 18.97 23.12

ACP[20] ResNet-152 COCO ✓ ✓ 20.59 15.92 21.98 - - -
Bansal et al.[2] ResNet-50-FPN HICO-DET ✓ 21.96 16.43 23.62 - - -

PD-Net[56] ResNet-152 COCO ✓ 20.81 15.90 22.28 24.78 18.88 26.54
PastaNet[24] ResNet-50 COCO ✓ ✓ 22.65 21.17 23.09 24.53 23.00 24.99

VCL[14] ResNet-101 HICO-DET 23.63 17.21 25.55 25.98 19.12 28.03
DRG[10] ResNet-50-FPN HICO-DET ✓ 24.53 19.47 26.04 27.98 23.11 29.43

One-stage methods
UnionDet [19] ResNet-50-FPN HICO-DET 17.58 11.52 19.33 19.76 14.68 21.27

PPDM [26] Hourglass HICO-DET 21.73 13.78 24.10 24.58 16.65 26.84
HoiT [60] ResNet-50 - 23.46 16.91 25.41 26.15 19.24 28.22

PST (Ours) ResNet-50 - 23.93 14.98 26.60 26.42 17.61 29.05

Table 6: Comparison(%) of a shared-stream vs independent-
stream in the PST decoder. Shared-stream: Part and Sum queries
share the same SA and CA layers; independent-stream: Part and
Sum queries are independently decoded by different SA and CA
layers (SA: Self-attention and CA: Cross-attention).

Decoder design Phrase Detection Relationship Detection
k = 1 k = 70 k = 1 k = 70

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
Shared-stream 27.32 32.71 31.59 37.82 20.04 23.10 24.89 29.87

Independent-stream 30.63 33.82 32.55 40.63 23.57 27.63 26.48 31.83

ing the dimension of vector-based queries to three times
larger (256 × 3) requires to three time larger dimension of
image memory. To this end, we repeat the features of the
encoder three times. By doing it, each query in both mod-
els can have the equal embedding dimension to represent
each relationship. The comparison of results is shown in
Table 7. From it, we see that (1) increasing the number
of vector queries from 500 to 1500 is not able to bring the
clear benefit; (2) Increasing the dimension of each vector
query does not provide more information; (3) Tensor based
query outperforms variant vector based query, with a mar-
gin of 4.65%/5.16% increase on R@50/100 on Relationship
detection when k = 1; (4) Compared to the tensor based
query, composite queries further improve the performance
due to part-and-sum two-level learning.
Part-and-Sum design in the HOI task The compar-
isons for the vector based Transformer (PST-Sum), ten-
sor based Transformer (PST-Part), and part-and-sum Trans-
former (PST) on the HOI task are shown in Table 8. PST
outperforms PST-Part and PST-Sum, same as the perfor-

Table 7: Comparison of variant query designs in the PST.

Query Design Phrase Detection Relationship Detection
Formulation Number Dimension k = 1 k = 70 k = 1 k = 70

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
Vector 1500 256 26.39 29.68 29.41 32.68 18.63 21.14 20.26 23.64
Vector 500 256 26.17 29.43 27.66 32.71 17.88 19.41 19.97 23.08
Vector 500 256× 3 25.13 30.17 27.88 33.34 18.65 20.94 21.20 25.92
Tensor 500 256 30.40 34.86 32.29 37.68 23.28 26.30 25.46 29.65

Composite 500 256 30.63 33.82 32.55 40.63 23.57 27.63 26.48 31.83

mance comparison in the VRD task. Note that [60] can be
regarded as a kind of PST-Sum model, but with different
implementations such as different classification losses, and
Transformer attention designs.

Table 8: Results of variant PST decoders on HOI.

Default Known Object
Method Full↑ Rare↑ NonRare↑ Full↑ Rare↑ NonRare↑

PST-Sum 21.37 13.85 23.62 23.28 15.24 25.69
PST-Part 22.24 14.15 24.65 24.15 15.61 26.70

PST 23.93 14.98 26.60 26.42 17.61 29.05

5. Conclusion
In this work, we have presented a Transformer-based

detector, Part-and-Sum Transformers (PST), for visual re-
lationship detection and human object interaction detec-
tion. PST maintains separate representations for the sum
and parts while enhancing their interactions with compos-
ite queries. This design helps reduce instance ambiguity in
structure data detection by learning rich intra-relationship
and inter-relationship simultaneously. More qualitative re-
sults are provided in the supplementary document.
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Appendix

A. Part-and-Sum Transformers with Compos-
ite Queries

In this work, we focus on end-to-end structured data de-
tection by Part-and-Sum Transformers for tasks like visual
relationship detection and Human Object Interaction detec-
tion. We provide a more detailed discussion for the designs
of vanilla decoder, tensor-based decoder, and composite
(part-and-sum) decoder. These three alternatives differ in
the form of queries and how attention is implemented.

Figure 1(a) in the main submission gives an illustration;
for an input image, we use a convolutional neural network
(CNN) model to extract image features, which are fed into
a standard [3]/ deformable [58] transformer encoder. The
encoder is composed of multiple self-attention layers to to-
kenize the visual features. After that, a transformer de-
coder takes the visual tokens together with a set of learn-
able queries as input to detect a composite set (visual rela-
tionships or human object interactions). We denote the to-
kenized features of the Transformer Encoder as I , and the
learnable queries as Q; and the embedding of the outputs of
a decoder as E = Decoder(Q, I). For embeddings E, the
structural prediction O is inferred by a prediction module,
denoted as O = Prediction(E).

A.1. Vanilla decoder with vector-based query

Our vanilla Transformer decoder contains M query em-
beddings, and each query is a vector, representing a rela-
tionship:

Q = {q1, ..., qM}, (9)

where qi is a vector of a size 1×D, and the overall query Q
is M×D. The queries are feed into multiple decoder layers
of a same design. Specifically, each decoder layer contains
a Multi-head self-attention layer [44], learning the cross-
relationship context; and a multi-head cross-attention layer,
to learn the representations by attending various image po-
sitions; and a feed forward network (FFN) to further embed
each query. All query embeddings are feed into these three
components one by one, and the last outputs are feed into
the following decoder blocks. The decoding process in each
decoder block is written as:

f(Q) = SA(q1, ..., qM )

φ(Q, I) = CA([q1, ..., qM ], I),
(10)

where f is Self-attention layer (SA), and φ is the Cross-
attention layer (CA). Note that in vanilla Transformer, each
query represents a relationship, i.e. containing multiple
components.

A.2. Tensor-based decoder with tensor-based Query

Unlike vector based query, tensor-based query repre-
sents a relationship by a tensor which contains multiple sub-
queries to represent each part individually, such as Subject,
Predicate and Object parts. The tensor based query can be
written as:

Q = {Q1, ...,QM} = {{qs
1, q

p
1, q

o
1}, ..., {qs

M , qp
M , qo

M}},
(11)

where each query Qi includes three sub-queries qs
i , q

p
i , q

o
i

to represent subject, predicate, and object, respectively. By
doing so, all parts are learnt individually, reducing the am-
biguity in similarity computation in attention schemes. It
is important for learning the relationships sharing the same
subject or object entity. In decoding, attention layers handle
all sub-queries, written as:

f(Q) = SA(qs
1, q

p
1, q

o
1, ..., q

s
M , qp

M , qo
M )

φ(Q, I) = CA([q1, ..., qM ], I).
(12)

Vector query and tensor-based query are conceptually
different, and the former learns each two-level/structure
data as a whole/Sum, while the latter learns each two-
level/structure data by part learning. Furthermore, self-
attention layers are functionally different in these two de-
signs: self-attention among all sum queries is to mine
inter-relation context, while self-attention layer among part
queries is to mine the context of entities, which indirectly
benefits relationship learning.

A.3. Composite (part-and-sum) decoder with com-
posite Query

Composite query models each relationship in a structural
manner, and learns a relationship in both part and sum lev-
els. Each composite query contains three part sub-queries
for Subject, Predicate and Object entities, and one sum sub-
query for a whole relationship. The composite query can be
written as:

Q = {Q1, ...,QM}
Qi = {qs

i , q
p
i , q

o
i , q

G
i },

(13)

where {qs
i , q

p
i , q

o
i are part queries, and qG

i is a sum query
for relationship i. In the decoding, part query QP and sum
query QG are separately decoded by different self-attention
layers fPart and fSum, and cross-attention layers φPart and
φSum, written as:

fPart(Q
P ) = SA(QP

1 , ...,Q
P
M )

φPart(Q
P , I) = CA([QP

1 , ...,Q
P
M ], I),

(14)

fSum(Q
G) = SA(qG1 , ..., q

G
M )

φSum(Q
G, I) = CA([qG1 , ..., q

G
M ], I)

(15)
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Tower-has-clock Clock-on-tower Tower-on-road Car-on-road

(b) HOI detection

(a) VRD detection results

Person-read-book Person-hold-forkPerson-sit_on-chair Person-hold-knife

Car-in the front of-tower

Figure 3: Qualitative results on (a) VRD and (b) HOI by PST. Each sub-image shows one predicted relationship/interaction. “R” refers to
predicate; “S” refers to subject; and “O” refers to object.

Factorized self-attention. To enhance part-based relation-
ship learning, we designs a Factorized self-attention layer,
which firstly conducts intra-relationship self-attention,
and conducts inter-relationship self-attention. The intra-
relationship self attention layer leverages the parts con-
text to benefit relationship prediction, for example, subject
query and object query are “person” and “horse” helps pre-
dict predicate “Ride”. The inter-relationship self-attention
layer leverages the inter-relationship context, to enhance the
holistic relationship prediction per image. For example, the
existence of “Person read book” helps infer the relationship
“Person sit”, rather than “Person run”, which is particularly
important for multiple interactions detection for same per-
son entity. The Factorized self-attention is written as:

fPart(Q
P ) = FactorizedSA(QP

1 , ...,Q
P
M )

= Inter-relationSA(Intra-relationSA(QP )),

(16)

where Intra-relation self-attention and Inter-relation self-
attention layers are written as:

Intra-relationSA(QP
i ) = SA(qsi , q

p
i , q

o
i )

Inter-relationSA(QP ) = SA(QP
1 , ...,Q

P
M )

(17)

Note that the Factorized self-attention design also can be
used for Tensor based query to enhance the inter part-query
learning.

B. Visualisations of VRD and HOI detection

PST directly predicts all relationships in a set. Fig-
ure 3 shows exampled relationship detection results and
human object interaction detection results by PST in (a)
and (b). Each sub-image visualizes one predicted relation-
ship. It shows that there exist multiple relationships be-
tween one entity-pair. For example, in Figure 3 (a), PST de-
tects “Tower-has-clock” and “Clock-on-tower”; and “Road-
under-tower” and “Tower-on-road”.
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(a) Person-hit-ball (b) Person-wear-jacket

(c) Tower-has-clock (d) Person-has-bag

Figure 4: Visualization of small-entity relationship detection. The exampled relationship predictions are (a) Person-hit-ball; (b) Person-
wear-jacket; (c) Tower-has-clock; and (d) Person-has-bag. From it, PST is able to detect small subjects or objects in relationships and
further detects the overall relationships properly. “R” refers to predicate; “S” refers to subject; and “O” refers to object.

(f) Person-has-phone

(a) Person-has-phone (b) Person-has-phone (c) Person-use-laptop

(d) Person-wear-helmet (e) Motorcycle-carry-person

Figure 5: Visualization of relationship detection with instance ambiguity. There exist multiple spatially close relationship instances of the
same type. Specifically, there exists multiple same type and close relationships, for example, “person-has-phone” in (a) and (b); “person-
use-laptop” in (c); “Person-wear-helmet” in (d), “Motorcycle-carry-person” in (e), and “person-has-phone” in (f). “R” refers to predicate;
“S” refers to subject; and “O” refers to object.

C. More Qualitative Illustrations

In addition to the results shown in the main paper, we
provide more qualitative results and analysis for visual re-
lationship detection and human-object interaction detection
by the proposed PST.

C.1. Small-entity relationship detection

In the VRD task, relationships are composed of multi-
ple types, some of which pose particular challenges, such
as small-entity and spatial relationships. We show some ex-
amples in Figure 4 for small-entity relationship detection.
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(c) Tracking cross-image attention of decoder layers

Layer 1 Layer 2 Layer 4 Layer 6

(a) Original image

(b) A detected relationship: Person-wear-shoes

(II) Object: Shoes

(III) Predicate: Wear

(I) Subject: Person

Figure 6: Visualization of the attention maps of decoder layers in PST. (a) is the input image, (b) shows a detected relationship from one
query, and (c) visualizes this relationship’s attention maps in various decoder layers for subject (I), object (II) and predicate(III) query,
respectively. Due to the space limit, we just show attention maps of four decoder layers.

PST is able to detect small subjects and objects well, such
as “ball” in (a), “person” and “jacket” in (b), “clock” in (c)
and “bag” in (d). This happens because the part queries
are able to mine the subject-predicate-object context, and
the sum queries leverage the inter-relation context; the two
types of contextual information provide effective informa-
tion for detecting small entities in a relationship.

C.2. Instance ambiguity in relationship detection

Instance ambiguity in relationship detection causes a de-
tection failure, where the predicted relationships wrongly
associate subject and object instances, although the cate-
gories of relationships are predicted correctly. For instance,
in Figure 5 (a) and (b), there exist two same type rela-
tionships “Person-has-phone”, and they are visually close.
Relationship instance ambiguity makes it hard to associate
each “phone” instances with the surrounding “Person” in-
stances. This ambiguity is caused by that multiple relation-
ship instances of the same relationship type are too close,
and the visual clues for associating the subject-object in-
stances are subtle. We examine PST in these challenging
cases and show some examples in Figure 5. It shows that
PST is able to associate subject-object instances correctly
in this hard situation, thanks to the effective intra-relation
and inter-relation attention for context modeling.

C.3. Composite attention visualisation

To better understand how the model works and what in-
put information it uses to perform relationship detection, we
visualize the cross-attention maps of the decoder layers of
PST, since cross-attention measures the correlation between

(a) Person-on-horse (b) Person-hold-camera

(c) Person-wear-watch (d) Person-hold-bottle

Figure 7: Visualization of a few failure cases by PST. There
are four main relation detection types: (a) Inaccurate entity de-
tection caused by crowed instances; (b) Wrong object detection;
(c) Wrong association between subject and object instances; (d)
Wrong predicate classification. “R” refers to predicate; “S” refers
to subject; and “O” refers to object.

the query embedding and image feature tokens. Given a
test image, we extract cross-attention maps from all decoder
layers for the subject, object and predicate query embed-
ding individually. We visualize the attention maps of one
query in Figure 6 (c), and include results of more queries
in the supplementary material. In Figure 6, the relation-
ship query embedding is decoded to “person-wear-shoes”
semantically, and according to the attention maps, we can
see that (1) the transformer decoder incrementally focuses
on the “person” and “shoes” area in the image, to infer the
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subject and object entities; (2) the predicate (“Wear”) is
mostly predicted from the union area of the subject and ob-
ject, which suggests that the attention scheme is capable of
automatically modeling the subject-object context for pred-
icate detection.

C.4. Failure cases by PST

We visualize the typical errors of relationship detection
by PST in Figure 7. There are four typical errors: (1) PST
localizes entities inaccurately, when the entity instances are
crowed. For instance, in Figure 7 (a), there are multi-
ple horses close to each other, and PST localizes multiple
horses as one Object entity of a relationship “Person-on-
horse”. (2) Object detection mistakes cause the failure in
relationship detection, such as wrong entity “camera” de-
tected in Figure 7 (b). (3) Relationship instance ambiguity
challenges PST. For instance, in Figure 7 (c), the watch is
associated with a wrong person instance which is very close
to the right person instance. (d) Predicate is wrongly pre-
dicted, for instance, PST classifies the relationship between
“Person” and “bottle” as “hold”.
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