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Abstract

Recently, DETR [3] pioneered the solution of vision
tasks with transformers, it directly translates the image fea-
ture map into the object detection result. Though effective,
translating the full feature map can be costly due to redun-
dant computation on some area like the background. In
this work, we encapsulate the idea of reducing spatial re-
dundancy into a novel poll and pool (PnP) sampling mod-
ule, with which we build an end-to-end PnP-DETR archi-
tecture that adaptively allocates its computation spatially
to be more efficient. Concretely, the PnP module abstracts
the image feature map into fine foreground object feature
vectors and a small number of coarse background contex-
tual feature vectors. The transformer models information
interaction within the fine-coarse feature space and trans-
lates the features into the detection result. Moreover, the
PnP-augmented model can instantly achieve various de-
sired trade-offs between performance and computation with
a single model by varying the sampled feature length, with-
out requiring to train multiple models as existing methods.
Thus it offers greater flexibility for deployment in diverse
scenarios with varying computation constraint. We further
validate the generalizability of the PnP module on panop-
tic segmentation and the recent transformer-based image
recognition model ViT [7] and show consistent efficiency
gain. We believe our method makes a step for efficient
visual analysis with transformers, wherein spatial redun-
dancy is commonly observed. Code will be available at
https://github.com/twangnh/pnp-detr.

1. Introduction
Object detection is a fundamental computer vision task

aiming to recognize object instances in the image and lo-
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Figure 1. Left: Detection result. Right: Transformer computation
density map. Proposed method allows the model to adaptively
allocate computation spatially and avoid computation expenditure
on less informative background area.

calize them with precise bounding boxes. Modern detectors
address this set prediction task mainly with proxy learning
objectives, i.e., regressing offset from pre-defined anchor
boxes [23, 18] or boundaries from grid locations [27, 36, 9].
Those heuristic designs not only complicate the model de-
sign but also require hand-crafted post-processing for du-
plicate removal. A recent method DETR [3] eliminates
those hand-crafted designs and achieves end-to-end object
detection. It builds an effective set prediction framework
on top of convolution feature maps with transformers [28]
and shows competitive performance to the two-stage Faster
R-CNN [23] detector. The image feature map is flattened
in the spatial dimension into one-dimensional feature vec-
tors. The transformer then processes them with its strong
attention mechanism to generate the final detection list.

Albeit simple and effective, applying the transformer
networks to a image feature map can be computationally
costly, mainly due to the attention operation [28] over the
long flattened feature vectors. These features may be redun-
dant: natural images often contain enormous background
areas apart from the interested objects, which may occupy
large part in the corresponding feature representation; also,
some discriminative feature vectors may already suffice for
detecting the objects. Existing works improving the trans-
former efficiency mainly focus on accelerating the attention
operation [16, 15, 29, 5], and few of them consider the spa-
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tial redundancy discussed above.
To address the above limitation, we develop a learnable

poll and pool (PnP) sampling module. It aims to compress
an image feature map into an abstracted feature set com-
posed of fine feature vectors and a small number of coarse
feature vectors. The fine feature vectors are deterministi-
cally sampled from the input feature map to capture the fine
foreground information, which thus are crucial for detect-
ing the objects. The coarse feature vectors aggregate in-
formation from the background locations, and the result-
ing contextual information helps better recognize and lo-
calize the objects. A transformer then models the informa-
tion interaction within the fine-coarse feature space and ob-
tains the final result. As the abstracted set is much shorter
than the directly flattened image feature map, the trans-
former computation is reduced significantly and mainly dis-
tributed over the foreground locations. Our approach is or-
thogonal to the approaches improving the transformer ef-
ficiency [16, 15, 29, 5] and can be further combined with
them to obtain more efficient models.

Concretely, the PnP module is composed of two core
sub-modules: a poll sampler and a subsequent pool sam-
pler. The poll sampler incorporates a content-aware meta-
scoring network that learns to predict the infromativeness
score of the feature vector at each spatial location. The fea-
ture vectors are then ranked spatially with the informative-
ness scores and a subset of most informative feature vectors
are selected. The subsequent pool sampler dynamically pre-
dicts attention weights on the non-sampled feature vectors
and aggregates them into a small number of feature vec-
tors that summarize the background information. Similar
to the region proposal networks [23], the PnP module also
aims to extract object-relevant information, but is end-to-
end learned without explicit objective like object bounding
box regression. We build a PnP-DETR with the PnP mod-
ule, which operates on the fine-coarse feature space and
adaptively allocates its transformer computation in the spa-
tial domain. Fig. 1 is an example detection with computa-
tion density map (refer to Sec. 4.2 for details of the map
construction). Existing methods of improving model effi-
ciency still need train multiple models of different complex-
ities for achieving various trade-offs of computation and
performance. Compared with them, the proposed PnP sam-
pling allows the transformer to work with a variable number
of input feature vectors and achieve instant computation and
performance trade-off.

We conduct extensive experiments on the COCO bench-
mark, and the results show PnP-DETR effectively reduces
the cost and achieves dynamic computation and perfor-
mance trade-off. For example, without bells and whistels, a
single PnP-DETR-DC5 obtains a 42.7 AP with 72% reduc-
tion of transformer computation compared to the 43.3 AP
baseline and competitive 43.1 AP with 56% reduction. We

further validate the efficiency gain with panoptic segmenta-
tion and the recent vision transformer model (ViT [7]). For
example, PnP-ViT achieves near half of FLOPs reduction
with only 0.3 drop of accuracy. To summarize, the contri-
butions are:

• We identify the spatial redundancy issue of the image
feature map, which causes excessive computation of
the transformer network in a DETR model. We there-
fore propose to abstract the feature map, so as to sig-
nificantly reduce the model computation.

• To realize the feature abstraction, we design a novel
two-step poll-and-pool sampling module. It first em-
ploys a poll sampler to extract the foreground fine fea-
ture vectors, and then utilizes a pool sampler to obtain
the contextual coarse feature vectors.

• We then build PnP-DETR, wherein the transformer op-
erates on the abstract fine-coarse feature space and
adaptively distributes the computation in the spatial
domain. PnP-DETR is more efficient and achieves
instant computation and performance trade-off with a
single model, by varying length of the fine feature set.

• The PnP sampling module is general and end-to-
end learned without explicit supervision like the re-
gion proposal networks [23]. We further validate it
on panoptic segmentation and recent ViT model [7]
and show consistent efficiency gain. We believe our
method provides useful insights for future research on
efficient solutions of vision tasks with transformers.

2. Related Work

Object Detection In recent years performance of object
detection has been substantially improved [14, 13, 23, 20,
18, 27, 30, 31] over traditional approaches [26, 10]. Those
modern methods mainly address the task with a relaxed
learning objective, i.e., learning on a set of matched positive
anchor box samples and predicting with post-processing
(NMS) to suppress duplicates. The handcraft designs Re-
cently, [3] proposed an end-to-end DETR framework that
learns an explicit set based objective with transformers [28],
showing decent performance compared to previous two-
stage methods [23]. Our work aims at improving effi-
ciency of end-to-end objectors by reducing spatial redun-
dancy. Compared to most recent deformable DETR [37]
that improves the attention efficiency, we aim to directly
compress the feature map, which is from different perspec-
tive and could be potentially combined together. For ex-
ample, by implementing bilinear interpolation kernel in the
irregular sampled space [24, 25] to enable the learning of
deformable offset prediction.

2



Sparse Execution and Sampling Lots of works explored
sparse execution in convolution layers [12, 22, 2, 32, 11,
6, 11], saving computation by avoiding convolution oper-
ations on some less informative spatial locations. In this
work, we are partially inspired by the sparse convolution
and explore sparse execution of transformers [28] by de-
veloping a dynamic image feature sampling method for ef-
ficient subsequent processing. Our work is also related to
literature on learning a sampling policy for point cloud un-
derstanding tasks [8, 17, 21]. Different from these works
where sampling is achieved by new data point generation,
we directly address discrete sampling by using a novel sam-
pling as ranking strategy.

3. Method
We first revisit the DETR [3]. Then we elaborate the

proposed feature abstraction scheme, followed by detailed
design of the PnP Sampling that realizes the abstraction.
Finally we illustrate the PnP-augmented models and their
advantages. We denote constants, scalars, vectors, tensors
and sets as upper-case, lower-case, bold lower-case, bold
upper-case and blackboard-bold upper-case letters, respec-
tively, e.g., N, i, f, F, F.

3.1. Preliminaries

Without loss of generality, DETR [3] first utilizes a back-
bone convolution network C with parameters θc to extract
the image feature map F:

F = C(I, θc) (1)

F can be viewed as a grid structured feature vector set F:

F = {fij ∈ RC |i = 1, . . . ,H, j = 1, . . . ,W} (2)

Here fij is the feature vector at location (i, j), C is the num-
ber of feature channels, H , W are the height and width of
the extracted image feature map. The grid-structured fea-
ture set F is then viewed as a set of high-level visual tokens
with strong semantic information and translated into the de-
tection result with a transformer T parametrized with θt:

{(clsk, boxk)|k = 1, . . . , D} = T (F, θt) (3)

(clsk, boxk) denotes one detected object with category and
bounding box, the number of detections is fixed to D.

An intrinsic limitation of the grid structured visual token
representation F is that it spans uniformly over the spatial
locations and covers a large amount of background. Al-
though the transformer can attend to different areas with its
strong attention capability, the computation does not bene-
fit from this advantage and is uniformly distributed over the
spatial domain. This deviates from our expectation that the
processing power can be dynamically assigned to more rel-
evant area like foreground locations while focusing less on
area like background of a visual scene.

3.2. Feature Abstraction

We propose a feature abstraction scheme to address the
above limitation. It obtains two sets of feature vectors for
compact feature representation:

Ff = {fn ∈ RC |n = 1, . . . , N} (4)

Fc = {fm ∈ RC |m = 1, . . . ,M} (5)

The fine feature set Ff is discretely sampled from the full
set F, containing fine information that is essential for recog-
nizing and detecting the objects. The coarse feature set Fc is
obtained by aggregating information from multiple spatial
locations and encodes background contextual information.
Together, they form an abstraction set F∗:

F∗ = Ff ∪ Fc (6)

F∗ encodes all necessary high-level information for detect-
ing the objects within an image and is passed to a trans-
former for generating the object detection result. Refer to
supplementary for a theoretical analysis on the computation
saving. The feature abstraction scheme can also be viewed
as a tokenization formulation that suits well for solving vi-
sion tasks with transformers.

3.3. Poll and Pool (PnP) Sampling

The above abstraction scheme need address two chal-
lenges. 1) The fine set requires deterministic binary sam-
pling, which is non-differentiable. A handcrafted sam-
pler can be learnt with some intermediate objectives, e.g.,
the region proposal networks [23] or point proposal net-
works [36, 9], which is however incompatible with end-to-
end learning, and the handcraft sampling rules may not be
optimal. 2) To extract a compact, coarse feature set only
focusing on background contextual information is difficult.
We divide the abstraction scheme into two steps and de-
velop a poll sampler and a pool sampler to realize it. The
poll sampler first samples some feature vectors from the full
set F; the pool sampler then dynamically aggregates the re-
maining non-sampled feature vectors into a small number
of coarse feature vectors. Fig. 2 is an overview of the pro-
posed method. The samplers are deterministic and end-to-
end learned with negligible computation cost.

Poll Sampler The poll sampler aims to obtain a fine fea-
ture set Ff . Since explicitly learning a binary sampler is
infeasible, we develop a sample as ranking strategy. We use
a small meta-scoring network to predict the informativeness
score for each spatial feature location (i, j):

sij = ScoringNet(fij , θs) (7)

The larger the score is, the more informative the feature vec-
tor fij is. We then sort all the scores {sij} as

[sl, |l = 1, . . . , L],ℵ = Sort({sij}) (8)
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Figure 2. Illustration of the proposed PnP-DETR. The grid structured image feature map is first discretely sampled to obtain the fine
feature vector set by a poll sampler, and the remaining non-sampled feature vectors are then aggregated into a small number of coarse
feature vectors that summarize the contextual background information. The transformer encoder and decoder then operate on the fine-
coarse feature space to model the information interaction and obtain the detection result.

where ℵ is the sorting order and L = HW . With ℵ, we then
take the top N scoring vectors to form the fine feature set:

Ff = [fl, |l = 1, . . . , N ] (9)

To enable the learning of ScoringNet with back-
propagation, we take the predicted informativeness score as
a modulating factor to the sampled fine feature set:

Ff = [fl ∗ sl, |l = 1, . . . , N ] (10)

We find that normalizing the feature vectors before modu-
lating can stabilize the learning of ScoringNet:

Ff = [LayerNorm(fl) ∗ sl, |l = 1, . . . , N ] (11)

We use layer normalization [1] and turn off the affine pa-
rameters. Ideally, N may vary with the image content, but
we observe that fixed amount sampling already generates
good performance, i.e.,N = αL where α is a constant frac-
tional value, which we name as the poll ratio. This design
also enables an extension to single model computation and
performance trade-off discussed in Sec. 3.4.

Pool Sampler The above poll sampler extracts the fine
feature set. The remaining feature vectors mainly corre-
spond to the background area. To compress them into a
small feature set that summarizes the contextual informa-
tion, we design a pool sampler that performs a weighted
pooling of the remaining feature vectors to obtain a fixed
number of M background contextural feature vectors. This
is partially inspired by the bilinear pooling [19] and double
attention [4] operation where global descriptors are gener-
ated for capturing the second-order statistics of the feature
map. Formally, the remaining feature vector set is

Fr = F \ Ff = {fr, |r = 1, . . . , L−N} (12)

We project the feature vectors with a learnable weight Wa ∈
RC×M to obtain the aggregation weight ar ∈ RM :

ar = frWa (13)

and project the feature vectors with a learnable weight
Wv ∈ RC×C to obtain the projected feature:

f
′

r = frWv (14)

We then normalize the aggregation weight over all the re-
maining non-sampled locations with softmax:

arm =
earm∑N−L

r′=1
ear

′
m

(15)

With the normalized aggregation weight, the projected fea-
ture vectors are aggregated to obtain a new feature vector
that summarizes the information of non-sampled locations:

fm =

L−N∑
r=1

f
′

r ∗ arm (16)

By aggregating with all M aggregation weights, we obtain
the summarized coarse background contextual feature set:

Fc = {fm, |r = 1, . . . ,M} (17)

It has been shown in [34] that the context information is
crucial for recognizing the objects and is better aggregated
by pyramid features of different scales. Our pool sampler is
able to freely obtain context information of different scales,
by dynamically generating the aggregation weights. That is,
some feature vectors may capture local context while others
may encode global context. We empirically show such an
ability of the pool sampler by visualizing the aggregation
weights. Together with the fine set Ff from the poll sam-
pler, the desired abstraction set F∗ is obtained. Note that in-
stead of convolution feature map, the PnP module can also
be applied after a transformer layer.

Reverse Projection for Dense Prediction Tasks The
PnP module reduces the image feature map from 2D coordi-
nate space to an abstracted space, which cannot be used for
dense prediction tasks like image segmentation. To address
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the limitation, we propose to project the encoder output fea-
ture vectors back to the 2D coordinate space. Specifically,
the fine feature vectors are scattered back to the sampled lo-
cations; the coarse feature vectors are first diffused back to
original 2D space with the aggregation weight:

f̂r =

M∑
m=1

ˆfm ∗ arm (18)

and then scattered back the non-sampled locations of the
poll sampler. ˆfm denotes output coarse feature vector from
the encoder and f̂r means the projected feature vector. The
obtained 2D feature map is then used for dense prediction.

3.4. PnP-augmented Models

The PnP module is general and straightforward. It can be
plugged into existing models to enable them to operate on
the fine-coarse feature space for better efficiency. We here
describe the models we build to evaluate the PnP module
and our proposed random poll ratio scheme to enable instant
computation and performance trade-off with a single model.

PnP-DETR and PnP-ViT Recently [7] introduced a
transformer-based image recognition model named Vision
Transformer (ViT). We evaluate the generalizability of our
method on the ViT model. We build the PnP-DETR and
PnP-ViT by plugging the PnP module before the trans-
former network. The resulting models are end-to-end
learned and other settings are the same with original mod-
els. We use the hybrid ViT architecture [7]. Unlike origi-
nal DETR and ViT wherein the transformer directly oper-
ates over the full image feature space, the PnP augmented
transformer models the information interaction on the fine-
coarse feature space and adaptively allocates its computa-
tion in the spatial domain to achieve better efficiency.

Instant Computation and Performance Trade-off To
achieve different computation and performance trade-offs,
existing methods improving transformer efficiency gen-
erally train multiple models with different complexities
controlling hyperparameters, e.g., number of hashes in
Reformer [16] and projected feature dimension in Lin-
former [29]. Unlike them, a model equipped with a PnP
module can achieve instant single model computation and
performance trade-off. This is enabled by controlling the
poll ratio α to determine the amount of fine information
preserved. With a larger α, more fine feature vectors are ob-
tained, and the overall performance is expected to be higher;
with a smaller α, the performance may be lower but more
computation is saved. However, we find inference with a
different α to training severely degrades the performance.
We propose to generate a random poll ratio during training:

α = uniform(αlow, αhigh) (19)

Figure 3. Instant computation-performance trade-off, by executing
at different length. Blue: encoder layers Gray: decoder layers.

Where αlow and αhigh defines the value range. α is up-
dated in each iteration. In this way, the transformer learns
to work with variable length of input feature vectors, and
thus achieves the desired single model computation and per-
formance trade-off by inferring with different poll sample
ratios (Fig. 3). The model only needs to be trained once.

4. Experiments
4.1. Implementation Details

For training PnP-DETR, we use 4 images per GPU on
8-GPU machine, with a total batch size of 32. For training
PnP-ViT, we use 32 images per GPU, with a total batch size
of 256. The meta-scoring network is instantiated with a 2-
layer MLP. Unless otherwise stated, the pool sample num-
ber M is set to 60 and 240 for R50 and R50-DC5 models,
respectively. Other settings including hyper-parameters,
network architecture and loss functions follow the baselines
for fair comparison. Due to space limit, we defer more de-
tails like position embeddings to supplementary.

4.2. Experiments on Object Detection

Fixed Poll Ratio Training Tab. 1 shows the results of the
fixed poll ratio training on the COCO benchmark. For the
DETR-R50 model, with an α = 0.33, PnP-DETR achieves
41.1 AP and 60% reduction of transformer computation
cost. Further increasing α to 0.5, the performance reaches
a similar level as the DETR baseline (AP of 41.8 vs. 42.0),
with 45% reduction of the computation. For DETR-R50-
DC5 model, a similar trend is observed but more computa-
tion is saved. We also evaluate the setting of mismatched
training and test poll ratio. The model trained with α = 0.33
gets nearly 5 AP drop when evaluating with α = 0.5. This
observation shows the necessity of applying random poll ra-
tio training for the model to work with variable poll ratio.
We also compare to the deformable DETR [37], as we did
not incorporate multi-scale features, which is not the focus
of this work, we compare to single scale deformable DETR
for fair comparison. Our method performs better than de-
formable DETR with less FLOPs, especially for large ob-
jects, e.g., APl of 60.0 vs. 57.8 for the ResNet-50 backbone.

Dynamic Poll Ratio Training As shown in Fig. 4, by
training with the random poll ratio with a value range of
(0.15, 0.8), the obtained model can achieve dynamic com-
putation and performance trade-off by evaluating with vari-
able poll ratio. The AP for certain poll ratio is similar to
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Model AP AP50 AP75 APs APm APl F-encoder F-decoder F-sampler F-total

DETR-R50 [3] 42.0 62.4 44.2 20.5 45.8 61.1 9.6G 1.9G - 11.5G
Deformable-DETR [37] 40.4 60.5 43.4 21.3 44.6 57.8 - - - 5.5G (-52%)
PnP-DETR-R50-α-0.33 41.1 61.5 43.7 20.8 44.6 60.0 3.2G 1.3G 0.1G 4.6G (-60%)

Inference-α-0.5 36.1 59.8 36.1 13.9 38.7 57.7 - - - -
PnP-DETR-R50-α-0.5 41.8 62.1 44.4 21.2 45.3 60.8 4.8G 1.5G 0.1G 6.4G (-45%)

DETR-R50-DC5 [3] 43.3 63.1 45.9 22.5 47.3 61.1 69.2G 4.8G - 74.0G
ACT+MTKD(L=32) [35] 43.1 - - 22.2 47.1 61.4 - - - 58.2 (-21%)
ACT+MTKD(L=24) [35] 42.3 - - 21.3 46.4 61.0 - - - 53.1 (-28%)
Deformable-DETR-DC5 [37] 42.1 62.3 45.6 24.3 45.6 57.3 - - - 26.4G (-64%)
PnP-DETR-R50-DC5-α-0.33 42.7 62.8 45.1 22.4 46.2 60.0 17.8G 2.5G 0.4G 20.7G (-72%)
PnP-DETR-R50-DC5-α-0.5 43.1 63.4 45.3 22.7 46.5 61.1 29.1G 3.1G 0.7G 32.9G (-56%)

Table 1. Results with fixed poll ratio training on COCO val set. F-encoder, F-decoder, F-sampler, F-total denote the FLOPs of the encoder,
decoder, PnP sampler and the full transformer, respectively. The FLOPs is obtained by averaging over the first 100 images of val set. The
backbone FLOPs is omitted as we focus on the transformer efficiency. Inference-α-0.5 means inference with a mismatched poll ratio of
0.5 for PnP-DETR-R50-α-0.33 model. Note we report single scale deformable DETR [37] with 500 epochs training for fair comparison,
the result is obtained with the official implementation. Refer to Sec. 2 for the relation between our method and deformable DETR.

- baseline 0.65 0.50 0.33 0.25 0.20 0.17
AP 42.0 42.0 41.8 41.1 40.7 40.2 39.8

FLOPs (G) 11.5 8.1 6.4 4.6 3.8 3.3 2.7

- baseline 0.65 0.50 0.33 0.25 0.20 0.17
AP 43.5 43.4 43.2 42.7 42.2 41.8 41.3

FLOPs (G) 11.5 8.1 6.4 4.6 3.8 3.3 2.7

- baseline 0.65 0.50 0.33 0.25 0.20 0.17
AP 44.9 45.0 44.7 44.3 43.9 43.5 43.0

FLOPs (G) 74.0 45.0 32.9 20.7 15.1 12.4 10.1

- baseline 0.65 0.50 0.33 0.25 0.20 0.17
AP 43.3 43.3 43.1 42.7 42.3 42.0 41.5

FLOPs (G) 74.0 45.0 32.9 20.7 15.1 12.4 10.1

Figure 4. Dynamic AP and FLOPs trade-off curve with single model trained with our method. The curve is obtained by evaluating with
different poll ratios (α) as denoted on the curve. The chosen α values roughly equals the fractions of 1
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the fixed poll ratio trained counterpart. For example, a PnP-
DETR-R50 model gets 41.1 AP with fixed poll ratio 0.33
training and 41.2 AP with random poll ratio training. The
performance is the same to the baseline with a poll ratio of
0.65. We observe when the poll ratio is large, e.g., 0.5, in-
creasing the poll ratio brings diminished gain in AP. This
is likely because the fine feature set already covers the es-
sential spatial locations for detecting the objects, and thus
more fine information only brings limited gain. Similar ob-
servations are made with the ResNet-101 backbone. Tab. 2
shows the inference time compared to baseline model, the
inference time is significantly reduced.

Visualization of Computation Density Map Fig. 5
shows some example detection results and associated com-
putation density maps, with poll ratio of 0.33. The objects
are well detected while the computation is dynamically al-
located to the spatial domain in a content-aware manner. To
compute the density map, we assign a weight to each spa-
tial location. For poll sampled locations, the weight is 1.
For each of other locations, the weight is the cumulative
value of all pool sample aggregation weights at this loca-
tion. Then the transformer cost is distributed with the nor-
malized weights to obtain the computation density map.
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Methods Encoder Decoder PnP-sampler

DETR (baseline) 72.4 11.1 -
PnP-DETR-α-0.5 28.4 10.5 2.1
PnP-DETR-α-0.33 17.4 10.3 2.0

Table 2. Inference time (ms) measured on TITAN RTX GPU, with
ResNet-50-DC5 backbone.

4.3. Experiments on Other Tasks

Panoptic Segmentation Following [3], we evaluate our
method on the panoptic segmentation task. To perform
dense per-pixel segmentation as DETR, we project the en-
coder output feature back to the original 2D coordinate
space. As shown in Tab. 3, the model saves computation
and achieves instant performance and computation trade-off
by varying the poll ratio α, e.g., achieving Panoptic Quality
(PQ) of 43.2 compared to 43.4 of a baseline DETR model,
with 5G less FLOPs (i.e., 6.6G vs. 11.6G).

Image Recognition We also apply the PnP sampling to
the recent transformer-based image classification model of
ViT [7]. We use the hybrid architecture with ResNet50-
stage4 feature map (14x14) and train the model on the
ImageNet-1k dataset from scratch. We set the pool sam-
ple number to 10. We train the PnP-ViT with random poll
ratio in the value range of [0.2, 0.8]. As shown in Tab. 4, the
PnP-ViT achieves dynamic computation and performance
trade-off as observed with the DETR model. The results
show the generalizability of PnP sampling design.

Figure 5. Example detection results and computation density maps
with PnP-DETR-R50 model at poll ratio 0.33.

4.4. Model Analysis

We then provide several experimental analysis to bet-
ter understand the proposed method. To save experiment
time, we sample the COCO benchmark to obtain a smaller

- DETR α-0.65 α-0.5 α-0.33 α-0.25 α-0.2

PQ 43.4 43.5 43.2 42.8 42.4 41.8
SQ 79.3 79.2 79.1 78.9 78.7 78.4
RQ 53.8 53.8 53.4 53.0 52.4 51.7
FLOPs (G) 11.6 8.3 6.6 4.8 4.0 3.5

Table 3. Results on panoptic segmentation. ResNet-50 backbone
is used. α-* means inferring with a variable poll ratio.

- ViT α-0.7 α-0.5 α-0.33 α-0.25 α-0.2

Top1-Acc 82.2 82.1 81.9 81.6 81.4 81.2
FLOPs (G) 10.0 7.3 5.5 3.9 3.2 2.8

Table 4. Results on ViT model with hybrid architecture based on
ResNet-50. α-* means a single PnP-ViT model with a variable
poll ratio for inference.

poolpoll

Figure 6. Varying the poll ratio (α) and pool sample number (M )
with the same amount of computation, with ResNet-50 backbone.

dataset and conduct all experiments on the sampled COCO
dataset. We design a class-incremental sampling that helps
preserve the data distribution. Due to space limit, we defer
sampling details and more experiments to supplementary.

The Balance Between Poll and Pool Samplers As
shown in Fig. 6, we vary the the poll sample ratio and the
pool sample number to obtain the performance curve with
the same amount of computation cost. We observe that 1)
with only poll sampling (α-0.4), the performance is subop-
timal; incorporating pool feature vector samples can signifi-
cantly improve AP with the complementary background in-
formation from non-sampled locations, e.g., α-0.39-M -10
model achieving about 0.7 AP higher than the α-0.4 model.
2) with only pool sampling, the performance drops by a
large margin. We assume it is difficult for the pool sampling
to preserve accurate fine information, as it is designed to ag-
gregate feature vectors spatially from different locations. 3)
the optimal setting is 1/3 poll ratio with 60 pool samples,
indicating that a compact feature set should be mainly com-
posed of fine feature vectors for accurate object detection.
We further individually examine the effects of pool sample
numberM and poll sample ratio α: 1) We varyM by fixing
α. 2) We vary α by fixing M . Due to space limit, we defer
the experiment results and analysis to the supplementary.
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Input Image Poll Sampler Score Map Poll Sampled Locations Pool Sample: Global Context Pool Sample: Local Context

Figure 7. Visualization of poll sample locations and example aggregation weight map from the pool sampler, with PnP-DETR-R50. 1st col:
input images; 2nd/3rd cols: score maps of poll sampler and its sample maps correspondingly; last two columns: the example aggregation
weight maps from the pool sampler, in which the former aggregates global context, while the latter aggregates local context.

Figure 8. The learning dynamics of the poll sampler, with PnP-
DETR-R50. The model is trained for 150 epochs with learning
rate decay at 100 epochs. The left figure shows the proportion
of sampled locations that lie within the GT bounding box areas.
The right figure depicts the pixel IOU of sampled locations with
previous epoch. The statistics are obtained on the val set.

Visualizing Poll and Pool Sampling As shown in Fig. 7,
we visualize the poll sampler’s scoring map, its sampled lo-
cations, and example aggregation weight map of the pool
sampler. To summarize, 1) the poll sampler learns to sam-
ple the locations within and surrounding objects; 2) the pool
sampler obtains different scales of context. For example, on
the first row, the first pool sample attends to a wide range
of spatial locations and encodes global context information;
the second sample attends to a small area around the sky,
and thus captures local context. We also have some other
intriguing observations on the poll sampler: 1) It learns to
sample object alike area beyond the object categories used
for training. For example, for the last row in Fig. 7, lo-
cations around the traffic signs and the tree-like object are
sampled. The behavior is similar to a learned region pro-
posal network (RPN) [23], but learned without explicit su-
pervision. 2) It tends to sample coarsely for some large and
‘easy’ objects but finely for small ones. For example, fewer
points are sampled for the woman in the first row and the
bed in the second row; the books in the second image and
the cars in the last image are smaller and more difficult to
detect, so the poll sampler finely samples feature vectors for

those objects and surrounding areas.

Tracking Poll Sampler Learning To better understand
the learning process and dynamics of the poll sampler, we
record two statistics during training: (1) the proportion of
sampled locations that are within the GT bounding boxes;
(2) the pixel IOU of the sampled locations between consec-
utive epochs. As shown in Fig. 8, we make following ob-
servations. 1) The poll sampler gradually learns to sample
more feature vectors that lie within the ground truth area
but finally remains steady at about 60%, indicating that it
also attends some background and contextual locations that
are crucial for recognizing and detecting the objects. 2) The
poll sampler initially has a large variation on its sampled lo-
cations, and thus the sampled areas of consecutive epochs
have small IOU (i.e., about 0.2). During training, the IOU
quickly converges to about 0.7 with around 30 epochs and
remains steady at about 0.75, indicating that the sampler
quickly learns to sample crucial feature vectors and the sam-
pled locations does not change much. After learning rate
decay at 100 epoch, the IOU of the consecutive epoch is
close to 1.0, meaning the poll sampler converges.

5. Conclusion
In this paper, we encapsulate the idea of reducing spatial

redundancy into a learnable PnP module. It is composed of
a ranking based poll sampler that discretely samples fine
feature information and a subsequent adaptive pool sam-
pler that summarizes the background contextual informa-
tion. The PnP module is general and can be incorporated
into existing model for efficient processing while maintain-
ing the performance, which is verified on object detection,
panoptic segmentation and image recognition. We believe
the proposed method offers insights for future research into
efficient visiual analysis with transformers.
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encoder decoder

input set self-attn o. layers cross-attn o. layers

F aL2 bL cL O
F∗ ar2L2 brL crL O

Table 5. Computation saving by the abstract feature set F∗, com-
pared to the full set F. self-attn and cross-attn indicate the self-
attention and cross-attention layers. o. layers denotes other layers
except for the self-attention and cross-attention.

Computation Saving

Here we show the concrete computation saving by the
abstraction scheme, assume the length of the full feature set
is L = HW and the fraction of abstracted feature length
is r = (N + M)/L. As shown in first row of Tab. 5,
for encoder, since the complexity of self-attention layers is
O(L2) and the complexity of other layers (projection lay-
ers, feed-forward layers, normalization, e.t.c) is O(L),we
assume their actual computation cost is aL2 and bL corre-
spondingly. For the decoder, since the complexity of cross-
attention is O(L2), and the complexity of other parts is not
related to the sequence length L, we assume their costs are
cL and a constant O respectively.

Then with the abstracted feature set F∗ as input, the com-
putation cost of encoder self-attention is quadratically re-
duced to ar2L2, and the cost of other layers is reduced lin-
early to brL. For the decoder, the cross attention cost is
reduced to crL, and the cost of other layers remains as O.
The total computation of encoder compared to the original
is

ar2L2 + brL

aL2 + bL
=
ar2L+ br

aL+ b
∈ (r2, r) (20)

With a larger sequence length L the rate is more close to r2

and more computation is saved.
The total computation of decoder compared to original

is
crL+O

cL+O
=∈ (r, 1) (21)

With a larger sequence length L the rate is more close to r
and more computation is saved.

More Implementations

Here we describe the implementation details about
padding masks and position embedding. For the fine fea-
ture set, we use the same sampling order of poll sampler to
gather the corresponding position embeddings and padding
masks. For the coarse feature set, we set the masks to
False to indicate that they are not paddings and employ
pseudo position embedding by linearly combining position
embeddings of the remaining feature set with the aggrega-
tion weight.

Class-Incremental Sampling on COCO Dataset

In this section, we present the detailed about how we
sample the COCO dataset to obtain a smaller version for
faster experimental validation. The COCO dataset has a
skewed distribution of training image number over object
categories, i.e., some categories have significantly smaller
number of training images. Direct random sampling on
all training images may cause too much loss of images on
those scarce categories and the overall distribution may be
even more biased. The mAP result on the biased dataset
may be unstable and cannot well evaluate the model perfor-
mance. To curcumvent the difficulty and obtain more ef-
fective sampled dataset, we design a new strategy. We rank
the object categories according to their training image num-
ber, then perform an incremental sampling starting from the
most scarce category to the most abundant category. The the
sampling algorithm is given in Algorithm 1. Concretely, for
each category, if the number of training images is more than
a sampling threshold number and the number of already
sampled images for this category is less than the threshold
number, then a sampling will be performed to obtain ad-
ditional training images for reaching the threshold number.
As shown in Fig. 9 is the distributions of obtained sampled
versions of the COCO dataset, with different setting of the
sampling threshold. The sampled dataset will be smaller
given a smaller threshold. We use a sampling threshold of
500 to obtain a sampled COCO and conduct all the abla-
tion experiments on the dataset. With the designed incre-
mental sampling, the distribution of training images over
most object categories is roughly uniform, and thus can be
used to more stablly evaluate model performance than a ran-
domly sampled sub-dataset while saving enormous experi-
ment time.

Additional Ablations

Pool Sample Number M and Poll Sample Ratio α To
individually examine the effect ofM and α, we conduct fol-
lowing experiments: 1) varyingM by fixing α. As shown in
Tab. 6, compared to the model with only poll sample feature
vectors (M -0), adding 30 pool feature vectors gets about 1
AP improvement, but whenM is larger than a certain value,
the improvement is diminished (i.e., 60). This phenomenon
indicates that a small number of summarized feature vec-
tors for the background contextual information is enough.
2) varying α by fixing M . As shown in Tab. 7, when the
poll ratio α is small, increasing it significantly improves
the performance (e.g., 25.2 AP to 27.1 AP by increasing
α from 0.1 to 0.2). This observation shows the importance
of fine information for detecting the objects. When α is
larger than about 0.5, the performance improvement is di-
minished, which is as expected since the feature vectors that
rank lower mostly correspond to the background locations,
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Algorithm 1: Class-Incremental Sampling Algorithm (pseudo code).
Input:
Cat2ImgID: mapping from category id to image id list (a dictionary);
PerCatTHR: sampling threshold of image number (an integer);
Cat2ImgIdSampled: empty mapping (a dictionary);
SampledImgId: empty list (a list);
SortedCatId: sorted category id on number of images, ascending (a list));
RandomSample(Input,N): randomly sample input list to obtain subset with length N
Output:
SampledImgId: the sampled image ID list (a list)
for Id in SortedCatId do

if Cat2ImgID[Id] > PerCatTHR then
InSampled = [ImgId for ImgId in Cat2ImgID[Id] if ImgId in SampledImgId];
NotInSampled = [ImgId for ImgId in Cat2ImgID[Id] if ImgId not in SampledImgId];
if len(InSampled) < PerCatTHR then

Cat2ImgIdSampled[Id]=InSampled+RandomSample(NotInSampled, PerCatTHR-len(InSampled))
else

Cat2ImgIdSampled[Id]=InSampled
end

end
SampledImgId+=Cat2ImgIdSampled[Id]

end
SampledImgId = set(SampledImgId)

2000
1000
500

- original PerCatTHR-2000 PerCatTHR-1000 PerCatTHR-500

Total Image Num. 118k 74k 39k 19k

Figure 9. Training image number distribution of the sampled COCO dataset obtained by the proposed class incremental sampling.

- AP AP50 AP75 APs APm APl

baseline 29.1 48.0 29.5 10.9 30.9 44.2
M -0 27.3 46.7 27.4 9.4 29.0 42.9
M -30 28.3 47.9 28.7 10.4 29.9 43.4
M -60 28.7 48.4 29.3 10.5 30.6 44.4
M -120 28.8 48.4 29.2 10.8 30.4 44.4

Table 6. Effect of pool sample number (M ), with ResNet-50 back-
bone. The poll sample ratio α is fixed at 0.33.

and thus the gain from including fine information on those
locations is small.

Different Architecture of Scoring Network As shown
in Tab. 8 is the result of different network architecture of
the scoring network of the poll sampler, increasing the layer
number from 1 to 2 improves the AP by 0.8 (i.e., 1-layer-
fc and 2-layer-fc-256.). This is likely because the 2-layer
network much more accurately predict the informativeness
score. Further increasing the layer number gives diminished
gain, i.e., 28.8 vs. 28.7 AP for 3-layer-fc-256 and 2-layer-
fc-256. We also tried decreasing the hidden neuron unit
number from 256 to 32, which reduces the computation, but
the performance decreased, i.e., 28.2 for the 2-layer-fc-32
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- AP AP50 AP75 APs APm APl

baseline 29.1 48.0 29.5 10.9 30.9 44.2
α-0.1 25.2 44.7 24.2 8.1 26.0 40.9
α-0.2 27.1 46.4 27.3 9.6 29.0 43.0
α-0.3 28.7 48.4 29.3 10.5 30.6 44.4
α-0.5 29.2 48.6 29.2 10.8 30.3 44.1
α-0.7 29.1 48.2 29.3 11.0 30.9 44.1

Table 7. Effect of poll sample ratio (α), with ResNet-50 backbone.
The pool sample number M is set as 60. The result is obtained
with fixed poll ratio training.

ScoreNet AP AP50 AP75 APs APm APl

1-layer-fc 27.9 47.5 28.3 10.0 29.6 43.2
2-layer-fc-256 28.7 48.4 29.3 10.5 30.6 44.4
3-layer-fc-256 28.8 48.4 29.4 10.3 30.7 44.6
2-layer-fc-32 28.2 48.0 29.1 9.9 30.4 44.0

Table 8. The effect of different scoring network architecture.
For example, 1-layer-fc denotes 1-layer fully connected network
(MLP), 2-layer-fc-256 means 2-layer fully connected network
with 256 hidden neuron unit.

- AP AP50 AP75 APs APm APl

pool-after-poll 28.7 48.4 29.3 10.5 30.6 44.4
pool-full-set 28.2 47.5 28.7 10.5 29.9 43.2

Table 9. Result of applying pool sampler on the full feature set,
compared to the proposed pool-after-poll design.

- poll (proposed) random uniform direct-interp

w/o pool 27.3 22.9 25.9 26.1
w pool 28.7 23.9 26.2 -

Table 10. Different alternative methods of the proposed poll sam-
pling. The sampling ratio is set to 0.33 for all methods. w/o pool
means removing the pool sampler. The random sampling result is
obtained by an average of 3 runs.

scoring network, which is 0.6 lower than the 2-layer-fc-256
network in AP. We choose the 2-layer-fc-256 network as the
default architecture of the score network.

Pool Sampler on The Full Feature Set While the pro-
posed pool sampler operates on the non-sampled feature
vectors of the poll sampler, it is interesting to see if directly
applying the pool sampler on the full feature set for gener-
ating the coarse feature set would be better. As shown in
Tab. 9, such setting leads to about 0.5 AP drop compared to
the proposed two-step setting. This may be caused by the
redundant information that have been captured by the fine
feature vectors from polled samples.

Comparing the Proposed Sampling Strategies to Some
Alternative Methods We compare the proposed poll
sampler to some baseline alternatives including 1) ran-

dom sampling: for each image, randomly sample the same
amount of locations as the poll sampler and fix the sam-
pled locations for training and evaluation. 2) uniform
grid sampling: uniformly sample the 2D locations with
equal interval. We adopt a general sampling mapping of
b i√

r
cb j√

r
c, i = 0, 1, ..., bW ∗

√
rc, j = 0, 1, ..., bH ∗

√
rc

(H ,W are the height and width of the feature map and r is
the sampling ratio). With some specific poll ratio, the sam-
pling is equavalent to MaxPooling, e.g., r = 1/4 is equava-
lent to MaxPooling with kernel size 1 and stride 2. 3) direct
interpolation: use interpolation to directly resize the fea-
ture map to target size (dH/

√
re, dW/

√
re). As shown in

Tab.10, compared to proposed ranking based poll sampling,
random sample leads to a large drop in AP, i.e., 22.9 vs 27.3
for the without pool sampling setting and 23.9 vs 28.7 for
the with pool sampling setting. Uniform grid sampling and
direct interpolation also generate lower performance than
poll sampling, e.g., 25.9 and 26.1 compared to 27.3 under
the without pool sample setting. The result shows the pro-
posed poll sampler learns effective sampling policy and is
better than those simple baselines.
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