
CANet: A Context-Aware Network for Shadow Removal

Zipei Chen1, Chengjiang Long2*, Ling Zhang3, Chunxia Xiao1∗†

1School of Computer Science, Wuhan University, Wuhan, Hubei, China
2JD Finance America Corporation, Mountain View, CA, USA

3Wuhan University of Science and Technology, Wuhan, Hubei, China
czpp19@whu.edu.cn, cjfykx@gmail.com, zhling@wust.edu.cn, cxxiao@whu.edu.cn

Abstract

In this paper, we propose a novel two-stage context-
aware network named CANet for shadow removal, in which
the contextual information from non-shadow regions is
transferred to shadow regions at the embedded feature
spaces. At Stage-I, we propose a contextual patch match-
ing (CPM) module to generate a set of potential match-
ing pairs of shadow and non-shadow patches. Combined
with the potential contextual relationships between shadow
and non-shadow regions, our well-designed contextual fea-
ture transfer (CFT) mechanism can transfer contextual in-
formation from non-shadow to shadow regions at differ-
ent scales. With the reconstructed feature maps, we re-
move shadows at L and A/B channels separately. At Stage-
II, we use an encoder-decoder to refine current results
and generate the final shadow removal results. We eval-
uate our proposed CANet on two benchmark datasets and
some real-world shadow images with complex scenes. Ex-
tensive experimental results strongly demonstrate the effi-
cacy of our proposed CANet and exhibit superior perfor-
mance to state-of-the-arts. Our source code is available at
https://github.com/Zipei-Chen/CANet.

1. Introduction

Shadow is a natural phenomenon appearing when the
light is partially or completely blocked. As a fundamen-
tal challenge in the field of computer vision, the exis-
tence of shadow in images or videos inevitably degrades
the accuracy and effectiveness of general application tasks
such as intrinsic image decomposition [21, 10], visual
recognition [25, 17, 24, 14], object detection and track-
ing [28, 1, 2], trajectory prediction [27, 33], single image
super-resolution [40, 39] and image captioning [6]. There-
fore, shadow removal is important and necessary to im-
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prove the visual effects and avoid the performance drop on
the above-mentioned computer vision tasks. However, due
to the complex interactions of geometry and illumination,
shadow removal remains a challenging problem.

Current shadow removal methods can be mainly divided
into two categories: physical-based methods [8, 7, 12, 19,
29, 38, 43] and learning-based methods [31, 35, 15, 36,
5, 42, 44]. Compared to physical-based methods, which
apply a physical model to analyze each pixel’s intensi-
ties, learning-based methods analyze the image in feature
maps. Recently, learning-based methods with proper model
have presented potential advantages [42, 15, 30]. However,
these methods mainly focus on increasing the receptive field
of the model without considering other particular context-
sensitive shadow-aware components, which may easily ig-
nore the contextual matching information hidden in images.

In this paper, we propose a novel two-stage context-
aware network CANet for shadow removal in an end-to-
end manner. As shown in Figure 1, our CANet integrates
a contextual patch matching (CPM) module and a contex-
tual feature transfer (CFT) mechanism at Stage-I and takes
Stage-II as a refinement step for shadow removal. In partic-
ular, the CPM module is designed to search for the corre-
sponding potential relationships between shadow and non-
shadow patches, which demonstrates the contextual map-
ping between shadow and non-shadow regions. The CFT
mechanism is utilized to transfer the contextual feature at
different scales from non-shadow regions to shadow regions
based on the output patch matching pairs from the CPM
module and the extracted contextual features.

Our CPM module is designed as a dual-head structure
network with the shared patch feature extractor to predict
the degree of context matching between two patches from
the image, as well as determine the type of the patch pair
without a shadow mask. We only focus on contextual in-
formation transfer from non-shadow regions to shadow re-
gions. Therefore we can define three types of patch pairs,
i.e., (1) both from shadow or non-shadow regions, (2) the
first one from the shadow region and the second one from
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the non-shadow region, and (3) the first one from the non-
shadow region and the second one from the shadow region.
With these prediction types, we can filter out most irrele-
vant patch pairs. Unlike those traditional patch match meth-
ods, our CPM is learning-based to adaptively handle com-
plex scenes by data-driven and can effectively avoid match-
ing errors caused by shadows the impact of shadows by
averaging the lightness. What’s more, our type classifica-
tion head can be used to filter out mostly patch pairs from
the same shadow or non-shadow regions and only focus on
other pairs with high correlation scores.

We train the CPM module with sizeable self-collected
training data and apply the learned CPM module to ob-
tain a set of patch matching pairs. Then, inspired by the
idea of information transfer [32], we introduce a contex-
tual feature transfer (CFT) mechanism to transfer the con-
textual feature at different scales from non-shadow patches
to shadow patches, resulting in a series of feature maps
without shadow information. Different from the exist-
ing information transfer strategies used in shadow removal
task [38, 43, 41], which search a most relevant non-shadow
patch/sub-region for each shadow patch/sub-region, our
CFT mechanism performs feature transfer by applying sev-
eral patch matching pairs for one shadow patch according to
the similarity between two patches. With the reconstructed
shadow-less feature maps, we remove shadows in the L and
A/B channels separately at Stage-I. Finally, to ensure the
robustness of our results, with the recovered L and A/B
channel images and the shadow image as inputs, we use an
encoder-decoder to predict the final shadow removal image
at Stage-II.

In summary, our main contributions are three-fold as fol-
lows:

• We propose a two-stage context-aware network CANet
for shadow removal in an end-to-end manner, in which
the contextual information from non-shadow regions is
transferred to shadow regions at the embedded feature
spaces.

• We design and train a context patch matching (CPM)
module to acquire the potential contextual relation-
ships between shadow and non-shadow regions in
the image, which automatically distinguishes shadow
patches from non-shadow patches during the matching
processing.

• The proposed contextual feature transfer (CFT) mech-
anism transfers the extracted contextual features from
non-shadow regions to shadow regions in different
scales, which remove features associated with shadows
and produce superior shadow removal results.

Both quantitative and qualitative experiments demon-
strate the effectiveness and efficiency of our proposed

CANet, as well as its superior performance in generating
realistic shadow-removal images.

2. Related work
Physical-based methods for shadow removal.

Physical-based methods for shadow removal are traditional
methods, which usually formulate a physical model using
some prior knowledge to recover illumination in shadow
regions [19, 12, 7, 38, 19, 29]. Finlayson et al. proposed
a series of shadow removal methods [8, 7] based on gra-
dient consistency, which reconstructs the shadow removal
images based on the prior that the gradient information of
the image is immutable after shadow removal. Due to the
change of illumination, these methods can present obvious
shadow boundary artifacts.

Another strategy is information transfer, which trans-
fers information like color or light from one picture/region
to another picture/region. It has been widely used in
image process tasks. Wen et al. [37] proposed a user-
interactive multiple local color transfer method, which sets
a proper gradient-guided color transfer function for each
pixel. Zhang et al. [45] incorporated the color-transfer
techniques and gradient fusion method to altering the il-
lumination effects of an image from another. Shor et
al. [34] build a linear mapping model between the shad-
owed and non-shadow regions. Xiao et al. [38] conducted
shadow removal task using sub-region matching illumina-
tion transfer. Zhang et al. [43] proposed a local-to-global
shadow removal method based on illumination transfer. Al-
though those methods using information transfer can pro-
duce pleasant shadow removal results, the effectiveness of
these methods depends on the accuracy of texture matching.

Learning-based methods for shadow removal. Unlike
traditional physical-based methods, learning-based meth-
ods tend to learn high-level contextual features for shadow
removing [15, 41, 20, 42]. Qu et al. [31] proposed a multi-
context embedding network DeshadowNet to integrate the
information from different levels for shadow removing.
Wang et al. [35] analyzed the relationship of shadow de-
tection and removal and then proposed a stacked condi-
tional generative adversarial network (ST-CGAN) model
to perform shadow detection and removal jointly. Hu et
al. [15] used direction-aware spatial context attention fea-
tures for shadow detection and removal. Zhang et al. [42]
explore relationship of the residual and inverse illumina-
tion for shadow removal and proposed a general RIS-GAN.
Hieu et al. [20] regard shadow image as the combination of
shadow-free image, shadow parameters and shadow matte,
and use neural networks to predict them to remove shadows.
Liu et al. [23] presented a LG-ShadowNet for shadow re-
moval by training on unpaired data. Lin et al. [22] proposed
a BEDSR-Net for document shadow removal. The BEDSR-
Net is specifically designed for document image shadow re-



Figure 1. The overview of our proposed CANet, which takes two stages for shadow removal. At Stage-I, the contextual feature is firstly
extracted via a pretrained DenseNet [18]; meanwhile, the designed contextual patch matching module (CPM) (see Figure 2) is used to
acquire a set of contextual matching pairs; then, applying a contextual feature transfer mechanism (see Figure 3) to transfer contextual
information from non-shadow patches to shadow patches to recover the L and A/B channels of the shadow-removal image. At Stage-II, we
integrate the recovered L and A/B channel information with the input shadow image and feed them into a DenseUNet to generate the final
shadow-removal result.

moval, which may be lack of expandability for other kinds
of shadow images. Cun et al. [3] designed a network named
SMGAN for shadow-removal, which can produc ghost-free
shadow-removal images. Although those existing methods
achieve some advances, they only focus on increasing the
receptive field of the model, ignoring the paired matching
information in the image. In contrast, our proposed CANet
is proposed to explore the underlying contextual informa-
tion between shadow and non-shadow regions.

3. Method
Intuitively, two patches with similar textures should have

similar illumination and context under the same shadow-
free environment. Based on this, we explore the idea of
context-aware information transfer to conduct our shadow
removal task. The proposed two-stage context-aware net-
work (CANet) for shadow removal is illustrated in Figure
1. At Stage-I, given a shadow image, the L and A/B chan-
nels of a shadow-removal image are recovered with contex-
tual information transferred from non-shadow patches, rely-
ing the obtained contextual patch matching information. At
Stage-II, a DenseUNet is designed to integrate the recov-
ered L and A/B channel information with the input shadow
image to generate a high-quality shadow-removal image.

In the following subsections, we will introduce our con-
textual patch matching module, contextual feature transfer
mechanism, and the two-stage CANet for shadow removal.

3.1. Contextual Patch Matching Module

As shown in Figure 1, the CPM module is designed
to generate a set of ordered patch matching pairs of non-

shadow and shadow patches with the prediction correlation
scores together.

Figure 2. The architecture of our dual-head contextual patch
matching module. We first calculate the shadow-unaware image
by lightness average with a mean-filter operation. Then, we extract
32× 32 patches from the shadow image and the shadow-unaware
image, and feed them into the shared patch descriptor to extract
deep learning features. Finally, the extracted features are fed into
the two heads to predict the type (denoted as -1, 0, or 1) of the in-
put patch pair and the corresponding degree as a continuous value
in the range of 0 to 1 to measure their correlation.

To avoid matching errors caused by shadows, given an



Figure 3. The illustration of how we use our contextual feature transfer mechanism to transfer the contextual information according to
captured contextual matching pairs. Note that we use the Gaussian sampling to sample contextual information from non-shadow patches
and integrate them to the query shadow patches adaptively.

input shadow image, we first apply a mean-filter with ker-
nel size 3 to get a shadow-unaware image by averaging the
lightness on the shadow image. Especially, the shadow-
unaware image is calculated as:

Ii,j = Ii,j −
∑

(i,j)∈P Ii,j

N
+ Iavg (1)

where Ii,j denotes the lightness value at pixel (i, j), P de-
notes a 3 × 3 patch around pixel (i, j), N is the total num-
ber of pixeles in the patch, and Iavg is the global average
lightness value of the image. We empirically observe that
the shadow-unaware image is supplementary to the input
shadow image as the input source for our CPM module,
especially valuable to eliminate the effects of the shadow
and distinguish shadow patches from non-shadow patches.
More details can be seen in the Appendices A.

We then extract 32 × 32 patches from both the input
shadow image and the shadow-unaware image are concate-
nated and fed into our dual-head CPM module, as illustrated
in Figure 2. Unlike traditional methods, which use the hand-
craft local descriptor such as SIFT [26] to represent image
patches and apply the Euclidean distance to measure the
similarity between them, our CPM is learning-based so that
it can adaptively handle the complex scenes by data-driven.
We make full use of convolution layers with residual blocks
as the shared feature extractor to extract deep learning fea-
tures for the dual heads to conduct a regression task and a
classification task. To specify, one head is a correlation re-
gressor to output a continuous value at the range from 0 to
1 as the degree of correlation, and the other one is a type
classifier to predict the type of pair as one of three types
denoted as -1, 0, and 1.

It is worth mentioning here we care about the order be-
tween each output patch matching pair, especially when the
two patches are not from the same regions (shadow or non-
shadow). In particular, 0 indicates two patches from the
same shadow or non-shadow regions, -1 indicates the patch
pair starting with the non-shadow patch and then the shadow
patch, while 1 indicates the patch pair starting with the

shadow patch and then the non-shadow patch. Note that we
use -1 and 1 to distinguish the shadow patch from the non-
shadow patch, as we only transfer the contextual informa-
tion from non-shadow regions to shadow regions. By doing
this, our type classifier head can be used to filter out most
of the patch pairs from the same shadow or non-shadow re-
gions and only focus on other pairs with high correlation
scores.

To learn a solid and robust CPM module, we make full
use of the existing shadow benchmark datasets to collect
a large training data set. We randomly sample 32 × 32
patches from shadow images. Note that we use cosine simi-
larity as the measurement between shadow and non-shadow
patches on the corresponding shadow-free images to gener-
ate ground-truth for correlation regression. For those with
cosine similarity higher than 0.95, we set the ground-truth
of correlation degree sgt as 1 and 0 smaller than 0.6. For
the ground-truth type t, we utilize the ground-truth shadow
mask to determine the ground-truth type to be -1, 0, or 1 for
any patch pairs.

We optimize the overall loss LCPM to train the CPM
module. It contains a regression loss Lreg and a classifica-
tion loss Lcls, i.e.,

LCPM = Lreg + Lcls (2)

The regression loss Lreg is used to optimize the correla-
tion regressor for CPM module, i.e.,

Lreg = ||sout − sgt||2 (3)

where sgt is the correlation degree label for input pair and
sout is the output of the correlation regressor.

The classification loss Lcls is used to optimize the type
classifier, which is defined as a cross-entropy:

Lcls = −
3∑
i=1

tilog(pi) (4)

where ti denotes the ground truth matching type of the patch
pair and pi is the output of our type classifier.



3.2. Contextual Feature Transfer Mechanism

The target of our contextual feature transfer mechanism
is to transfer the contextual feature from non-shadow re-
gions to shadow regions, resulting in feature maps with-
out shadow information. Generally, directly replacing the
features from non-shadow regions to shadow regions may
cause sub-optimal results, such as discontinuity, artifacts.
Therefore, we introduce a contextual feature transfer (CFT)
mechanism to perform information transfer in feature space.

The process of our contextual feature transfer model is
shown in Figure 3. Given a shadow patch from the in-
put feature map, we first retrieve the matched non-shadow
patches from the generated set of patch matching pairs.
Then, for each shadow patch, we use Gaussian sampling to
perform contextual feature transfer using the matched non-
shadow patches. Finally, we integrate the top-k transferred
feature patches according to the correlation degree between
each matching pair.

Let n be the kernel size of Gaussian sampling and k be
the feature transfer times. The Gaussian sampling can be
written as:

F ′x,y =

n∑
∆x=0

n∑
∆y=0

ϕ(∆x,∆y)∑n
∆x=0

∑n
∆y=0 ϕ(∆x,∆y)

Fx+∆x,y+∆y

(5)
where F ′x,y and Fx,y are the feature maps after and be-
fore sampling at position (x, y), respectively. ϕ(∆x,∆y)
is the Gaussian weight at the position (x + ∆x, y + ∆y)

and ϕ(∆x,∆y) = exp
(
−∆x2+∆y2

2σ2

)
, where σ is the vari-

ance of the Gaussian distribution.
To better integrate the transferred features, we adaptively

integrate the k sampling results according to the correlation
degree of each matching pair. The reconstructed shadow-
less feature F can be written as:

F =

k∑
i=1

wi∑k
i=1 wi

F ′i , (6)

where F ′i is the i-th sampling result,wi is the correlation de-
gree between the matching pair. Due to Gaussian sampling
has a larger receptive field and takes surrounding informa-
tion into consider when sampling, the Gaussian sampling in
the contextual feature transfer mechanism can help to better
transfer the contextual information and get pleasant results.

3.3. Shadow Removal with Two-stage Strategy

Our shadow-removal network CANet adopts a two-stage
strategy. At Stage-I, we first use a DenseNet [18], pre-
trained on ImageNet[4] as the feature extractor to extract
the contextual features. Then, with the extracted contextual
features as inputs, we apply our contextual feature trans-
fer mechanism to transfer the features from non-shadow re-
gions to shadow regions at different scales. With a series of

upsampling and residual blocks, we can remove shadows at
the L and A/B channels separately. As we can see from the
statistical analysis in Figure 4, the L channel is more sensi-
tive than A/B channels to highlight the difference between
shadow and non-shadow regions. The separation treatment
can avoid the over-processing of A and B channels and the
inadequate processing of the L channel, making it more pro-
pitious to feature transfer in the contextual feature transfer
model.

Figure 4. The difference between the input shadow image and the
ground truth shadow-free image in shadow areas of each channel
in LAB color space on the ISTD dataset [35](first row) and the
SRD dataset [31](second row).

Note that the recovered L and A/B channels are shadow-
removal results using transfer operation, which maybe con-
tain undesirable areas due to the inaccurate match in CPM
module. Hence we turn to Stage-II to produce a fine
shadow-removal result, which takes the recovered L and
A/B channel as strong guidance information for shadow-
removal result generation. At Stage-II, with the recovered
L and A/B channel images and the shadow image as inputs,
we use DenseUNet, an encoder-decoder structure, to predict
the final shadow-removal image.

To get a robust parametric model for shadow removal,
we use a total loss LCANet to train our CANet. It is defined
with a removal loss Lrem, a perceptual loss Lper, and a
gradient loss Lgrad, i.e.,

LCANet = λ1Lrem + λ2Lper + λ3Lgrad (7)

where λ1, λ2, λ3 are the hyperparameters. In this paper, we
set λ1 = 1, λ2 = 25, λ3 = 5.

The removal loss Lrem is the visual-consistency loss be-
tween the shadow removal result of two stages Iout 1, Iout 2

generated by our CANet and the corresponding ground-
truth Igt, i.e.,

Lrem = ‖Igt − Iout‖2 . (8)

The perceptual loss Lper is perceptual-consistency loss
which aims to preserve the structure of image and is defined
as:

Lper = ‖V GG(Igt)− V GG(Iout)‖1 , (9)



where V GG(·) is the feature extractor from the VGG19
model.

The gradient loss Lgrad is used to encourage the result
to be smooth and is defined as:

Lgrad = ‖∇Igt −∇Iout‖1 , (10)

where∇ is the gradient of the image at pixel-level.

4. Experiments
Benchmark datasets. We conduct various experiments

on two shadow removal benchmark datasets to verify the ef-
fectiveness of our CANet. One is ISTD dataset [35], which
includes 1330 training triples of shadow image, shadow
mask and shadow-free image and 540 testing triplets. The
other is the SRD dataset [31] with 2680 training pairs of
shadow and shadow-free images and 408 testing pairs.

Implementation details. Our proposed method is im-
plemented in PyTorch on two GPUs (NVIDIA GeForce
2080Ti) with the input size of the image as 400 × 400 and
mini-batch size as 2. We empirically use the Adam Op-
timizer to optimize our network. In our experiments, we
set the first momentum value, the second momentum value
and weight decay are 0.9, 0.999 and 5× 10−4, respectively.
We train our CPM module for 30 epochs and CANet for 50
epochs. The initial learning rate is set as 0.0001. Besides,
we also partly verify our method on the Huawei MindSpore
platform.

Similar to [13], we run our CPM module with two phases
to avoid repeated operation on the same patch. We first ex-
tract features of all patches, then feed them respectively into
two heads of our CPM module to produce the matching in-
formation of the input patch pair. Besides, to achieve a good
trade-off between efficiency and accuracy, we set k = 3 and
n = 5 in our experiments.

4.1. Comparison with State-of-the-arts

We compare our CANet with eight state-of-the-art
methods, i.e., Guo [12], Zhang [43] DeshadowNet [31],
ST-CGAN [35], Mask-shadowGAN [16], ARGAN [5],
DSC [15], and RIS-GAN [42]. Among these competing
methods, the first two are traditional methods, while the
last six are learning-based methods. Note that all of these
learning-based methods try to explore the context informa-
tion via a deep-learning model with a larger receptive field
and use this information to remove shadows in the image.
In particular, DSC [15] exploits the direction-aware spatial
RNN, DeshadowNet [31] uses the multi-context model to
capture the spatial context information.

To ensure a fair comparison, we use the same training
data with the same input size (i.e., 400× 400) to train all the
learning-based methods. We calculate the root mean square
error (RMSE) in LAB color space between the generated

shadow-removal images and the shadow-free ground truth
image to quantitatively evaluate the performance of shadow
removal.
Quantitative Evaluation. We summarize the quantitative
results on the test data of both SRD and ISTD in Table 1. As
we can see, all the competing learning-based methods per-
form worse than our proposed CANet. It can be explained
by the fact that these baselines ignore the potential corre-
lation between shadow and non-shadow regions Therefore
these methods may fail in handling some complex shadow
scenarios, especially when the most correlative non-shadow
regions are not close to the shadow regions. Conversely, by
explicitly capturing the useful potential contextual match-
ing information globally, our CANet can handle the com-
plicated case and therefore significantly improve the results
of shadow removal. Table 1 reports the quantitative evalua-
tion results compared with state-of-the-art methods, where
we can see that our CANet outperforms the other state-of-
the-art methods in shadow area, non-shadow area and whole
image on the two datasets, which clearly demonstrates the
effectiveness of our CANet.

Table 1. The quantitative comparison results of shadow removal
between our method and recent methods on ISTD and SRD
datasets in terms of RMSE (where S, N, A represent the shadow
area, non-shadow area and whole image respectively).

Method ISTD SRD
S N A S N A

Guo [12] 18.95 7.46 9.3 29.89 6.47 12.60
Zhang [43] 13.77 7.17 8.16 9.50 6.90 7.24

DeshadowNet [31] 12.76 7.19 7.83 17.96 6.53 8.47
ST-CGAN [35] 10.33 6.93 7.47 12.65 6.37 7.83

Mask-shadowGAN [16] 10.35 7.03 7.61 10.32 6.83 7.32
ARGAN [5] 9.21 6.27 6.63 8.13 6.05 6.23

DSC [15] 9.22 6.39 6.67 8.22 6.01 6.21
RIS-GAN [15] 9.15 6.31 6.62 8.09 6.02 6.17

CANet 8.86 6.07 6.15 7.82 5.88 5.98

Qualitative Evaluation. We also provide visual compari-
son results in Figure 15. For traditional methods, due to the
local information transfer, Guo [12] can not completely re-
move shadows. Its results contain some artifacts, as shown
in Figure 15(b). Zhang [43] also cannot handle the illu-
mination changes at the shadow boundary well, as shown
in Figure 15(c). This is due to the contextual information
of the image being ignored when processing at the pixel
level, causing inaccurate or wrong matching of lit block.
On the contrary, with the well-designed CPM module and
CFT mechanism, our CANet can better recover the illumi-
nation consistent with surroundings and solve the boundary
problems such as existing artifacts, generating more realis-
tic shadow removal results.

Regarding the learning-based methods, although they
can handle some simple scenes well, they are still far from
satisfactory for shadow images with complex scenes, result-
ing in some unpleasing shadow removal results. To specify,



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5. Shadow removal results. From left to right are: (a)input images; shadow removal results of (b) Guo, (c) Zhang, (d) ST-CGAN,
(e) DSC, (f) ARGAN, (g) RIS-GAN, (h) our CANet; and (i) the corresponding shadow-free ground truth images.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Shadow removal results. From left to right are: (a)input images; shadow removal results of our (b) “CANet w/ TM”, (c) “CANet
w/ MNet”, (d) “CANet w/o CFT”, (e) “CANet w/ DRCF”, (f) DenseUNet, (g) our proposed CANet, and (h) the corresponding shadow-free
ground truth images.

although ST-CGAN removes most of the shadows, its re-
sults still contain some artifacts, as shown in Figure 15(d).
From Figure 15(e-g), we can observe that DSC severely
distorts the colors around the shadows and both ARGAN
and RIS-GAN have a certain degree of excessive shadow
removal. The main reason for such poor results is that these
methods ignore the potential correlation in images, with-
out taking the difference between different color channels
into consideration. In contrast, our proposed CANet cap-
tures the underlying correlation between shadow and non-
shadow regions in image and therefore can effectively avoid
the color distortion in the results. As seen in Figure 15(h),
our CANet method produces more realistic and promising
results than the competing methods.

4.2. Ablation study

To further verify the effectiveness of these components
we proposed, we design a series of variants. First, we
replace our CPM module with two patch matching meth-
ods. One is “traditional-match” which captures contextual
matching set with a traditional hand-craft descriptor and Eu-
clidean distance, and the other one is MatchNet [13]. We
denote these two variants as “CANet w/ TM” and “CANet
w/ MNet”, respectively. Then we design two variants for
verifying the effectiveness of the proposed CFT mecha-
nism. One is to remove the context feature transfer mecha-
nism completely, and the other one is to replace the contex-

tual feature directly without considering Gaussian sampling
in CFT during the feature transfer. We denote these two
new variants as “CANet w/o CFT” and “CANet w/ DRCF”,
respectively. Last but not least, we also take DenseUNet to
conduct one-stage shadow removal directly.

For fairness, we train these variants on the same training
data. The quantitative results are summarized in Table 2.
From the table, we can observ that: (1) the contextual map-
ping information provided by the CFT mechanism can help
to improve the accuracy of shadow removal results; (2) the
CPM module is essential to ensure the quality of contex-
tual matching information; (3) the proposed CFT mecha-
nism ensure the best performance of our CANet.

Figure 6 presents some visual results for the different
variants. As we can see, without considering the contex-
tual matching information, there may be some shadow ar-
tifacts in the results, as shown in Figure 6(d). Replacing
the contextual features directly results in unsatisfied results
with discontinuous illumination and color, as shown in Fig-
ure 6(e). Besides, Figure 6(b-c) present some artifacts due
to incorrect mapping information. Clearly, we can see that
our CANet is the most suitable and efficient.

4.3. Discussion

Robustness. To further verify the robustness of our
method, we collect some real-world shadow images with
complex scenes to conduct experiments and summarize the



Table 2. The quantitative shadow removal results of ablation anal-
ysis on ISTD and SRD dataset in terms of RMSE.

Method ISTD SRD
S N A S N A

CANet w/ TM 9.62 6.33 6.98 8.44 6.58 6.89
CANet w/ MNet 9.16 6.20 6.52 8.17 6.21 6.35
CANet w/o CFT 10.11 6.88 7.54 9.28 6.35 6.96
CANet w/ DRCF 9.15 6.21 6.56 8.10 6.11 6.25

DenseUNet 10.22 7.02 7.58 10.44 6.71 7.28
CANet 8.86 6.07 6.15 7.82 5.88 5.98

(a) (b) (c) (d) (e) (f)

Figure 7. Shadow removal results for real shadow images outside
the two datasets. From left to right are: (a)input images; shadow
removal results of (b)ST-CGAN, (c)DSC, (d)ARGAN, (e)RIS-
GAN and (f)our CANet.

results in Figure 7. Obviously, the shadow removal results
generated by our CANet look more realistic compared to
the other competing algorithms. These observations clearly
demonstrate the robustness of our CANet to handle the
complex real-world scenes.

Figure 8. The illustration of the limitation of our method. From
left to right are the input image, the result of our method and the
shadow-free ground truth image. The red rectangular area in the
input image does not have a matching position in the non-shadow
area, which makes it difficult to recover the light in that area.

Extension to video-level shadow removal. We also ap-
ply our CANet to remove shadows in a video by processing
each frame in the video separately. We take one frame result
for every 0.5 seconds and visualize the results in Figure 9.
From the results, we can see that our CANet can remove
shadow well at frame-level, but the continuity of the video
is not ensured, which we take as a part of our future work.

Figure 9. Shadow removal result in a video, a frame for every 0.5
seconds.

Running time. It firstly takes around 10 hours to train
our CPM module, then takes 32 hours to train our CANet
on the ISTD and SRD training set. After training, only 1.8
seconds on average is required to process an 400× 400 im-
age.

Limitation. Our proposed CANet can effectively re-
move shadows in images. However, it still has some lim-
itations. (1) For some shadow images, if there is no strong
contextual correlation between shadow and non-shadow re-
gions, our CANet will fail to recover the illumination con-
sistent with surroundings, as shown in Figure 8. (2) Since
the environmental luminosity and camera exposure may
vary during photo shooting, training pairs may have incon-
sistent colors and luminosity [15], causing our data-driven
CANet produces shadow-removal results with color incon-
sistency.

5. Conclusion

In this paper, we have proposed a novel two-stage con-
text aware network CANet for shadow removal. At stage-I,
we design a contextual patch matching module (CPM) to
search potential match pairs for the contextual feature trans-
fer mechanism (CFT). At stage-II, we apply an encoder-
decoder to refine the results of stage-I to generate the final
high-quality shadow-removal results. The extensive exper-
iment results have strongly confirmed the effectiveness and
superiority of our method. Our framework can be extended
to handle more computer vision tasks such as highlight re-
moval [9, 11], which we take as the future work.
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Appendices
A. Details about Network Architectures

CPM module. The architecture of our CPM module is
shown in Table 3, which divides into three parts: feature
extractor, pair type classifier, and correlation degree regres-
sor. The feature extractor is used to extract 256-dimensional
feature representations for input patch pairs. It is designed
with 4 convolutional layers, 3 residual blocks, and a bottle-
neck layer. The obtained representations are feed into the
classifier and regressor separately. Both the classification
head and the regression head contain 3 fully connected lay-
ers, and classification head also have a softmax layer.

Table 3. The architecture of our CPM module. It contains a feature
extractor, a pair type classifier, and a correlation degree regressor.

Layer Output Size Operation

Feature
extractor

Conv1 16× 16× 64 Conv(3× 3 stride 2)
Res1 16× 16× 64 Res-blocks(3× 3)

Conv2 8× 8× 96 Conv(3× 3 stride 2)
Res2 8× 8× 96 Res-blocks(3× 3)

Conv3 4× 4× 96 Conv(3× 3 stride 2)
Res3 4× 4× 96 Res-blocks(3× 3)

Conv4 4× 4× 64 Conv(3× 3 stride 1)
Bottleneck 256 FC

Classifier

FC1 256 FC
FC2 128 FC
FC3 3 FC

Softmax 3 Softmax

Regressor

FC1 256 FC
FC2 128 FC
FC3 1 FC

CANet. In Figure 10, we illustrate the detailed network
architecture of our proposed CANet. Each orange rectan-
gles in the network is the feature map of the correspond-
ing layer, and the number in the rectangles is their channel
number. Note that the “DenseBlock”, “Transition layer” are
followed as the original version of DenseNet [18].

B. Better Understanding for CPM Module
B.1. Effectiveness of Light-unaware Images

As shown in Figure 11, with the supplementary light-
unaware image, we can largely eliminate the difference be-
tween shadow regions and non-shadow regions, which ef-
fectively avoids the matching errors caused by shadows.

Also, from Figure 12, we can observe that there is a
larger difference between shadow image and light-unaware
image in shadow regions while a smaller difference in the
non-shadow region. It suggests that the shadow image and
light-unaware image pair can provide an indication to dis-
tinguish shadow patches from non-shadow patches, which
can be used to perform our pair type classifier.

B.2. Large-scale Training Dataset for CPM

To train our CPM module, we collect a large-scale
training collection from the existing shadow benchmark
datasets: ISTD [35] and SRD [31]. The collected training
dataset contains more than 360,000 and 600,000 patch pairs
separately (50% match pairs and 50% non-match pairs).
These patch pairs are collected from two ways: (1) we se-
lect a shadow patch in the shadow image and a matched
non-shadow patch in the shadow-free image, which has the
same position as the shadow patch, as illustrated in Figure
13; (2) we select a shadow patch from shadow regions and
find another matched patch from non-shadow regions in the
shadow image. Specially, we randomly select two patches
from shadow and non-shadow regions in the shadow image
and calculate the cosine similarity between the two patches
in the corresponding shadow-free image. We choose the
pairs with cosine similarity higher than 0.95 as the match-
ing pair and less than 0.6 as the non-match pair, as shown
in Figure 13. Due to the lack of shadow mask ground-truth
in SRD dataset [18], we firstly use the results of the lat-
est shadow detection method DSD [?], and then manually
choose the correct results as the approximate ground-truth
during the process of dataset collecting.

C. More Visual Shadow Removal Results
We provide more visual shadow removal comparison re-

sults in Figure 15. Here, we compare our CANet with six
state-of-the-art methods, i.e., Guo [12], Zhang [43], ST-
CGAN [35], ARGAN [5], DSC [15] and RIS-GAN [42].



Figure 10. The network architecture of our CANet.

Figure 11. From left to right are: input shadow image; and the
proposed light-unaware image, which can eliminate the difference
between region A and B caused by shadow.

(a) (b) (c)

Figure 12. The illustration of the difference between shadow im-
age and light-unaware image, from left to right are: (a)input
shadow image; (b)proposed light-unaware image and (c)the dif-
ference between them.

Figure 13. The illustration of our first way to collect matched patch
pairs.

Figure 14. The illustration of our second way to collect matched
and non-matched patch pairs.



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 15. Shadow removal results. From left to right are: (a) input images; shadow removal results of (b) Guo, (c) Zhang, (d) ST-CGAN,
(e) DSC, (f) ARGAN, (g) RIS-GAN, (h) our CANet; and (i) the corresponding shadow-free ground truth images.


