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Abstract

The vast majority of modern consumer-grade cameras
employ a rolling shutter mechanism, leading to image dis-
tortions if the camera moves during image acquisition. In
this paper, we present a novel deep network to solve the
generic rolling shutter correction problem with two con-
secutive frames. Our pipeline is symmetrically designed
to predict the global shutter image corresponding to the
intermediate time of these two frames, which is difficult
for existing methods because it corresponds to a camera
pose that differs most from the two frames. First, two time-
symmetric dense undistortion flows are estimated by using
well-established principles: pyramidal construction, warp-
ing, and cost volume processing. Then, both rolling shut-
ter images are warped into a common global shutter one in
the feature space, respectively. Finally, a symmetric consis-
tency constraint is constructed in the image decoder to ef-
fectively aggregate the contextual cues of two rolling shutter
images, thereby recovering the high-quality global shutter
image. Extensive experiments with both synthetic and real
data from public benchmarks demonstrate the superiority of
our proposed approach over the state-of-the-art methods.

1. Introduction

Popular low-budget commercial cameras are generally
built upon CMOS sensors due to their low cost and sim-
plicity in design. Most CMOS cameras employ a rolling
shutter (RS) mechanism. Different from the global shutter
(GS) camera that exposes all pixels at the same time, the
RS camera is exposed in a row-wise manner from top to
bottom. Thus, the images and videos captured by a mov-
ing RS camera will have the RS effect (e.g., stretch, wob-
ble). We provide an illustration in Fig. 2 while assuming the
camera has a frame time of τ . The high dynamic sampling
characteristics of the RS mechanism are regarded as an ad-
vantage rather than a disadvantage [1], but simply ignoring
the RS effects in 3D geometric vision applications may lead
to erroneous, undesirable and distorted results [5, 18, 3, 9].
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To mitigate or eliminate the RS effect which is increasingly
becoming a nuisance in photography, a well-known RS cor-
rection problem has therefore attracted more and more at-
tention [36, 38, 20]. This challenging problem aims at re-
covering the GS image corresponding to the camera pose at
a specific exposure time (e.g., 0 or τ in Fig. 2).

Existing works on RS correction generally fall into
one of two categories: single-frame-based or multi-frame-
based. It is an ill-posed problem in the case of single-frame-
based RS correction, where additional prior assumptions
need to be formulated explicitly [26, 17, 24, 23] or implic-
itly [25, 38]. Following the previous studies [36, 37, 20, 8]
in reducing the ill-posedness, we also focus on the well-
posed generic RS correction problem from two consecutive
frames of a video. In particular, since RS cameras are usu-
ally time-synchronized with other sensors (e.g., GS camera,
IMU, etc.) in hardware by referring to the first scanline time
[29, 13], we deal with a corresponding challenge of correct-
ing the RS images to the GS image corresponding to the
exposure time of the first scanline of the second frame (i.e.,
the intermediate time τ of these two frames). This is of both
theoretical interest and great practical importance.

To this end, classical two-frame-based methods [36, 37]
heavily rely on specific RS motion models and require
nontrivial iterative optimizations, which limits their use in
time-constrained applications. Although the state-of-the-art
learning-based method [20] has achieved promising results
in recovering the GS image corresponding to the middle
time 3τ

2 of the second frame, it is prone to fail to predict
a plausible GS image at time τ , where many image texture
details cannot be well restored (c.f . Fig. 1(d)). Since the
GS image at time 3τ

2 and the second RS image have close
content, their asymmetric network only exploits the limited
information of the second RS image, but ignores the con-
textual aggregation of both RS frames.

Recently, various image-to-image translation problems
have been tackled with the deep learning pipelines (e.g.,
image correction [20], optical flow estimation [32], depth
estimation [22], video deblurring [31], and image super-
resolution [19], etc.). However, it still poses a challenge to
learn to produce a satisfactory GS image corresponding to
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(a) Original RS image 1 (b) Original RS image 2 (c) Ground truth GS image

(e) Predicted only by RS 1

(d) Liu et al. [20]

(f) Predicted only by RS 2 (g) Our corrected GS image

Figure 1. An example of RS correction from two consecutive frames. (a-b) Input two consecutive RS images; (c) Ground truth GS image
corresponding to the middle time of two consecutive frames; (d) GS image predicted by the state-of-the-art method [20]; (e-g) The forward,
backward, and target GS images predicted from only the first RS image, only the second RS image, and the combined two RS images (our
pipeline), respectively. The first and second RS images have different contributions to the upper and lower regions of the corresponding
GS image which can be seen between yellow and blue boxes. Our proposed approach makes use of this property for RS correction.

the intermediate time τ of two consecutive frames. Its com-
plexities mainly lie in the following facts: 1) Different from
the local neighbors that can provide sufficient description in
general image-to-image translation problem, a pixel of the
target GS image may not be in the neighboring pixel of its
corresponding RS images, depending on the type of motion,
the 3D structure, and the scanline time; 2) We observe in
Fig. 1(e)&(f) that the first and second RS images contribute
greatly to the lower and upper parts of the corresponding
time-centered GS image, respectively. This is expected be-
cause they are closer in time and thus share more similar
camera poses. Consequently, the centered exposure time τ
corresponds to the most unique camera pose that deviates
greatly from both RS frames, such that only the cues from
a single RS image may result in the lack of details of the
corrected GS image. Therefore, motivated by these two in-
sights, we propose a novel symmetric undistortion network
architecture to rectify the geometric inaccuracies induced
by the RS effect from two consecutive RS images. The net-
work can benefit from the overall exploitation and aggre-
gation of contextual information, where the time-centered
GS image can be reconstructed by using an adaptive fusion
scheme, as illustrated in Fig. 1(g).

Our network takes two consecutive RS images as in-
put and predicts the corrected GS image corresponding to
the intermediate time of these two frames. To essentially
exploit and merge contextual information across both RS
images, our pipeline is symmetrically constructed. It con-
sists of two main processes: a PWC (pyramid, warping,
and context-aware cost volume)-based undistortion flow es-
timator and a time-centered GS image decoder. The suc-
cess of the classic PWC-Net framework [32] in aggregating

multi-scale context information inspires the construction of
our undistortion flow estimator, which is to estimate the
pixel-wise undistortion flows of the first and second RS im-
ages. Note that the context-aware cost volume we construct
can effectively promote contextual consistency at different
scales. Then, the pixel-wise undistortion flows are used to
warp the learned image features to their corresponding GS
counterparts. Finally, we develop a time-centered GS image
decoder to further align the contextual cues of their warped
features and convert the aggregated feature representations
to the target GS image in a robust way. Our symmetric
undistortion network (SUNet) can be trained end-to-end and
solely uses the ground truth GS image for supervision. Fur-
thermore, it can also inpaint the occluded regions from the
learned image priors, resulting in a high-quality GS image
as shown in Fig. 1(g). Experimental results on two bench-
mark datasets demonstrate that our approach is superior to
the state-of-the-art methods in removing the RS artifacts.

In summary, our main contributions are:
• We propose an efficient end-to-end symmetric RS

undistortion network to solve the generic RS correc-
tion problem with two consecutive frames.

• Our context-aware cost volume together with the sym-
metric consistency constraint can aggregate the con-
textual cues of two input RS images effectively.

• Extensive experiments show that our approach per-
forms favorably against the state-of-the-art methods in
both GS image restoration and inference efficiency.

2. Related Work
We categorize the relevant works into classical model

based and deep learning based RS correction methods.
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Figure 2. Illustration of the exposure mechanism of the RS cam-
era over two consecutive frames. Assume the sensor exposure is
instantaneous and each frame time is τ . The sensor is exposed
and readout row by row, resulting in the scanline-varying camera
poses. Our approach aims to restore the time-centered GS image
that corresponds to the intermediate time τ of these two frames.

They can also be further subdivided into single-frame-based
and multi-frame-based methods, respectively.

Classical model based RS correction methods. Many
techniques have been implemented for RS image correction
from two or more RS frames. The RS correction was posed
as a temporal super-resolution problem in [4] to mitigate
RS wobble in an RS video stream. [11] employed a homog-
raphy mixture to achieve joint RS removal and video sta-
bilization. [27, 10] assumed that the RS camera has either
pure rotation or in-plane translational motion. An RS-aware
warping [36] was proposed to rectify RS images based on
a differential formulation, where linear solvers were devel-
oped to recover the relative pose of the RS camera that expe-
rienced a specific motion between two consecutive frames.
They further refined both the camera motion and the depth
map from dense correspondences to perform RS correction,
which also determined that it relied too much on optical
flow. The occlusion-aware undistortion method [33] re-
moved the depth-dependent RS distortions from a specific
setting of ≥ 3 RS images, assuming a piece-wise planar
3D scene. Such methods rely on computationally expen-
sive non-linear optimizations by inputting a large number
of correspondences. More recently, [37] proposed a dif-
ferential RS homography model together with a minimal
solver to account for the underlying scanline-varying poses
of RS cameras, which can be used to perform RS-aware im-
age stitching and rectification at one stroke. [2] explored a
simple two-camera rig, mounted to have different RS direc-
tions, to undistort the RS images acquired by a smartphone.

Removing RS artifacts based on a single image frame
is inherently a highly ill-posed task. To make it tractable,
some external constraints about camera motion or scene
structure need to be enforced. [26] attempted to exploit the
presence of straight lines in urban scenes. [23] modeled
the Ackermann motion based on a known vertical direction
[35], while [24] leveraged a prior to the Manhattan world.
[17] relaxed the Manhattan assumption and required merely
the (curved) images of straight 3D lines to undistort a sin-
gle RS image. [26, 17, 24] also assumed that the camera

underwent the pure rotational motion. Hence, they cannot
work well if these underlying assumptions on scene struc-
tures and camera motions do not hold.

Deep learning based RS correction methods. The suc-
cess of deep learning in high-level vision tasks has been
gradually extended to the RS geometry estimation problem
(camera motion and scene structure), where a convolutional
neural network (CNN) was trained to warp the RS images
to their perspective GS counterparts. Rengarajan et al. [25]
proposed the first CNN to correct a single RS image by as-
suming a simple affine motion model. Afterward, Zhuang
et al. [38] extended [25] to learn the underlying scene struc-
ture and camera motion from a single RS image, followed
by a post-processing step to produce a geometrically con-
sistent GS image. Note that they often follow a general rule
popular in classical methods (e.g., [36, 37, 17, 24, 25, 34])
that returns the GS image under the first scanline time (0 or
τ ). Very recently, Liu et al. [20] used two consecutive RS
images as input and designed a deep shutter unrolling net-
work to predict the GS image corresponding to the middle
time of the second frame ( 3τ2 ). To the best of our knowl-
edge, our symmetric RS undistortion network is the first that
is developed to learn the mapping from two input consecu-
tive RS frames to the target GS frame corresponding to the
intermediate time of these two frames (τ ).

3. Approach

Our network accepts two consecutive RS images and
outputs a corrected GS image that corresponds to the inter-
mediate time of these two frames. To effectively exploit and
aggregate contextual information of two consecutive RS im-
ages, our pipeline is symmetrically constructed and con-
sists of two main parts, i.e., a PWC-based undistortion flow
estimator network and a time-centered GS image decoder
network, as shown in Fig. 3. Henceforth, let I denote the
image, c the feature representation, and F the undistortion
flow. Meanwhile, in the subscript, t ∈ {1, 2} indicates the
t-th RS image, t → g shows the corresponding GS counter-
part warped from the t-th RS content, and g corresponds to
the time-centered corrected GS instance. Particularly, the
superscript l represents the products of 1

2l−1 resolution cor-
responding to the l-th pyramid level. Since our network is
symmetric, next we will describe only the network architec-
ture associated with the first RS image.

We first build a weight-sharing feature pyramid for two
input RS images I1 and I2. At the top L-th pyramid level,
we construct a cost volume by comparing features of a pixel
in the first RS image with corresponding features in the sec-
ond RS image. As the top level is of small spatial resolu-
tion, we can construct the cost volume using a small search
range. The cost volume and features cL1 of the first im-
age are then fed to a CNN to estimate the undistortion flow
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Figure 3. Overall network architecture. It mainly consists of two sub-networks: a PWC-based undistortion flow estimator and a time-
centered GS image decoder. We only show the RS correction modules at the top two levels. For the rest of the pyramidal levels (excluding
the first two layers), the overall RS correction modules have a similar structure as the second to the top level. Note that only the second to
fifth pyramid features are warped, following a tailored correlation GS image decoder. Our network is designed symmetrically to aggregate
two consecutive RS images in a coarse-to-fine manner. The symmetric convolutional layers of the same color share the same weights.

FL−1
1→g followed by an upsampling operation. The upsam-

pled undistortion flow FL−1
1→g is then delivered to the next

pyramid level. At the second to the top level, we warp fea-
tures cL−1

1 of the first RS image to its GS counterpart cL−1
1→g

using this upsampled undistortion flow. Meanwhile, cL−1
1→g

is fed to a CNN to predict the forward GS image IL−1
1→g .

The second RS image is similarly processed. Further, IL−1
1→g ,

IL−1
2→g , cL−1

1→g , and cL−1
2→g are concatenated into cL−1

g , which
is then decoded by CNN layers to recover the time-centered
corrected GS image IL−1

g . Next, we construct a context-
aware cost volume using features cL−1

1→g and cL−1
2→g warped

from the first and the second RS images respectively. As
warping compensates for the large motion, we can still use
a small search range to construct the cost volume. This cost
volume, features cL−1

1 of the first RS image, and the upsam-
pled undistortion flow FL−1

1→g are fed to a CNN to estimate a
square-scale undistortion flow FL−2

1→g at the (L−1)-th level.
These processes repeat until the desired level.

In the following, we introduce the key components of
each module, including pyramid feature extractor, undistor-
tion flow estimator, and time-centered GS image decoder
networks. The details of the architecture are provided in
Appendix B.
Feature pyramid extractor. For two consecutive RS im-
ages I1 and I2, we encode the L-level pyramids of feature
representations to explore richer multi-scale information.
Note that the bottom (0-th) level is the input images, i.e.,
c0t = It. We utilize a single 2D convolution with a stride

of 2 to downsample the features cl−1
t at the (l− 1)-th pyra-

mid level, and obtain the feature representation clt at the l-th
layer. We do not downsample the 0-th pyramid, i.e., c0t and
c1t have the same size. Note that the 1-th pyramid is used as
a transitional layer. Specifically, three ResNet blocks [12]
are performed after each downsampling operation. In our
implementation, we use a 6-level pyramid, i.e., L = 5, con-
sisting of 5 levels of CNN features and the input RS images
as the bottom level. Wherein, the number of feature chan-
nels is set to 16, 32, 64, 96, and 128, respectively.

Context-aware cost volume layer. After obtaining the up-
sampled undistortion flow F l−1

t→g at the l-th layer, we warp
the feature cl−1

t of the t-th RS image to its GS counterpart
cl−1
t→g using the forward warping block [20], which can com-

pensate for RS distortions and put the corrected GS image
patches at the right scale. The warped features are the same
as the pyramid features at the top level, i.e., cLt→g = cLt .
We further construct a cost volume cvl−1

1→2 as the correlation
[6, 32] between cl−1

1→g and cl−1
2→g by taking cl−1

2→g as a refer-
ence. Similarly, with cl−1

1→g as a reference, cvl−1
2→1 can also

be obtained accordingly. A search range of d pixels is used
to compute the cost volume at each level. Note that this
is more reasonable than the ill-aligned embedding of cost
volume in [20]. Building these multi-resolution matching
costs can promote mutual consistency between the contex-
tual warped feature representations cl−1

1→g and cl−1
2→g , which

is conducive to improving the fidelity of the subsequent cor-
rected GS images decoded by the aggregated features.
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Undistortion flow estimator. Next, we feed features cl−1
t

of the t-th RS image, the undistortion flow F l−1
t→g , and the

corrsponding cost volume into five DenseNet blocks [14].
The undistortion flow F l−2

t→g is then estimated followed by
an upsampling operation at the (l − 1)-th level. To connect
the subsequent time-centered GS image decoder modules,
we set the desired level to be l0, i.e., our model outputs
multi-scale undistortion flows F l

t→g , L − 1 ≥ l ≥ l0 − 1,
which can be used to estimate the multi-scale GS images
with different resolutions. Note that the number of feature
channels for these five DenseNet blocks is respectively 128,
128, 96, 64, and 32 at the top pyramid level. Decreasingly,
we have 64, 64, 48, 32, 16 for the (L− 1)-th pyramid level
and 32, 32, 24, 16, 8 for the (L− 2)-th pyramid level.
Time-centered GS image decoder. Inspired by the image
decoder proposed in [20], we employ three ResNet blocks
[12], whose structure is consistent with that in the feature
pyramid extractor, followed by a GS image prediction layer
and a deconvolutional layer. The warped features cl−1

1→g of
the first RS image, the warped features cl−1

2→g of the second
RS image, and the concatenated features cl−1

g are embed-
ded to generate forward and backward GS images I l−1

1→g and
I l−1
2→g , and a target GS image I l−1

g between l-th and (l−1)-
th pyramid levels, respectively. Note that the concatenated
features cl−1

g fuse cl−1
t→g , I l−1

t→g , and features of the previous
level (if it exists) in an adaptive selection manner. Our net-
work finally outputs a half-resolution GS image and we use
bilinear upsampling followed by a 2D convolution to obtain
the full-resolution time-centered GS image.
Training loss. Given a pair of consecutive RS images
{It}21, our SUNet predicts the undistortion flows F l−1

t→g , the
forward/backward GS images I l−1

t→g , and the corrected GS
image I l−1

g at the l-th pyramid level (l ≥ l0). Let I l−1
GT de-

note the corresponding ground truth (GT) GS image in the
intermediate time of two consecutive RS frames. Note that
the superscript l−1 indicates 1

2l−2 resolution images. Our
loss function can be formulated as:

L = λrLr + λpLp + λcLc + λsLs. (1)

Reconstruction loss Lr. We model the pixel-wise re-
construction quality of the corrected GS image on multiple
scales as:

Lr =

L∑
l=l0−1

∥∥∥Il−1
GT − Il−1

g

∥∥∥
1
, (2)

where all images are defined in the RGB space.
Perceptual loss Lp. To mitigate the blurry effect in the

corrected GS image, similar to [20], we employ a perceptual
loss Lp [15] to preserve details of the predictions and make
estimated GS image sharper. Lp is defined as:

Lp =

L∑
l=l0−1

∥∥∥ϕ(
Il−1
GT

)
− ϕ

(
Il−1
g

)∥∥∥
1
, (3)

where ϕ represents the conv3 3 feature extractor of the
VGG19 model [30].

Consistency loss Lc. To combine cues from I1 and I2,
we enforce their respective warped feature representations
cl−1
1→g and cl−1

2→g to be as close to each other as possible.
This operation also facilitates subsequent alignment in the
concatenated feature representation cl−1

g , thereby alleviat-
ing artifacts in the corrected GS image I l−1

g predicted by
cl−1
g . Specifically, we introduce the pixel-wise consistency

loss Lc to supervise the network to align the forward and
backward images I l−1

1→g and I l−1
2→g predicted by the first and

the second RS images respectively across different levels,
so that it can recover more details. Lc is defined as:

Lc =

2∑
t=1

L∑
l=l0

∥∥∥Il−1
GT − Il−1

t→g

∥∥∥
1
. (4)

Smoothness loss Ls. Finally, we add a smoothness term
[21] to encourage piecewise smoothness in the estimated
undistortion flows as:

Ls =

2∑
t=1

L∑
l=l0

∥∥∥∇F l−1
t→g

∥∥∥
2
. (5)

Note that the context-aware cost volume and warping
layers have no learnable parameters. Our network can be
end-to-end trained as each of its modules is differentiable.

4. Experimental Results
Datasets. As far as we know, the two RS datasets Carla-RS
and Fastec-RS published in [20] are the only RS datasets
that provide ground truth GS supervisory signals and are
therefore suitable for our task. The Carla-RS dataset is gen-
erated from a virtual 3D environment using the Carla simu-
lator [7], involving general six degrees of freedom motions.
The Fastec-RS dataset contains real-world RS images syn-
thesized by a professional high-speed GS camera. Follow-
ing the evaluation in [20], we also test our algorithm on
these two benchmarks. Similarly, the Carla-RS dataset is
divided into a training set of 210 sequences and a test set of
40 sequences, and the Fastec-RS dataset has 56 sequences
for training and 20 sequences for the test. There are no over-
lapping scenarios between the training set and the test set.
Note that the Carla-RS dataset provides the ground truth
occlusion masks. Following [20], we set quantitative eval-
uation experiments as the Carla-RS dataset with occlusion
mask (CRM), the Carla-RS dataset without occlusion mask
(CR), and the Fastec-RS dataset (FR), respectively.
Implementation details. The network is implemented in
PyTorch. The weights have been determined empirically as
λr = 10, λp = 1, λc = 5, and λs = 0.1. We downsample
the ground truth GS images to obtain the supervision sig-
nals at different levels. The desired level l0 is set to 3 and
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Table 1. Ablation study on the context-aware cost volume. Remov-
ing the cost volume (0) leads to consistently worse performances.
Our network can handle large RS distortions using a small search
range to compute the cost volume.

Max. Disp. PSNR↑ SSIM↑
CRM CR FR CR FR

0 21.87 21.84 25.21 0.66 0.76
2 28.76 28.60 28.07 0.84 0.83
4 (Ours) 29.28 29.18 28.34 0.85 0.84
6 29.22 29.11 28.14 0.85 0.83

Table 2. Ablation study on the size of the convolving kernel at the
1-th pyramid level. Note that “0 × 0” means that we remove the
first layer of the current feature pyramid extractor, i.e., L = 4
and the new c1t is half the size of c0t . The transitional feature
representation across the 1-th pyramid level can promote the better
perception of large RS distortions, thereby producing substantially
better results.

Kernel Size PSNR↑ SSIM↑
CRM CR FR CR FR

0× 0 29.02 28.91 27.83 0.84 0.82
3× 3 29.08 28.93 28.13 0.85 0.83
5× 5 29.26 29.16 28.17 0.85 0.83
7× 7 (Ours) 29.28 29.18 28.34 0.85 0.84

the top pyramid layer L is set to 5, i.e., we only work with
the feature representations captured by the second to fifth
pyramid layers to estimate the undistortion flow and correct
the RS images. We set a search range of 4 pixels to com-
pute the cost volume at each level, i.e., d = 4. We adopt
the Adam optimizer [16] with a learning rate of 10−4. The
chosen batch size is 6 and the network is trained for 400
epochs. We use a uniform random crop at a horizontal res-
olution of 256 pixels for data augmentation. Note that we
do not change the longitudinal resolution to maintain the in-
herent characteristics of consecutive RS images, which can
help to better learn to accumulate contextual information of
two consecutive RS images.

Competing methods. To evaluate the performance of the
proposed approach, we compare with two representative
two-frame-based RS correction methods [36, 20] that are
the most relevant baselines to our approach. In addition, we
also compare with the state-of-the-art single-frame-based
RS correction method [38]. Since [38] does not release their
code, we follow the reimplementation by [20]. Note that the
Fastec-RS dataset does not provide ground truth depth and
motion, so we are unable to complete the RS correction us-
ing [38]. A constant velocity model is assumed and solved
to achieve RS correction in [36]. Because the deep shutter
unrolling network (DSUN) [20] recover the GS image cor-
responding to the time of the middle scanline of the second
RS frame, we thus adjust and retrain it to predict the GS
image corresponding to the intermediate time of two con-
secutive RS frames for consistent and fair comparisons.

Evaluation metrics. Following previous works, we use
PSNR and SSIM metrics to report the quantitative results of

Table 3. Ablation study on whether to multiply the time offsets.
Compared with [20], our symmetric network can implicitly learn
the dependence of RS undistortion flow on scanline time.

Time Offset PSNR↑ SSIM↑
CRM CR FR CR FR

Yes 28.56 28.45 28.13 0.83 0.83
No (Ours) 29.28 29.18 28.34 0.85 0.84

Table 4. Ablation study on the consistency loss. λc = 0 means
no consistency loss is used. The self-supervised consistency loss
is defined as measuring only the difference between forward and
backward GS images. Our loss function is effective to align con-
textual cues, especially the Fastec-RS dataset.

Consist. Loss PSNR↑ SSIM↑
CRM CR FR CR FR

λc = 0 29.05 28.94 27.89 0.84 0.82
Self-supervised 29.15 28.99 28.02 0.85 0.83
Ours 29.28 29.18 28.34 0.85 0.84

Table 5. Effectiveness of different combinations of training losses.
PSNR↑ SSIM↑

CRM CR FR CR FR
w/o Lr 28.00 27.90 27.29 0.83 0.81
w/o Lp 29.08 28.95 28.20 0.85 0.84
w/o Lc 29.05 28.94 27.89 0.84 0.82
w/o Ls 29.19 28.07 28.15 0.85 0.83
full loss 29.28 29.18 28.34 0.85 0.84

our method. The larger the PSNR/SSIM score, the higher
the quality of the corrected GS image.

Ablation studies. We study the role of each proposed com-
ponent in SUNet, for further insight into the design choices.

1) Context-aware cost volume. We analyze the effect
of different search range in the cost volume on the perfor-
mance of our approach, shown in Table 1. One can see that
removing the cost volume is consistently bad for GS image
restoration, which indicates that the cost volume can effec-
tively promote the perception and alignment of the warped
contexts of two consecutive RS images. Thus the contextual
cost volume can be regarded as a core unit of our network
to deal with the non-local operations of the RS correction.
Furthermore, a 4-pixel search range is enough to undistort
the RS images successfully, which is due to the fact that
a 4-pixel search range is capable of handling up to 100-
pixel displacements at the input resolution. Specifically, a
larger range leads to similar performance, so a larger search
range may bring better benefits when the image resolution
increases or the RS distortion is severe.

2) Kernel size. Although we do not directly utilize the
feature representation of the first pyramid level, we investi-
gate its influence as a transitional layer on the final perfor-
mance, shown in Table 2. First, we directly remove the first
layer of the current feature pyramid extractor, i.e., a 5-level
pyramid is used. Then we test different convolution ker-
nel sizes at the first pyramid level. All these settings have
similar performance in terms of PSNR and SSIM, but we
empirically observe that a 7 × 7 kernel size has relatively
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(a) Original RS image 2 (d) Liu et al. [20](c) Zhuang et al. [36] (e) Ours(b) Ground truth GS image

Figure 4. Qualitative results against baseline methods on the Fastec-RS dataset. Even rows: absolute difference between the corresponding
image and the ground truth GS image. (c-e) GS images predicted by Zhuang et al. [36], Liu et al. [20], and our approach, respectively.

better correction capabilities on the foreground, resulting in
better visual quality. One possible explanation is that the
foreground objects exist more serious RS distortion, and a
larger convolution kernel can increase the receptive field,
which therefore contributes to recovering more geometri-
cally consistent GS images.

3) Time offset. The undistortion flow depends not only
on the camera motion and the 3D scene geometry but also
on the scanline time of a particular pixel. Thus, [20] ex-
plicitly multiplies the velocity field with the time offset to
model the adapted undistortion flow. Similarly, we also ex-
plicitly multiply our upsampled undistortion flows by the
corresponding normalized time offsets between the expo-
sure time of the captured pixel and the intermediate time of
the two frames. Interestingly, the results in Table 3 demon-
strate that our SUNet can directly return the suitable RS-
aware undistortion flows to transform the learned feature
representations to their corresponding GS counterparts. We
reckon this is because explicit modeling of time offset at
multi-resolution may confuse the network, while our PWC-
based symmetric architecture can successfully learn the in-
herent scanline-dependent characteristics of the undistor-
tion flow. See Appendix A for more analyses.

4) Loss function. We also perform two experiments to
prove the effectiveness of the proposed consistency loss Lc.
One is to remove Lc from the loss function L in Eq. 1, i.e.,
λc = 0. The other is to change the consistency metric in
Eq. 4 to the direct difference between forward/backward
GS images I l−1

1→g and I l−1
2→g without introducing the ground

truth GS images I l−1
GT , where λc is still fixed at 5, which

constitutes a self-supervised metric. As can be seen from
Table 4, removing the consistency loss consistently weak-
ens the performance of GS image restoration, and the self-
supervised metric is not effective enough, especially in the
Fastec-RS dataset. In addition, they will cause visible seams
in the foreground, such as the signboard in Fig. 1. We also

Table 6. Quantitative comparisons of the performance between our
approach and the state-of-the-art baseline methods. Note that we
cannot use [38] to benchmark the Fastec-RS dataset due to its lack
of training ground truth. Our approach again performs the best.

Methods PSNR↑ (dB) SSIM↑
CRM CR FR CR FR

Single-frame [38] 18.70 18.47 - 0.58 -
Model-based [36] 25.93 22.88 21.44 0.77 0.71
DSUN [20] 26.90 26.46 26.52 0.81 0.79
SUNet (Ours) 29.28 29.18 28.34 0.85 0.84

find that they all degrade the estimates of both I l−1
1→g and

I l−1
2→g to black, which sacrifices the interpretability of the

network in the geometric sense. One possible reason is that
the occlusion between I l−1

1→g and I l−1
2→g is more serious than

that between them and I l−1
GT , which degrades the predic-

tions of both I l−1
1→g and I l−1

2→g and thus contributes little to
the alignment of the contextual cues. Overall, it proves our
loss function in Eq. 1 can fully supervise the RS correction.

5) Training loss. We report the impact of different com-
binations of the loss terms in training our model, as shown
in Table 5. Note that removing the perceptual loss Lp will
cause the corrected image to appear blurred effect, and the
reconstruction loss Lr is particularly important. Our total
loss function yields the best model, which facilitates better
removal of RS artifacts to produce high-quality results.
Comparison with baseline methods. We report the quan-
titative and qualitative comparisons against the baseline
methods in Table 6 and Fig. 4, respectively. We also pro-
vide more qualitative comparisons in Fig. 12. The exper-
imental results demonstrate that our approach outperforms
the three state-of-the-art methods by a significant margin.
Note that the deep shutter unrolling network (DSUN) [20]
is most relevant to our approach. However, DSUN is diffi-
cult to restore the GS image details that have not been seen
by the second RS image, which also validates our preced-
ing analysis in Section 1. The visually unpleasing areas,
i.e., the lower parts of the corrected GS image, are mainly
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(a) Original (b) Corrected (c) Ground Truth

Figure 5. SfM results by Colmap [28] for a building. (a) Reconstructed 3D model with original RS images. (b) Reconstructed 3D model
with corrected GS images. (c) Reconstructed 3D model with ground truth GS images. It demonstrates that our pipeline removes the
undesired RS distortion and generates a more accurate 3D model as the ground truth 3D model.

Original Corrected

Figure 6. A 3D reconstruction example using the original RS images and our corrected GS images, respectively.

concentrated in the scanlines with a large time offset from
the intermediate time of two input frames. On the contrary,
our approach can overcome these obstacles quite well, as
shown in Fig. 4. Also, the forward and backward GS im-
ages rectified from the first frame and the second frame re-
spectively are depicted in Fig. 1(e)&(f), which indicates the
importance of contextual cues. More analyses are shown in
Appendix A.

Furthermore, [36] is a classical model based RS correc-
tion method with two consecutive frames by assuming a
constant velocity motion model. However, its performance
in poorly textured regions is not satisfactory. [38] uses a
single RS image as input to achieve RS correction, but it
shows limited generalization performance on the Carla-RS
dataset. A possible reason is that the estimation of cam-
era motion and scene depth is degraded due to unseen scene
contents in the test data. Also, the specific RS camera model
assumptions in post-processing may have poor adaptability
to this dataset. In contrast, our data-driven approach solves
a general two-frame-based RS correction problem without
relying on specific RS camera model assumptions, thereby
achieving better performances. It is also worth mentioning
that, benefit from the powerful expressive power of CNNs,
our approach can effectively fill the occluded regions, which
is unable to be reconstructed by [36] and [38]. An intuitive
analysis is that on the Carla-RS dataset, the difference of

PSNR in [36] with or without the mask is 3.05 dB, while
ours is only 0.1 dB.

3D reconstruction. We run an SfM pipeline (i.e., Colmap
[28]) to process the original RS image sequences, the cor-
rected GS image sequences, and the ground truth GS im-
age sequences, respectively. Fig. 5 and Fig. 6 demonstrate
that our approach can correct the geometric inaccuracies
and generate a more accurate 3D structure that complies
with the underlying ground truth 3D scene geometry. Note
that one can see the obvious RS distortions (e.g., skew and
shrink) in the 3D model obtained by the original RS images.

Generalization performance. We use the real data pro-
vided by [36] to carry out the generalization experiment,
and make a qualitative comparison with several relevant RS
correction methods. The results are summarized in Fig. 7.
To evaluate the performance of our proposed pipeline on
video sequences, we further utilize the RS image dataset
from [10], where each sequence consists of 12 consecutive
RS frames with significant image distortions. Two exam-
ples are shown in Fig. 8. It is obvious that, in comparison
with SUNet, DSUN [20] always fails to recover the texture
on the ground. Also, combining with Fig. 9, one can further
see that our approach obtains more satisfactory RS correc-
tion results with its excellent generalization ability. Overall,
our approach has good generalization ability to recover a vi-
sually compelling GS image.
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Original RS frame 1 Original RS frame 2 Rengarajan et al. [26]

Rengarajan et al. [25]Vasu et al. [33] Zhuang et al. [36]

Zhuang et al. [37]

Liu et al. [20]

Lao et al. [18]

Ours

Figure 7. Qualitative comparisons against relative methods using data provided by [36]. Our pipeline estimates a plausible GS image and
complements the occluded regions based on the learned image prior.

Inference time. Our method can correct RS images with a
resolution of 640×480 pixels using an average of 0.21 sec-
onds on an NVIDIA GeForce RTX 2080Ti GPU, which is
faster than the average 0.34 seconds of DSUN [20]. Note
that the classical two-frame-based RS correction method
[36] takes several minutes on an Intel Core i7-7700K CPU.

5. Conclusion

In this paper, we have proposed an end-to-end symmet-
ric undistortion network for generic RS correction. Given
two consecutive RS images, it can effectively estimate the
GS image corresponding to the intermediate time of these
two frames. Our context-aware undistortion flow estimator
and the symmetric consistency enforcement can efficiently
reduce the misalignment between the contexts warped from
two consecutive RS images, thus achieving state-of-the-art
RS correction performances. Currently, we concern our-
selves with the RS correction problem corresponding to a
particular time. In the future, we will explore more chal-
lenging tasks, e.g., a typical exposure time manipulated by
the user to complete the corresponding RS correction.

Appendix A: Necessity and effectiveness of
contextual aggregation

In Fig. 1(e)&(f), we have shown the forward and back-
ward GS images I1→g and I2→g synchronously generated
by our network. To better prove that our pipeline can effec-
tively aggregate the contextual cues of two consecutive RS
images, we further report the intermediate results of our net-
work in Fig. 10, i.e., forward/backward undistortion flows
and GS images. The biggest motivation that utilizing con-
textual aggregation for RS correction is inspired by this ob-
vious observation, i.e., the first RS image I1 and the sec-
ond RS image I2 have different contributions to the upper
and lower regions of the corresponding ground truth time-
centered GS image IGT respectively, which is exemplified
in Fig. 10(e)&(f). Through symmetric network design, our

improved PWC-based architecture can obtain a plausible
RS-aware undistortion flow (i.e., the closer the pixel to the
intermediate time τ , the smaller the value of the undistor-
tion flow is generally.) for subsequent accurate RS correc-
tion.

As manifested in Fig. 11, the limited information of the
second RS image is insufficient to restore the rich texture
details of the target GS image at intermediate time τ . In-
tuitively, the rear of the car in the backward GS image
marked by the red circle in Fig. 10(f) is similar to the con-
tent restored by DSUN [20] in Fig. 4(d). This is because
the extra information of the first frame is not used for de-
tail extraction and fusion, which indicates the necessity of
contextual aggregation. Furthermore, our context-aware
cost volume together with the symmetric consistency con-
straint is proven to be beneficial in effectively aggregating
the contextual cues of two consecutive RS images, thereby
resulting in high-quality time-centered GS images (at time
τ ) with more complete visual content.

Appendix B: Network details

Fig. 13 displays the architecture of the 6-level feature
pyramid extractor network. Note that the bottom level in-
dicates the original input RS images. Fig. 14 illustrates
the undistortion flow estimator network of I1 at the 4-th
pyramid level. The optical flow estimator networks at other
levels have similar structures but different feature channels.
Note also that the top level did not adopt the upsampled
undistortion flows and calculated the cost volume using the
pyramid features of the first and second RS images directly.
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Figure 8. Two examples extracted from the demo video. DSUN [20] performs worse when dealing with unseen scenes provided by [10],
while our proposed SUNet has excellent generalization performance to produce a coherent video with more detailed textures and fewer
ghosting artifacts.

RS frames (Overlay) 1 5. DSUN at    DSUN at     Ours at    

Figure 9. An example result from an RS sequence [10] captured by a fast-moving iPhone 3GS camera in the real world.
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Figure 10. Intermediate examples of our network, including forward/backward undistortion flows and GS images. The upper two rows and
the lower two rows show examples of Carla-RS and Fastec-RS datasets, respectively. Inputting two consecutive RS images I1 and I2, our
approach estimates the forward and backward undistortion flows F1→g and F2→g to predict the forward and backward GS images I1→g

and I2→g , which then are aggregated to produce a time-centered corrected GS image Ig as the ground truth GS image IGT . Note that the
undistortion flow of a pixel closer to the intermediate time of two frames appears as a lighter color (i.e., smaller values), such as the last
rows of (c) and the beginning rows of (d), which accounts for the basic scanline-dependent characteristics of the undistortion flows.
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