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Abstract—This paper introduces a new method of data-driven
microscope design for virtual fluorescence microscopy. Our
results show that by including a model of illumination within
the first layers of a deep convolutional neural network, it is
possible to learn task-specific LED patterns that substantially
improve the ability to infer fluorescence image information from
unstained transmission microscopy images. We validated our
method on two different experimental setups, with different
magnifications and different sample types, to show a consistent
improvement in performance as compared to conventional illu-
mination methods. Additionally, to understand the importance
of learned illumination on inference task, we varied the dynamic
range of the fluorescent image targets (from one to seven bits),
and showed that the margin of improvement for learned patterns
increased with the information content of the target. This work
demonstrates the power of programmable optical elements at
enabling better machine learning algorithm performance and
at providing physical insight into next generation of machine-
controlled imaging systems.

I. INTRODUCTION

The optical microscope remains a critical tool across a
wide variety of disciplines. Examples include high-content
screening in biology labs, quality control and defect detection
in factories, and automated digitization of pathology slides
in clinics. With the continued growth of automated software
analysis tools, many microscope images are now rarely viewed
directly in their raw format by humans, but are instead
commonly processed by a computer first. Examples include
the automatic classification of different cell types within large
cell cultures [1], segmentation of cancerous areas from thin
pathology tissue sections [2], and, as focused upon here,
the automatic creation of fluorescent images from bright-field
data [3].

Despite the continued rapid development of automated im-
age analysis software, the microscopes hardware has changed
relatively little over the past several centuries. Most current
microscopes still consist of standard illumination units and
objective lenses that are optimized for direct human inspection.
The physics of optical microscopes enforces several physical
limitations, including a limited resolution, field-of-view, image
contrast, and depth-of-field, for example, which restrict the
amount of information that can be captured within each
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image. The standard design of a microscope biases this limited
information towards human analysis, potentially impacting the
accuracy of automated analysis.

Here, we attempt to optimize the hardware of a new mi-
croscope design to improve the accuracy of automated image
processing by a deep neural network (DNN). Our aim in this
work is to establish optimal hardware settings to improve
the particular DNN task of image inference. To achieve this
goal, we present a modified learning network that includes
a physical model of our experimental microscope, which we
jointly optimize during DNN training. In this work, we limit
our physical model to include only the spectral and angular
properties of the microscope’s illumination, provided by a
programmable LED array, but leave open the possibility of also
considering many other important parameters (focus setting,
lens design, detector properties) in future work. Our proposed
network models the microscope illumination pattern as a set
of linear weights that are directly integrated into the DNN,
allowing the calculation of gradients through back-propagation
and end-to-end optimization during supervised training. After
training, the optimized “physical” weights can be interpreted
as the distribution of optimal LED brightnesses and colors
to use in our experimental imaging setup, which transfers
performance gains seen in training to a physical setup.

For the specific goal of DNN-optimized microscope illu-
mination for image-to-image inference, we aim here to train
a DNN to convert optimally illuminated microscope imagery
into data obtained from a simultaneously captured fluorescence
image. This goal of bright-field to fluorescence image infer-
ence, also termed “in-silico labeling”[3], has recently received
interest as a promising means to avoid the need to fluorescently
label specimens and to instead simply rely on post-processing
standard bright-field image data. Prior work with this effort
has typically required a relatively large data overhead (i.e.,
acquisition of 10 or more bright-field images per inference
task), and has offered a limited amount of physical insight
into performance variations as a function of collected data.

In this work, we use a DNN to jointly optimize the illumina-
tion to both reduce the number of required images for accurate
fluorescence image inference, and to explore how performance
scales with the amount of inferred information. To achieve this
latter goal, we vary the precision of the desired fluorescent
output to consider a range of inference tasks, from binary
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Fig. 1: (A) Experimental setup: Microscope with both fluorescence and non-fluorescence imaging paths centered above a
programmable LED array for training data capture. (B/C) Example fluorescent inference pipelines: The optimized LED pattern
illuminates a sample to form an image. The neural network processes LED-illuminated images to produce an estimated
fluorescent result. The ground truth is shown to the right of the inference result. Example B shows the HeLa task while
Example C shows the PAN task.

image segmentation (one bit) to the prediction of complete
fluorescent images (seven bits). For each level of precision,
we examine how the converged LED pattern changes, and how
these patterns trend with precision. The optimized patterns not
only yield higher accuracy results, but also provide a certain
degree of physical intuition between scattered bright-field light
and fluorescent emission that can be used to improve future
data collection strategies.

II. RELATED WORK

In recent years, convolutional neural networks (CNNs) have
become commonplace for both medical and natural image
processing [4]. Segmenting images to find specific cell types
or sub-cellular features (e.g. cell nuclei), for example, is now
a common biomedical image analysis task that CNNs excel at.
The U-net structure [5], perhaps one of the most widely used
CNN architectures, has been applied across a wide variety of
segmentation tasks [6] and makes efficient use of annotated
data during training.

As the use of neural networks continues to increase in
popularity, many researchers are now also applying them
to automatically analyze fluorescent imagery. Belthangady et
al. [7] recently reviewed this increasing body of work and
summarized it into two general categories: virtual staining and
fluorescent image enhancement.

“In-silico” labelling is the process of using bright-field
images to predict fluorescent images. While still a relatively
new concept, several recent works demonstrate that DNNs can
be quite effective at this task, which suggests that certain future
experiments may forgo fluorescent imaging and staining en-
tirely. Christiansen et al. [3] first demonstrated this concept by
developing a CNN which predicted seven distinct fluorescent
channels from a set of several dozen uniquely focused bright-
field images. Ounkomol et al. [8] then used a modified U-net
structure to predict 3D fluorescent images using 3D bright-
field data. Chen et al. subsequently [9] applied this technol-

ogy through the design of an Augmented Reality Microscope
which overlays a neural network’s predictions on top of the
underlying bright-field data. In a related effort, Rivenson et
al. [10] used a neural network to infer histologically stained
images from unstained tissue with high accuracy and visual
quality. These works all demonstrate that it is possible to
infer information revealed by a fluorescent or histological stain
from unmodified bright-field data, albeit at varying levels of
accuracy.

Fluorescent image enhancement focuses on improving the
quality of existing fluorescent images. Weigert et al. [11]
developed a content-aware image restoration method powered
by a CNN. This work showed that fluorescent image restora-
tion was possible by predicting high resolution fluorescent
images from ones which were under-sampled. In an earlier
work, Weigert et al. [12] used a CNN to perform isotropic
reconstruction of 3D fluorescent data. Through these works,
we can infer that data contained within fluorescent images
is potentially redundant, and through the assumption of key
underlying features, it is at times possible to enhance image
quality via CNN post-processing.

However, in most studies, the focus is on processing data
that has already been captured, rather than attempting to
influence or improve the image acquisition process. While an
early work used simple neural networks to effectively design
components of optical systems [13], the first work (to the
best of our knowledge) to examine hardware optimization in
the context of CNNs was by Chakrabarti [14], who presented
an optimal pixel level color-filter layout for color image re-
construction. A number of subsequent works have considered
how to merge the optimization of various imaging hardware
components into a differentiable optimization network [15],
[16], [17], [18], [19], [20], [21], [22], [23]. However, few
of these works have proposed the use of CNNs to optimize
the image capture process for automated decision tasks (e.g.,
classification, object detection, image segmentation, etc.).
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Fig. 2: Standard LED patterns tested in this work, and resultant illuminated images

Fig. 3: Diagram of training and inference pipelines for physics-
enhanced fluorescence image inference. The orange region
indicates the components involved in training, while the
blue region contains components used for inference. The
fluorescence image and LED-generated ”k-stack” images are
captured through the same objective lens and split via a
beamsplitter. Multiplicative weights for the LED images are
learned during training are transformed into LED brightnesses
during fluorescence image inference.

Such an approach was recently considered by Horstmeyer et
al. [24], who suggested the use of a ”physical layer” in a CNN
to identify optimized illumination patterns that can improve
automated classification accuracy of the malaria infected blood
cell detection. Other related work has used DNNs to design
custom optical elements to improve an image’s depth-of-
field [25], to inform new types of illumination for improved
phase contrast imaging [26], [27], achieve superior resolution

[28], [29], or infer color from a gray-scale image [19] . The
goal of these works was not to improve the accuracy of
automated image inference, as considered here.

In terms of using a microscope’s illumination to achieve
new functionalities, prior work has clearly shown the benefits
of applying programmable LED array lighting. This includes
variable bright-field and dark-field imaging [30], measurement
of a specimen’s surface gradient[26], [27], and quantitative
phase imaging [31] to name a few. Mathematically rigorous
methods have also been used to combine variably-illuminated
images to increase image resolution. Two prominent exam-
ples are Fourier ptychographic microscopy (FPM) [32] and
structured illumination microscopy (SIM) [33]. These works
highlight the benefit of controlling illumination and provide
ample evidence that it should be targeted for optimization.

III. METHODS

A. Image Formation

In this work, we collected and processed data across two
different experimental setups. Both setups used an off-the-
shelf LED array (Adafruit product ID 607), which provided the
capability to turn on specific LED array patterns at different
colors (e.g., red, green and blue) for multi-angle and multi-
spectral specimen illumination (Figure 1A). In each setup, the
LED array was placed sufficiently far from the sample plane
such that the illumination from each LED could be modelled
as a plane wave at the sample, propagating at a unique angle
corresponding to its relative position. This type of illumination
has been previously used for FPM [32], [34], as well as phase
contrast [26], [27] and super-resolved 3D imaging [35], [36],
[37], among other enhancement techniques. As noted above,
illumination from a wide variety of angles and colors pro-
vides diverse information about biological specimens, which
are primarily transparent, that is not available under normal
illumination (see Figure 2). However, it is not directly obvious
which type of illumination is best-suited for mapping non-
fluorescent image data into fluorescence stained image data.
The optimal patterns will likely depend upon which sample
features are fluorescently labeled, as well as properties of
the specimen’s complex index of refraction. In this work, we
consider two separate fluorescent labeled sample categories
- one in which the cell nucleus is labeled, and a second in
which the cell membrane is labeled - to verify this hypothesis.
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In addition, the specific inference task may also impact the
optimal illumination distributions (i.e., segmentation versus
image formation) in a non-obvious way. To solve for such
task specific illumination patterns, we propose to use a mod-
ified DNN, which includes a ”physical layer” [24] for joint
hardware optimization.

In this type of approach, the supervised machine learning
network itself jointly determines the optimal distribution of
LEDs’ brightness and colors to use for sample illumination,
and to perform the subsequent image-to-image inference task.
As we describe below, the process of LED illumination can
be modeled by a single physical layer, which we prepend to
the front of a DNN U-Net architecture for improved image-
to-image inference. After the network training is complete,
the optimized weights within the physical layer (in this case,
representing the angular and spectral distribution of the sample
illumination) inform us of a better optical design for each
specific inference task at hand. Figure 3 shows how this
process is realized for both training and inference.

To mathematically model image formation, we express the
jth specimen of interest as the complex function oj(r, λ).
Given N LEDs within the array, we can denote the amplitude
of the plane wave emitted by each colored LED emitting at
center wavelength λ as a weight

√
wn(λ) for n = 1, . . . , N .

Each LED in the array illuminates the sample with a coherent
plane wave from a unique angle θn. Since, the LEDs are mu-
tually incoherent with respect to each other, the image formed
by an illumination composed of multiple LEDs is equivalent
to the incoherent sum of images obtained by illuminating the
member LEDs individually. Assuming a thin specimen, for
example, we may write the jth detected quasi-monochromatic
image I ′j as the incoherent sum,

I ′j(r) =
∑

λ∈{RGB}

N∑
n=1

|oj(r, λ) ·
√
wn(λ)e

ikn·r ? h(r)|2 (1)

where,
√
wn(λ)e

ikn·r describes the plane wave generated by
the nth LED with intensity wn(λ) at wavelength λ across the
sample plane with coordinate r, kn = 2π

λ sin θn denotes the
plane wave transverse wavevector with respect to the optical
axis, and h(r) denotes the microscope’s coherent point-spread
function and describes the imaging system blur.

As the LED brightness wn(λ) is a scalar quantity, we
can factor it out of the summation in Eq. 1. Furthermore,
if we denote the image of the jth sample formed when it
is illuminated by the nth LED at a fixed brightness and
wavelength as Ij,n(λ) = |oj(λ) · eikn·r ?h|2, then we arrive at
a simple linear model for image formation for the jth sample:

I ′j(r) =
∑
λ

N∑
n=1

wn(λ)Ij,n(r, λ). (2)

The detected image under illumination from a particular LED
pattern, where each LED has a brightness wn(λ), is equal
to the weighted sum of images captured by turning on each
LED individually. The detected image I ′j is then entered
into the neural network for processing. Equation 2 represents
our physical layer for microscope illumination, and the fully
differentiable optimization pipeline is shown in Figure 3.

To find the set of weights wn(λ) which best parameterize
the transform in Eq. 2 for the subsequent inference task, we
must have access to all N uniquely illuminated images Ij,n
during network training. However, once training is complete,
the set of optimized weights {wn} are then mapped onto
the physical LED matrix to allow for acquisition of a single
optimally illuminated image, which is then processed by the
remainder of the DNN for the fluorescent image inference task.

B. Network Design

We used a consistent U-Net architecture that we prepended
with a physical layer to model Equation. 2. The exact ar-
chitecture and layer configurations, used in all the reported
experiments, is detailed in Appendix B. The weights within
the physical layer were unconstrained, meaning they could
take on both positive and negative values. To experimentally
realize an unconstrained set of illumination weights w, we
captured two images (instead of one) - a first with the positive
set of weights, and a second with the negative set, before
subtracting the second image from the first for the final result.

Although the experimentally captured measurements inher-
ently contain Poisson noise, the digital simulation of multi-
LED images used during training will have an artifactually
inflated SNR (e.g., averaging N images produces a

√
N

improvement in SNR). To compensate for this we introduced
a Noise Layer which adds dynamically generated Gaussian
random noise to the data after the first physical layer:

I ′′j = N (µ = I ′j , σ
2 = k × |I ′j |) (3)

Additive noise is modelled on a per-pixel level with Equation
3, using a hyperparameter k to control the scale of the noise
in proportion to the pixel intensity. Note that the variance of
the random noise is proportional to the image pixel intensity
itself, and thus is consistent with a Poisson noise model.

Finally, an L1 penalty within the network cost function
(absolute deviation from zero) was applied to the physical
layer weights wn. This L1 penalty term is given a small weight
proportional to the magnitude of the gradients to drive weights
to zero, if and only if they are not significantly contributing to
the task performance (see details in Appendix B). The addition
of this type of penalty reduces variance across random seeds
and aids in interpretation of the resulting LED patterns.

IV. EXPERIMENTS

We examined two types of fluorescently labeled biological
specimen in the following experiments. For each experiment,
a square 15 × 15 grid of multi-color LEDs was used for
illumination, where each multi-color LED included 3 spectral
channels (with center wavelengths λ =480, 540, and 632 nm),
representing N = 15 × 15 × 3 = 675 different illumination
sources. For each imaging experiment, an LED image stack
was acquired by turning on each LED individually and captur-
ing a unique image. To provide target labels, each sample was
also illuminated with a UV fluorescent excitation source and
captured via a separate path containing a fluorescent emission
filter, but using the same optical imaging setup that collects
the bright-field image data. By using the same optical setup to
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Fig. 4: Examples of inferred fluorescent images at varying
bit depths. Moving from left (1-bit segmentation) to right (7-
bit image) we observe that not only does increasing the bit
depth of the k-means quantized image change the amount
of information that the network must reconstruct, but also
changes where in the intensity range various features occur.

capture the same FOV, we ensured that sample positioning and
lens distortion factors remained constant across bright-field
and fluorescent channels. Multiple non-overlapping fields-of-
view were captured for each specimen of interest.

After data capture, each full field-of-view dataset was split
into 256 × 256 pixel sections, with each bright-field section
having 675 channels (one channel for each LED configura-
tion). These formed the 256 × 256 × 675 datacubes, which
were fed into our modified DNN for network training. The
matching fluorescent channel was used as a target label for
training, and is not present during inference. After training,
the network produced a 675 element optimizable LED weight
vector w. To compare our optimized illumination results with
other image collection approaches, we ran the same training
process using a fixed w (i.e., without optimizing the physical
layer), where the values correspond to common illumination
configurations often seen in microscopy [38]:

1) Center is spatially coherent illumination from only the
center LED and 3 colors

2) All is spatially incoherent illumination from all 225
LEDs and 3 colors

3) DC stands for the differential contrast illumination
method

4) Off-axis is from an LED located 4 mm off the optical
axis, illuminating at approximately 3◦

5) Random is a randomly selected set of LED brightness
values

For each configuration and examined dataset, the neural
network architecture remained unchanged and was trained
using the same hyperparameters.

A. Data Label Generation

To understand the impact of the optimized illumination
pattern w, we varied the task difficulty by modifying the
fidelity of the target label. The 7 bit ground truth fluorescence
image was converted to 7 different images with different bit
depths, ranging from 1 bit to 7 bits of dynamic range. Here,
we hypothesize that reconstruction of a 1-bit fluorescence

image, which is effectively a segmentation mask, is easier than
accurately recovering a 7 bit fluorescence image. It should
be noted that the input bright-field images (the training data)
remains same for all tested cases. This allowed the same data
to be used to train a neural network to perform both binary
image segmentation task (1 bit precision), and to separately
train another network to perform a full fluorescent image
inference task (7 bit precision), and to also consider all tasks
that span these two common efforts. Figure 4 shows how
by varying the precision of the desired network output, it
is possible to vary the difficulty of the subsequent image
inference task, from producing a prediction that contains 1
bits to 7 bits per pixel.

To achieve a balance of pixel values across each discretized
histogram within the label images, we employed a global k-
means quantization strategy, where k = 2bits. To find the
mean values a naive k-means algorithm was applied on a
flattened version of the entire dataset, treating each pixel
value as an independent value. The initial mean values were
uniformly distributed across the space between zero and one:
mi = { ik |1 ≤ i ≤ k}. Mean values were iteratively adjusted
until either all values had converged (with a threshold of:
1e−05) or 20 iterations passed.

The inference results were only rounded to meet the ap-
propriate precision of the target bit level, with no further post
processing (k-means or otherwise).

B. Cell Nuclei

The data used in the first experiment was originally acquired
by a FPM microscope [39] and contains 90% confluent HeLa
cells, stained with a fluorescent nuclear label (DAPI). The
employed microscope included a two-lens arrangement with
an f = 200 mm tube lens (ITL200, Thorlabs) and an f =
50 mm Nikon lens (f/1.8D AF Nikkor). This two-lens setup
has a collection numerical aperture (NA) of 0.085 with 3.87x
magnification. The sample was placed at the front focal plane
of the f = 50 mm lens and a CCD detector (pixel size 5.5 µm,
Prosilica GX6600) captured images of the sample under LED
matrix illumination (one LED at a time, as noted above). The
LED array was placed 80 mm behind the sample with 32x32
individually addressable elements (pitch size 4 mm), of which
only the inner 15x15 were utilized. Full-FOV images from all
illumination angles and colors were divided into 442 unique
256×256×675 datacubes. The set of datacubes was randomly
split into training, testing, and validation sets containing 356,
48, and 48 images respectively.

C. Cell Membrane

For the second set of experiments, we captured images
of Pan 16 pancreatic cancer cells stained using CellMask
Green plasma membrane stain (C37608). Similarly to the
dataset described in Section IV-B, an identical LED array
was placed 60mm beneath the biological sample and of which
the inner 15x15 grid was used. An Olympus PlanN 0.25NA
10x objective lens was used in conjunction with a Basler
Ace (acA4024-29um) CMOS sensor. To capture the matching
fluorescence data a set of Thorlabs filters (MDF-GFP - GFP
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(a) HeLa task: MSE of test set inference results (b) PAN task: MSE of test set inference results

(c) HeLa task: SSIM of inference results compared to fluorescent
labels

(d) PAN task: SSIM of inference results compared to fluorescent
labels

Fig. 5: Performance statistics of both tasks across all configurations showed that learned illumination consistently improves
inference results. MSE was the target statistic to measure performance during training, while SSIM was used as an alternative
measure to compare image inference quality. All statistics are averaged across three random seeds.

Excitation, Emission, and Dichroic Filters) were inserted into
the optical setup. Figure 1 shows a photo of the setup used.
The data was split into test/train/validation sets such that data
from each sample only existed in one of the sets, providing a
robust means of gauging generalization and overfitting. When
split into 256 × 256 images there were 820/108/108 samples
in the train, validation and test sets respectively.

V. RESULTS AND DISCUSSION

A. Performance

Across both tasks and all bit depth configurations, we
found that the optimized illumination patterns determined
by our physical layer outperformed all other illumination
arrangements (coherent and incoherent bright-field, dark-field,
random and phase contrast). Figure 5 plots the mean squared
error (MSE) of each inference task as a function of inference
bit depth (i.e., inference difficulty), cell type, and physical
layer parameterization. This main result shows that jointly
optimized microscope hardware can lead to superior image
inference performance across a wide range of tasks - ranging
from image segmentation to virtual fluorescence imaging.

Although MSE provides an accurate measure of the task
performance, it is less suited to understand the perceptual
quality of the results. We thus also computed the structural
similarity index (SSIM) [40] across the test set for both tasks
(results shown in Figure 5). Here we can see that the reduction

Fig. 6: Comparing relative performance across tasks and
bit depths using the best of standard illumination patterns
compared to the learned patterns. A trend of down and to
the right indicates greater performance benefits at higher bit
depths.

in mean squared error brought by the optimized illumination
carries onto a higher perceptual quality.

B. Performance versus inference task

By varying the bit depth of the output label, we were able
to test our approach with seven different configurations. We
first observe that the gap in performance (both MSE and
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Fig. 7: Exposure adjustment for visualization: For the PAN
task a non-uniform exposure was used during data collection,
to enable accurate visualization the PAN LED patterns were
normalized by their per-LED exposure value

SSIM – Figure 5) between the inference results created by
the optimized LED pattern (”learned”), and the alternative
standard LED illumination patterns, is quite consistent. Given
that the pixel values within all of the output labels are
normalized to a [0, 1] range, this result is somewhat consistent
with our expectations. The increase in difficulty of the task
is partially offset through the decrease in the ”cost” of being
wrong.

To get a better understanding of the interaction of task diffi-
culty and performance we examined the relative performance
of the ”learned” method compared to the best of the ”standard”
methods. To do this we constructed a relative performance
metric, RMSE , which is the quotient of the minimum MSE
among the standard patterns’ MSE and the learned configura-
tions MSE, for each bit depth K. See equations 4 and 5.

MSEKstandard = min(MSEKcent.,all,oa,rand.,dcp) (4)

RKMSE =
MSEKstandard
MSEKlearned

(5)

Within Figure 6 we show that the relative performance of
the learned LED configuration improves with difficulty when
compared to the best standard configuration. This illustrates
how the joint optimization process provides a consistent per-
formance improvement that becomes more important as the
difficulty of the task increases.

C. LED Parameterization

In addition to improved performance, the DNN-optimized
LED illumination patterns also offer several interesting physi-
cal insights. To aid in interpretation of the patterns, each LED
was normalized by it’s exposure (as shown in Figure 7), as
using different exposures per LED enabled us to fully utilize
the dynamic range of our image sensor. Figure 8 displays the
learned patterns as a function of inference task (1-bit to 7-bit)
on a per-color-channel basis for both tested specimens.

These illumination patterns highlight the importance of two
primary features for transmitting visible light information that
is most relevant to a particular fluorescent specimen and stain.
First, producing phase contrast by illuminating differently
within the bright-field (the inner 3x3 LEDs for the HeLa task,
and the inner 5x5 LEDs for the PAN task) and dark-field
appears important across all tasks. Second, providing color
contrast (e.g., green for the positive image and red for the
negative image) also appears important, most notably for the

(a) HeLa cell task

(b) Pancreatic cancer cell task.

Fig. 8: LED Patterns learned through joint optimization: the
patterns are shown for each bit depth configuration. The color
channel indicated at the top of each row is the color of
the LEDs which were illuminated. The colorbar indicates the
brightness that each LED was configured to.

HeLa nuclei prediction task. The pattern differences on a per-
task (HeLa vs. PAN) can be attributed both to the differences
between setups (notably that the PAN task setup included
more bright-field LEDs) as well as the differences between
samples. It should be noted that for the PAN task the LED
patterns appear shifted, this is due to an indexing error which
occurred during the data-preprocessing steps and does not hold
any physical significance.

We are also able to compare the distribution of optimized
LED patterns as a function of task difficulty (i.e., output
label bit depth). Although the importance of establishing
a learned pattern to improve network performance is clear
(section V-B), the trend among the spatial patterns themselves
is less so. We found that, in general, the lower bit-depth
patterns generated images which put more emphasis on higher
frequency information, and vice versa. Figure 9 shows how
the average resolved spatial frequency power decreases with
increased bit depth, although this trend was noisy and several
bit-depths were exceptions. The values were determined by
finding the first moment of each illuminated images’ spatial
frequency power representation along it’s radius, more details
are provided in Appendix A. We hope to examine more
possible trends in future work.

Although there is only a small amount of variation present in
the overall system performance, the LED patterns themselves
do vary across random seeds. Figure 12 shows examples and
statistics of this variance across both tasks. We hypothesize
that there are two factors driving this variance. First, images
acquired from high-angle illumination (particularly dark-field)
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(a) HeLa Task

(b) PAN Task

Fig. 9: Average spatial frequency of illuminated images for
each bit-depth configuration

had lower intensity values on average and therefore contributed
less to the synthesized image. This translates to a higher
degree of allowed variance in the optimized result, since as
the brightness value of an LED illuminating from a high angle
doesn’t impact the image as much as the more centrally located
LEDs, and hence the gradients driving its value will be fairly
weak. The use of the L1 norm penalty reduced this variance
across both tasks.

Second, there is clearly a coupling between the solution of
the neural network and the parameterization of the LED array.
The joint optimization procedure followed in this work uses
this coupling to get higher performance results, and shows that
higher performance is consistently obtained. But, as an adverse
effect, it also decreases our ability to draw conclusions from
the end parameterization of the LED array. This is because
when a deep neural network is being trained, it can arrive
at one of many local minima (finding the global minima is
highly unlikely). Due to the network arriving and terminating
at a local minima, the LED parameterization is such that the
lighting is optimized for that specific local minima, instead
of what might be globally optimal. Within section V-D, we
comment on one method of alleviating the impact of arriving
at local optima through the use of targeted regularization.

D. Impact of Regularization on LED Parameterization

Many of the trials presented here were run both with
and without the addition of regularization on the weights
representing the illumination pattern. Upon comparison, we
found that the addition of this regularization did not impact
our target performance statistic (MSE on the test set), however
it did have a large effect on the LED patterns themselves. Most
notably, when the LED weights are left unconstrained, the

(a) HeLa cell task LED configurations after training

(b) Pancreatic Cancer cell task LED configurations after training

Fig. 10: Visualization of the impact of regularization on the
optimized LED patterns, and corresponding illuminated image.
Examples shown across both tasks and a subset of bit-depths.
Illuminated images contain both positive and negative numbers
and are auto-scaled for maximum contrast.

network tends towards an illumination pattern configuration
using many LEDs at high dark-field angles. When constrained
to use fewer LEDs, the optimized pattern instead utilizes
bright-field and dark-field LEDs at lower angles. Although
information contributed from higher angles may still be use-
ful overall, the L1 norm prioritizes illumination angles that
consistently contribute large amounts of information. In this
respect a standard L1 norm may not be ideal for this kind of
optimization, investigation into a more suitable regularization
strategy will be investigated in future work.

In Figure 10, we show side-by-side comparisons for both
cases across a representative set of bit depths. This comparison
clearly shows that not only do the regularized patterns contain
less within-trial spatial variance, but also they are potentially
more spatially interpretable. We postulate that this is because
the added regularization is having the desired effect of forcing
the optimization to find a parameterization that is robust to
perturbations (caused by the addition of noise) while simul-
taneously having the minimum overall energy (caused by the
L1 penalty). While performance in the simulated environment
remains the same (with and without regularization), we hy-
pothesize that these spatially smoother LED patterns are more
robust to changes in the eventual physical setup. However, we
leave testing this hypothesis for future work.
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VI. CONCLUSION

In summary, we have presented a novel method for devel-
oping image capture systems that can be optimized for deep
learning based image-to-image inferencing tasks. By placing
the physical parameters of the microscope in the gradient
pathway, we jointly optimized the way an image was captured
with the way it was processed. This allows imaging systems to
sample data, not based on what a human experimenter prefers,
but governed through optimization.

The two experiments we performed show that this tech-
nique is robust in its improvement, with MSE under each
configuration being minimized by the ”learned” or jointly
optimized approach. Furthermore, our experiments show that
this technique provides performance improvement for even the
simplest version of inference and this improvement increases
with problem difficulty and illumination sensitivity.

Our experimental results show that the physical parameters
of a microscope play an important role in deep learning image-
to-image inference systems. By allowing the joint optimization
of illumination and image processing we achieve consistently
better performance than all tested alternatives. We hope our
results continue to motivate the imaging and machine learning
community to re-examine how they capture data and continue
to develop understanding of the connection between data
capture and data processing.
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APPENDIX A
ILLUMINATED IMAGE FREQUENCY ANALYSIS

The illumination patterns shown in this work offer a limited
amount of insight into how the DNN affects image formation.
To develop a better understanding of this process, we examined
the illuminated images themselves, and examined how they
change as we manipulated the difficulty of each inference
task. To do this we define a metric called Average Spatial
Frequency Power which summarizes the spatial frequency of
an image. Figure 11 shows a diagram illustrating the process
of computing this metric.

First, the images from a representative sample of the dataset
(in this case, the test set) are illuminated with the optimized
LED pattern, creating a set of illuminated images. Each of
these images is then put through a 2D Fourier transform (2D
FFT) to establish a spatial frequency domain representation,
which we squared (i.e., element-wise square) to form a per-
image power spectrum. We then computed the average power
spectrum across all representative images per sample. Finally
the average spatial frequency power is calculated by taking
the first moment of the frequency power representation along
the radius of the spatial frequency distribution, resulting in the
1D plot shown in the main text.

APPENDIX B
NEURAL NETWORK CONFIGURATION PARAMETERS

Throughout all experiments the same neural network ar-
chitecture was used. We detail the key parameters of our U-
Net architecture in Table I. Within Table II we report the
hyperparameters used during training. With the exception of
the noise level these hyperparameters were the same across
tasks.

TABLE I: Neural Network Architecture

Parameter Value
Initial Filters 16

Filter Expansion Ratio 2
Convolutional Layers per Block 2

Convolutional Down-sampling Blocks 5
Convolutional Up-sampling Blocks 5

Convolutional Kernel Size 3× 3
Activation Function ReLU

Final Activation Function Sigmoid
BatchNorm Frequency After every convolution

Convolutional Padding Amount (1,1) zeros

TABLE II: Training Hyperparameters

Hyper Parameters HeLa Task PAN Task
Optimizer Adam Adam

Initial Learning Rate 0.005 0.005

LR Reduction Factor
√
10

√
10

LR Reduction Patience 5 5
Noise Level (k) 0.1 0.3

L1 Penalty 0.0004 0.0004
Batch Size 4 4

APPENDIX C
ADDITIONAL LED PATTERNS AND ILLUMINATION

EXAMPLES

To supplement the LED patterns shown in the main text
Figure 12 shows every LED pattern across three random seeds
on a per-color basis. The variance for each individual LED is
also plotted to illustrate how random seeds effect converged
LED patterns. In general we observe that the average variance
across the patterns decreases with bit-depth.

To highlight the differences in the final illuminated image,
as well as the impact on the inference results Figure 13 shows
examples for both tasks across a sub-set of bit depths. The
learned (DNN-optimized) patterns consistently out-perform
the alternatives, yielding inference results which are closer to
the discretized fluorescent label.
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Fig. 11: Process for determining the average resolved spatial frequency for a particular illumination pattern and image set.

(a) HeLa Task - Red LED Patterns (b) PAN Task - Red LED Patterns

(c) HeLa Task - Green LED Patterns (d) PAN Task - Green LED Patterns

(e) HeLa Task - Blue LED Patterns (f) PAN Task - Blue LED Patterns

Fig. 12: All LED patterns across both tasks and all bit-depths. The sign of each pattern is adjusted on a per-run basis to allow
for easier interpretation.
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(a) HeLa Task - One Bit Configuration (b) PAN Task - One Bit Configuration

(c) HeLa Task - Seven Bit Configuration (d) PAN Task - Seven Bit Configuration

Fig. 13: Examples for a sub-set of bit depths of illumination patterns, corresponding illuminated images, and inference results.
Across all tasks and bit-depth configurations the learned pattern outperforms the alternatives.
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