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Figure 1 – The overall architecture of our proposed method. The plot on the left shows our teacher-student strategy, where the
feature map and the logits map can be used for channel-wsie knowledge distillation. The plot on the right shows an intuitive illustration:
activated regions correspond to scene categories.

Abstract

Knowledge distillation (KD) has been proven a simple
and effective tool for training compact dense prediction
models. Lightweight student networks are trained by extra
supervision transferred from large teacher networks. Most
previous KD variants for dense prediction tasks align the
activation maps from the student and teacher network in
the spatial domain, typically by normalizing the activation
values on each spatial location and minimizing point-wise
and/or pair-wise discrepancy. Different from the previous
methods, here we propose to normalize the activation map
of each channel to obtain a soft probability map. By simply
minimizing the Kullback–Leibler (KL) divergence between
the channel-wise probability map of the two networks, the
distillation process pays more attention to the most salient
regions of each channel, which are valuable for dense pre-
diction tasks.

We conduct experiments on a few dense prediction tasks,
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including semantic segmentation and object detection. Ex-
periments demonstrate that our proposed method outper-
forms state-of-the-art distillation methods considerably,
and can require less computational cost during training. In
particular, we improve the RetinaNet detector (ResNet50
backbone) by 3.4% in mAP on the COCO dataset, and
PSPNet (ResNet18 backbone) by 5.81% in mIoU on the
Cityscapes dataset. Code is available at:

https://git.io/Distiller

1. Introduction

Dense prediction tasks are a group of fundamental tasks
in computer vision, including semantic segmentation [48, 6]
and object detection [21, 30]. These tasks require learn-
ing strong feature representations for complex scene un-
derstanding at the pixel level. Thus, state-of-the-art mod-
els usually need high computational costs, making them
cumbersome to be deployed to mobile devices. As a re-
sult, compact networks designed for dense prediction tasks
have drawn much attention. Moreover, effectively training
lightweight networks has been studied in previous works
using knowledge distillation (KD). A compact network is
trained with the supervision of a large teacher network, and
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Figure 2 – Spatial knowledge distillation (top-left) works by
aligning feature maps in the spatial domain. Our channel dis-
tribution distillation (top-right) instead aligns each channel of
the student’s feature maps to that of the teacher network by min-
imizing the KL divergence. The bottom plot shows that the ac-
tivation values of each channel tend to encode saliency of scene
categories.

can achieve better performance. Pioneering works [16, 2]
are proposed and well studied, mostly for image classifica-
tion tasks.

Dense prediction tasks are per-pixel prediction prob-
lems, which are more challenging than image-level classifi-
cation. Previous research [25, 20] found that directly trans-
ferring the KD methods [16, 2] in classification to semantic
segmentation may not lead to satisfactory results. Strictly
aligning the point-wise classification scores or the feature
maps between the teacher and student network may enforce
overly strict constraints and lead to sub-optimal solutions.

Recent works [25, 24, 18] pay attention to enforce the
correlations among different spatial locations. As shown in
Figure 2(a), the activation values1 on each spatial location
are normalized. Then, some tasks specific relationships are
conducted by aggregating a sub-set of different spatial lo-
cations, such as pair-wise relations [25, 35] and inter-class
relations [18]. Such methods may work better than the
point-wise alignment in capturing spatial structure informa-
tion and improve the performance of the student network.

1The activation values in this work include the final logits and the inner
feature maps.

However, every spatial location in the activation map con-
tributes equally to the knowledge transferring, which may
bring redundant information from the teacher network.

In this work, we propose a novel channel-wise knowl-
edge distillation by normalizing the activation maps in each
channel for dense prediction tasks, as shown in Figure 2(b).
Then, we minimize the asymmetry Kullback–Leibler (KL)
divergence of the normalized channel activation maps—
which is converted into a distribution for each channel—
between the teacher and the student networks. We show
an example of the channel-wise distribution in Figure 2(c).
The activations of each channel tend to encode saliency of
scene categories. For each channel, the student network is
guided to pay more attention to mimic the regions with sig-
nificant activation values, leading to a more accurate local-
ization in dense prediction tasks. For example, in object
detection, the student network pays more attention to learn
the activations of the foreground objects.

Some recent works exploit knowledge contained in chan-
nels. Channel distillation [50] proposes to transfer the ac-
tivation in each channel into one aggregated scalar, which
may be helpful for image-level classification, but the spa-
tial aggregation loses all spatial information and thus is
not suitable for dense prediction. Other works, such as
MGD [41], Channel exchanging [33] and CSC [26] show
the importance of channel-wise information. MGD matches
the teacher channels with students’ and solves it as an as-
signment problem. Channel exchanging [33] uses a fusion
module to dynamically exchange channels between sub-
networks of various modalities.

We show that the simple normalizing operations for each
channel can improve the baseline spatial distillation by a
large margin. The proposed channel-wise distillation is sim-
ple and easy to apply to various tasks and network struc-
tures. We summarize our main contributions as follows.

• Unlike those existing spatial distillation approaches,
we propose a novel channel-wise distillation paradigm
for dense prediction tasks. Our method is simple yet
effective.

• The proposed channel-wise distillation significantly
outperforms state-of-the-art KD methods for semantic
segmentation and object detection.

• We show consistent improvements on four benchmark
datasets with various network structures on semantic
segmentation and object detection tasks, demonstrat-
ing that our method is general. Given its simplicity
and effectiveness, we believe that our method can serve
as a strong baseline KD method for dense prediction
tasks.
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2. Related Work
Most works on knowledge distillation focus on classifi-

cation tasks [11, 12, 16, 27, 36, 38, 45]. Our work here
aims to study efficient and effective distillation methods for
dense prediction, beyond naively applying pixel-wise distil-
lation as done in classification.
Knowledge distillation for semantic segmentation. In
[35], a local similarity map is constructed to minimize the
discrepancy of segmented boundary information between
the teacher and student network, where the Euclidean dis-
tance between the center pixel and the 8-neighborhood pix-
els is used as knowledge for transferring. Liu et al. [24, 25]
propose two approaches to capture the structured informa-
tion among pixels, including pair-wise similarity between
pixels and holistic correlations captured by a discriminator.
The work in [34] focuses on the intra-class feature varia-
tion among the pixels with the same label, where the set of
cosine distance between each pixel’s feature and its corre-
sponding class-wise prototype is constructed to transfer the
structural knowledge. He et al. [14] use a feature adaptor is
employed to mitigate the feature mismatching between the
teacher and student networks.
Knowledge distillation for object detection. Many meth-
ods find that it is important to distinguish the foreground
and the background regions in the distillation for object de-
tection. MIMIC [20] forces the feature map inside the RPN
of the student network to be similar to that of the teacher
network via the L2 loss, and finds that directly applying
pixel-wise loss may harm the performance of object detec-
tion. Wang et al. [32] propose to distill the fine-grained fea-
ture near object anchor locations. Zhang and Ma [43] gen-
erate the mask with attention to distinguish the foreground
and the background, achieving promising results. Instead,
we softly align the channel-wise activations to distinguish
the foreground and the background regions.
Channel-wise knowledge. Several recent works [50] also
pay attention to the knowledge contained in each channel.
Zhou et al. calculate the mean of the activation in each
channel and align a weighted difference for each channel in
classification. CSC [26] calculates the pair-wise relations
among all spatial locations and all channels for transferring
the knowledge. Channel exchanging [33] proposes that the
information contained in each channel is general and can be
shared across different modalities.

3. Our Method
We first review relevant spatial knowledge distillation

methods in the literature.

3.1. Spatial Distillation

Existing KD methods often employ a point-wise align-
ment or align structured information among spatial loca-

tions, which can be formulated as:

`(y, yS) + α · ϕ(φ(yT ), φ(yS)). (1)

Here the task loss `(·) is still applied with y being the
ground-truth labels. For example, the cross-entropy loss
is usually employed in semantic segmentation. By slightly
abusing the notation, here yS and yT represent either the
logits or inner activations of the student and teacher net-
work, respectively. Here α is a hyper-parameter to balance
the loss terms. Subscripts ·T and ·S denote teacher and
student networks. We list representative spatial distillation
methods in Table 1.

A brief overview of these methods is as follows. Atten-
tion Transfer (AT) [42] uses an attention mask to squeeze
the feature maps into a single channel for distillation. The
pixel-wise loss [17] directly aligns the point-wise class
probabilities. The local affinity [35] is computed by the
distance between the center pixel and its 8 neighborhood
pixels. The pairwise affinity [25, 14, 24] is employed to
transfer the similarity between pixel pairs. The similarity
between each pixel’s feature and its corresponding class-
wise prototype is computed to transfer the structural knowl-
edge [34]. The holistic loss in [25, 24] uses the adversar-
ial scheme to align the high-order relations between feature
maps from the two networks. Note that, the last four terms
consider the correlation among pixels. Existing KD meth-
ods as shown in Table 1 are all spatial distillation methods.
All these methods consider the N channel activation values
of a spatial location as the feature vectors to operate on.

3.2. Channel-wise Distillation

To better exploit the knowledge in each channel, we pro-
pose to softly align activations of corresponding channels
between the teacher and student networks. To do so, we
first convert activations of a channel into a probability dis-
tribution such that we can measure the discrepancy using
a probability distance metric such as the KL divergence.
As demonstrated in Figure 2(c), the activations of differ-
ent channels tend to encode the saliency of scene categories
of an input image. Besides, a well-trained teacher net-
work for semantic segmentation shows activation maps of
clear category-specific masks for each channel—which is
expected—as displayed on the right part of Figure 1. Here,
we propose a novel channel-wise distillation paradigm to
guide the student to learn the knowledge from a well-trained
teacher.

Let us denote the teacher and student networks as T and
S, and the activation maps from T and S are yT and yS ,
respectively. The channel-wise distillation loss can be for-
mulated as in a general form:

ϕ(φ(yT ), φ(yS )) = ϕ(φ(yT
c ), φ(yS

c )). (2)
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Loss *******ϕ(u, v)*******
φ(x)

*******Formulation******* *****Dimensionality*****
Point-wise alignment

Attention transfer [42] L1 or L2
∑C

c=1 ‖xic‖p 1×W ×H
Pixelwise [25, 7, 24, 34] KL softmax(xi/τ) C ×W ×H

Pairwise or higher order alignment
Local similarity [35] L1 or L2

∑
j∈N(i) ‖xj − xi‖ 1×W ×H

Pairwise affinity [25, 14, 24] L2
xT
i xj

‖xi‖2·‖xj‖2
1×W ×H

IFVD [34] L2 cos(xi,
∑

j∈Si
xj/|Si|) 1×W ×H

Holistic [25, 24, 34] Wasserstein Distance D(xi) 1

Table 1 – Current spatial distillation methods. i and j indicate the pixel index. D(·) is a discriminator, and N(i) indicates 8-
neighborhood of pixel i. Si is the pixel set having the same label as pixel i and |Si| stands for the size of the set Si.

In our case, φ(·) is used to convert the activation values into
a probability distribution as below:

φ(yc) =
exp(yc,i

T )∑W ·H
i=1 exp(yc,i

T )
, (3)

where c = 1, 2, ..., C indexes the channel; and i indexes
the spatial location of a channel. T is a hyper-parameter
(the temperature). The probability becomes softer if we use
a larger T , meaning that we focus on a wider spatial re-
gion for each channel. By applying the softmax normal-
ization, we remove the influences of magnitude scales be-
tween the large networks and the compact networks. This
normalization is helpful in KD as observed in [31]. A 1× 1
convolution layer is employed to upsample the number of
channels for the student network if the number of channels
mismatches between the teacher and the student. ϕ(·) eval-
uates the discrepancy between the channel distribution from
the teacher network and the student network. We use the KL
divergence:

ϕ
(
yT , yS

)
=
T 2

C

C∑
c=1

W ·H∑
i=1

φ(yTc,i) · log
[φ(yTc,i)
φ(ySc,i)

]
. (4)

The KL divergence is an asymmetric metric. From Equa-
tion (4), we can see that, if φ(yTc,i) is large, φ(ySc,i) should
be as large as φ(yTc,i) to minimize the KL divergence. Oth-
erwise, if φ(yTc,i) is very small, the KL divergence pays less
attention to minimize the φ(ySc,i). Thus, the student network
tends to produce similar activation distribution in the fore-
ground saliency, while the activations corresponding to the
background region of the teacher network would have less
impact on the learning. We hypothesize that this asymmetry
property of KL benefits the KD learning for dense predic-
tion tasks.

4. Experiments
In this section, we first describe the implementation de-

tails and the experiment settings. Then, we compare our

channel-wise distillation method with other state-of-the-art
distillation methods and conduct ablation studies on seman-
tic segmentation. Finally, we show consistent improve-
ments in semantic segmentation and object detection with
various benchmarks and student network structures.

4.1. Experimental Settings

Datasets. Three public semantic segmentation benchmarks,
namely, Cityscapes [8], ADE20K [49] and Pascal VOC [10]
are used here. We also apply the proposed distillation
method to object detection on MS-COCO 2017 [23], which
is a large-scale dataset that contains over 120k images of 80
categories.

The Cityscapes dataset is used for semantic urban scene
understanding. It contains 5,000 finely annotated images
with 2,975/500/1,525 images for training/validation/testing
respectively, where 30 common classes are provided and 19
classes are used for evaluation and testing. The size of each
image is 2048 × 1024 pixels. They are gathered from 50
different cities. The coarsely labeled data is not used in our
experiments.

The Pascal VOC dataset contains 1,464/1,449/1,456 im-
ages for training/validation/testing. It contains 20 fore-
ground object classes and an extra background class. In
addition, the dataset is augmented by extra coarse labeling,
which has 10,582 images for training. The training split is
used for training, and the final performance is measured on
the validation set across 21 classes.

The ADE20K dataset covers 150 classes of diverse
scenes. It contains 20K/2K/3K images for training, vali-
dation, and testing. In our experiments, we report the seg-
mentation accuracy on the validation set.
Evaluation metrics. To evaluate the performance and ef-
ficiency of our proposed channel distribution distillation
method on semantic segmentation, following the previ-
ous work [18, 24], we test each strategy via the mean
Intersection-over-Union (mIoU) in all experiments under
a single-scale setting. The floating-point operations per
second (FLOPs) are calculated with a fixed input size
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Network Structural **Complexity**
Val mIoU (%)

Feature map Logits map
Teacher − − *****78.56***** *****78.56*****
Student − − 69.10 69.10

Spatial Distillation

AT [42] × hx · wx · (cx)p 72.37(+3.27)~ 72.32(+3.22)

PI [7, 34, 25, 24] × hx · wx · cx 70.02(+0.92)~ 71.74(+2.64)

LOCAL [35]
√

8hx · wx · cx 69.81(+0.71)~ 69.75(+0.65)

PA [25, 14, 24]
√

(hx · wx)2 · cx 71.23(+2.13)~ 71.41(+2.31)

IFVD [34]
√

hx · wx · cx · n 71.35(+2.25)~ 70.66(+1.56)

HO [25, 24, 34]
√

O(D) −~ 72.13(+3.03)

Channel Distillation CD (Ours)
√

hx · wx · cx 74.27(+5.17)~ 74.87(+5.77)

Table 2 – Comparison between computation complexity and performance on the validation set among various distillation methods. The
mIoU is calculated on the Cityscapes validation set with PSPNet-R101 as the teacher network and PSPNet-R18 as the student network.
The complexity depends on the shape (hx × wx × cx) of the input. O(D) denotes the discriminator complexity. The superscript ~
means that additional channel alignment convolution is needed. All the results are the mean of three runs.

of 512×1024 pixels. Besides, the mean class Accuracy
(mAcc) is listed for Pascal VOC and ADE20K. To evaluate
the performance on object detection, we report the mean
Average Precision (mAP), the inference speed (FPS), and
the model size (parameters) following the work in [43].
Implementation details. For semantic segmentation, the
teacher network is PSPNet with ResNet101 (PSPNet-R101)
as the backbone for all experiments. We employ several dif-
ferent architectures, including PSPNet [48], Deeplab [44]
with the backbones of ResNet18, and MobileNetV2 as stu-
dent networks to verify the effectiveness of our method.

In the ablation study, we analyze the effectiveness of
our method based on PSPNet with the ResNet18 backbone
(PSPNet-R18). Unless otherwise indicated, each training
image for the student network is randomly cropped into
512 × 512 pixels. The batch size is set to 8, and the num-
ber of the training step is 40K. We set the temperature pa-
rameter T = 4, the loss weight α = 3 for the logits map,
and α = 50 for the feature map for all experiments. For
object detection, we employ the same teacher and student
networks and the training settings as in [43].

4.2. Comparison with Recent Knowledge Distilla-
tion Methods

To verify the effectiveness of our proposed channel-wise
distillation, we compare our method with current distillation
methods listed below:

• Attention Transfer (AT) [42]: Sergey et al. calculate
the summation of all channels at each spatial location
to obtain a single channel attention map. L2 is em-
ployed to minimize the difference between the atten-
tion map.

• Local affinity (LOCAL) [35]: For each pixel, a local
similarity map is constructed, which considers the cor-
relations between itself and its 8 neighborhood pixels.
L2 is employed to minimize the difference between the
local affinity map.

• Pixel-wise distillation (PI) [25, 24, 34, 7]: KL diver-
gence is used to align the distribution of each spatial
location from two networks.

• Pair-wise distillation (PA) [25, 14, 24]: The correla-
tions between all pixel pairs are considered.

• Intra-class feature variation distillation (IFVD) [34]:
The set of similarity between the feature of each pixel
and its corresponding class-wise prototype is regarded
as the intra-class feature variation to transfer the struc-
tural knowledge.

• Holistic distillation (HO) [25, 24, 34]: The holistic em-
beddings of feature maps are computed by a discrim-
inator, which is used to minimize the discrepancy be-
tween high-order relations.

We apply all these popular distillation methods to both the
inner feature map and the final logits map. The conven-
tional cross-entropy loss is applied in all experiments. The
computational complexity and performance of spatial dis-
tillation methods are reported in Table 2.

Given the input feature map (logits map) of the size of
hf ×wf × c (hs ×ws × n), where hf (hs)×wf (ws) is the
shape of the feature map (logits map). c is the number of
channels and n is the number of classes.

As reported in Table 2, all distillation methods can im-
prove the performance of the student network. Our channel
distillation method outperforms all spatial distillation meth-
ods. Ours outperforms the best spatial distillation method
(AT) by 2.5%. Moreover, our method is more efficient as it
requires less computational cost than other methods during
the training phase.

Furthermore, we list the detailed class IoU of our
method and two recent state-of-the-art methods, PA [25]
and IFVD [18] in Table 3. These methods propose to trans-
fer structure information in semantic segmentation. Our
methods significantly improve the class accuracy of several
objects, such as traffic light, terrain, wall, truck, bus, and
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*Method* *mIoU* **road** *sidewalk* *building* **wall** **fence** **pole** traffic light traffic sign vegetation
PA 71.41 97.30 80.48 90.76 37.89 52.78 60.33 63.48 74.06 91.69

IFVD 71.66 97.56 81.44 91.49 44.45 55.95 62.40 66.38 76.44 91.85
Ours 75.13 97.64 81.97 91.89 49.44 56.84 62.53 68.73 77.60 92.20
Class terrain sky person rider car truck bus train motorcycle bicycle
PA 58.60 93.48 78.96 55.45 93.42 63.79 78.48 60.12 51.62 74.01

IFVD 61.29 93.97 78.64 52.33 93.50 60.25 74.70 58.81 44.85 75.41
Ours 63.37 94.32 80.06 58.49 94.18 70.31 85.61 72.85 52.92 76.58

Table 3 – The class IoU of our proposed channel-wise distillation method compared with other two typical structural knowledge transfer
methods on the validation set of Cityscape, where PSPNet-R18 (1.0) is used as the student network.

train, indicating that the channel distribution can well trans-
fer the structural knowledge.

4.3. Ablation Study

We show the effectiveness of the channel-wise distilla-
tion and discuss the choice of the hyper-parameters in se-
mantic segmentation in this section. The baseline student
model is PSPNet-R18, and the teacher model is the PSPNet-
R101. All the results are evaluated on the validation set of
Cityscapes.
Effectiveness of channel-wise distillation. The normal-
ized channel-wise probability map and the asymmetric KL
divergence play an important role in our distillation method.
We conduct experiments with four different variants to
show the effectiveness of proposed methods in Table 4.

All the distillation methods are applied to the same acti-
vation maps as input; and we use the same training scheme
as described in Section 4.1.

‘PI’ represents the pixel-level knowledge distillation,
which normalizes the activation of each spatial location.
‘L2 w/o NORM’ represents that we directly minimize the
difference between the feature maps from two networks,
which considers the difference at all locations in all chan-
nels equally. ‘Bhat’ is the Bhattacharyya distance [3],
which is a symmetrical distribution measurement. It aligns
the discrepancy in each channel.

From Table 4, we can see that the asymmetric KL di-
vergence measuring the normalized channel discrepancy
achieves the best performance. Note that as the KL diver-
gence is asymmetric, the input of the student and teacher
can not be swapped. We experiment by changing the order
of the input in the KL divergence, and the training does not
converge.
Impact of the temperature parameter and loss weights.
We conduct experiments to vary the channel-wise probabil-
ity maps by adjusting the temperature parameter T under
different loss weights α. The experiments are conducted on
the logits map. Results are illustrated in Figure 3.

All the results are the mean of three runs. The loss
weight is set to 1, 2, 3, and T ∈ [1, 5]. The distribution
tends to be softer if we increase T .

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
73.00

73.25

73.50

73.75

74.00

74.25

74.50

74.75

75.00

Va
l m

Io
U(

%
)

= 1.0
= 2.0
= 3.0

Figure 3 – Impact of the temperature parameter T and the loss
weight α.

From the figure, we can see that a softer probability map
may help the knowledge distillation. Besides, in a certain
range, the performance is stable. The performance appears
to drop if T is set to be small. In such cases, the method
only focuses on limited salient pixels. We attain the best
performance when T = 4 and α = 3 with the PSPNet18 on
the Cityscapes validation set.

4.4. Semantic Segmentation

We demonstrate that our proposed channel wise distilla-
tion method can be combined with previous semantic seg-

Method Norm. Divergence Logits map Feature map
Teacher - - 78.56 78.56
Student - - 69.10 69.10
PI Spatial KL 71.74 70.02
L2 w/o norm. None MSE 70.83 71.37
L2 Channel MSE 71.60 71.57
Bhat Channel Bhat 72.21 71.96
Ours Channel KL 74.87 74.27
Table 4 – Mean IoU on the Cityscapes validation set. We can
see that with the channel normalization and the asymmetry KL
divergence, the proposed channel-wise distillation achieves the
best performance among other variants. All the results are the
average of three runs.
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(a) Image (b) GT (c) CD (d) AT (e) Student

Figure 4 – Qualitative segmentation results on Cityscapes of
the PSPNet-R18 model: (a) raw images, (b) ground truth (GT),
(c) channel-wise distillation (CD), (d) the best spatial distilla-
tion schemes: attention transfer (AT); and (e) the output of the
original student model without KD.

mentation distillation methods, i.e., structural knowledge
distillation for segmentation/dense prediction (SKDS [24]
and SKDD [25]) and intra-class feature variation distilla-
tion (IFVD [34]), under various student networks.

We use the proposed channel-wise distillation both on
the logits map (Ours-logits) and the feature map (Ours-
feature). The pixel-wise distillation (PI) and the holistic dis-
tillation (HO) on the logits map are also included following
previous methods [25, 18].

We first evaluate the performance of our method on the
Cityscapes dataset. Various student networks with differ-
ent encoders and decoders are used to verify the effective-
ness of our method. Encoders include ResNet18 (initialized
with or without the weights pre-trained on ImageNet, and
a channel-halved variant of ResNet18 [13]), and decoders
include PSPhead [48] and ASPPhead [6]. Table 5 shows
the results on Cityscapes. Experiment results on Pascal
VOC [10] and ADE20K [49] are shown in the supplemen-
tary materials.

Our method outperforms SKD and IFVD on five stu-
dent networks and three benchmarks, which further indi-
cates that the channel-wise distillation is effective for se-
mantic segmentation.

For the student with the same architectural type as
the teacher, i.e., PSPNet-R18�(0.5), PSPNet-R18� and

Method Params (M) FLOPs (G)
mIoU (%)

Val Test
ENet [1] 0.358 3.612 − 58.3

ESPNet [29] 0.363 4.422 − 60.3

ERFNet [9] 2.067 25.60 − 68.0

ICNet [46] 26.50 28.30 − 69.5

FCN [19] 134.5 333.9 − 62.7

RefineNet [22] 118.1 525.7 − 73.6

OCNet [40] 62.58 548.5 − 80.1

Results w/ and w/o distillation schemes
T:PSPNet [48] 70.43 574.9 78.5 78.4

S:PSPNet-R18�(0.5) 3.271 31.53 61.17 −
+SKDS [24] 3.271 31.53 61.60 60.50

+SKDD [25] 3.271 31.53 62.35 −
+IFVD [34] 3.271 31.53 63.35 63.68

+Ours-feaure 3.271 31.53 63.06 63.12

+Ours-logits 3.271 31.53 68.57 66.75

S:PSPNet-R18� 13.07 125.8 63.63 −
+SKDS [24] 13.07 125.8 63.20 62.10

+SKDD [25] 13.07 125.8 64.68 −
+IFVD [34] 13.07 125.8 66.63 65.72

Ours-feature 13.07 125.8 66.85 66.03

Ours-logits 13.07 125.8 71.03 70.43

S:PSPNet-R18? 13.07 125.8 70.09 67.60

+SKDS [24] 13.07 125.8 72.70 71.40

+SKDD [25] 13.07 125.8 74.08 −
+IFVD [34] 13.07 125.8 74.54 72.74

+Ours-feature 13.07 125.8 74.63 73.22

+Ours-logits 13.07 125.8 75.90 74.58

S:Deeplab-R18�(0.5) 3.15 31.06 61.83 60.51

+SKDS [24] 3.15 31.06 62.71 61.69

+IFVD [34] 3.15 31.06 63.12 62.37

+Ours-feature 3.15 31.06 64.61 63.18

+Ours-logits 3.15 31.06 67.44 67.12

S:Deeplab-R18? 12.62 123.9 73.37 72.39

+SKDS [24] 12.62 123.9 73.87 72.63

+IFVD [34] 12.62 123.9 74.09 72.97

+Ours-feature 12.62 123.9 74.24 72.56

+Ours-logits 12.62 123.9 75.91 74.32

Table 5 – Comparison of student variants with the state-of-the-
art distillation methods on the Cityscapes dataset. � means that
the models are trained from scratch, and ? indicates that mod-
els are initialized by the weights pre-trained on ImageNet. R18
stands for Resnet18.

PSPNet-R18?, the improvements are more significant. As
for the student with different architectural types with the
teacher, i.e., Deeplab-R18�(0.5) and Deeplab-R18?, our
method achieves consistent improvement compared with
SKDS and IFVD. Thus, our method works well with dif-
ferent teacher and student networks.

The student network of a compact model capac-
ity (PSPNet-R18�(0.5)) shows inferior distillation perfor-
mance (68.57%) compared to the student with a larger ca-
pacity (PSPNet-R18?) (75.90%). This may be attributed to
the fact that the capability of small networks is limited com-
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Model Backbone AP (%) AP50 AP75 APS APM APL FPS Params.

Two-stage detector

Faster RCNN

R50

38.4 59.0 42.0 21.5 42.1 50.3 18.1 43.57
+Chen et al. [5] 38.7 59.0 42.1 22.0 41.9 51.0 18.1 43.57
+Wang et al. [32] 39.1 59.8 42.8 22.2 42.9 51.1 18.1 43.57
+Heo et al. [15] 38.9 60.1 42.6 21.8 42.7 50.7 18.1 43.57
+Zhang et al. [43] 41.5 62.2 45.1 23.5 45.0 55.3 18.1 43.57
+Our Method 41.7 62.0 45.5 23.3 45.5 55.5 18.1 43.57

One-stage detector

RetinaNet

R50

37.4 56.7 39.6 20.0 40.7 49.7 20.0 36.19
+Heo et al. [15] 37.8 58.3 41.1 21.6 41.2 48.3 20.0 36.19
+Zhang et al. [43] 39.6 58.8 42.1 22.7 43.3 52.5 20.0 36.19
+Our Method 40.8 60.4 43.4 22.7 44.5 55.3 20.0 36.19

Anchor-free detector
RepPoints

R50
38.6 59.6 41.6 22.5 42.2 50.4 18.2 36.62

+Zhang et al. [43] 40.6 61.7 43.8 23.4 44.6 53.0 18.2 36.62
+Our Method 42.0 63.0 45.3 24.1 46.1 55.0 18.2 36.62

Table 6 – Comparison between our methods and other distillation methods on object detection.

pared with the teacher network and can not sufficiently ab-
sorb the knowledge of the current task. For PSPNet-R18,
the student initialized by the weights trained on ImageNet
obtains the best distillation performance (improved from
70.09% to 75.90%), further demonstrating that the well-
initialized parameters help the distillation. Thus, the better
student lead to better distillation performance, but the im-
provement is less significant as the gap between the teacher
and student network is smaller.

4.5. Object Detection

We also apply our channel-wise distillation method on
the object detection task. The experiments are conducted
on MS COCO2017 [23].

Various student networks under different paradigms, i.e.,
a two-stage anchor-based method (Faster RCNN [28]),
a one-stage anchor-based method (RetinaNet [21]) and
anchor-free method (RepPoints [37]), are used to validate
the effectiveness of our method. To make a fair comparison,
we experiment on the same teacher with the same hyper-
parameters as in [43].

The only modification is that the feature alignment is
changed to our channel-wise distillation. The results are re-
ported in Table 6. From the table, we can see that our meth-
ods achieve consistent improvements (about 3.4% mAP)
on strong baseline student networks. Compared with pre-
vious state-of-the-art distillation methods [43], our simple
channel-wise distillation performs better, especially with
anchor-free methods. We improve the RepPoint by 3.4%
while Zhang et al. improve the RepPoint by 2%. Besides,
we can see that the proposed distillation method can im-
prove AP75 more significantly.

5. Conclusion
In this paper, we have proposed a novel channel-wise

distillation for dense prediction tasks. Different from pre-
vious spatial distillation methods, we normalize the activa-
tions of each channel to a probability map. Then, the asym-
metry KL divergence is applied to minimize the discrepancy
between the teacher and the student network. Experimental
results show that the proposed distillation method consis-
tently outperforms state-of-the-art distillation methods on
four public benchmark datasets with various network back-
bones, for both semantic segmentation and object detection.

Additionally, our ablation experiments demonstrate the
efficiency and effectiveness of our channel-wise distillation,
and it can further complement the spatial distillation meth-
ods. We hope that the proposed simple and effective dis-
tillation method can serve as a strong baseline for effec-
tively training compact networks for many other dense pre-
diction tasks, including instance segmentation, depth esti-
mation and panoptic segmentation.

Appendix

A. Results on Pascal VOC and ADE20K
To further demonstrate the effectiveness of the proposed

channel distribution distillation, we only employ the pro-
posed CD on the feature maps as our final results on Pas-
cal VOC and ADE20K. The experiment results are re-
ported in Table 7 and Table 8. Multi student-network vari-
ants with different encoders and decoders are used to vali-
date the efficiency of our method. Here, encoders include
ResNet18 and MobileNetV2, and decoders include PSP-
head and ASPP-head.
Pascal VOC. We evaluate the performance of our method
on the Pascal VOC dataset. The distillation results are listed
in Table 7. Our proposed CD improves PSPNet-R18 with-
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(a) Image (b) GT (c) CD (d) AT (e) Student

Figure 5 – Qualitative segmentation results on Cityscapes of
the PSPNet-R18 model: (a) raw images, (b) ground truth (GT),
(c) channel-wise distillation (CD), (d) the best spatial distilla-
tion schemes: attention transfer (AT); and (e) the output of the
original student model without KD.

out distillation by 3.83%, outperforms the SKDS and IFVD
by 1.51% and 1.21%. Consistent improvements on other
student networks with different encoders and decoders are
achieved. The gains on PSPNet-MBV2 with our method
is 3.55%, surpassing the SKDS and IFVD by 1.98% and
1.20%. As for Deeplab-R18, our CD improves the stu-
dent from 66.81% to 69.97%, outperforming the SKDS
and IFVD by 1.84% and 1.55% respectively. Besides, the
performance of Deeplab-MBV2 with our distillation is in-
creased from 50.80% to 54.62%, outperforming the SKDS
and IFVD by 2.51% and 1.23% respectively.
ADE20K. We also evaluate our method on the ADE20K
dataset to further demonstrate that CD works better than
other structural knowledge distillation methods. The results
are shown in Table 8. Our proposed CD improves PSPNet-
R18 without distillation by 3.83%, and outperforms the
SKDS and IFVD by 1.51% and 1.21% in several. Notable
performance gains on other student with different encoders
and decoders are also consistently achieved, As for PSPNet-
MBV2, our method achieves a superior performance of
27.97%, surpassing the student, SKDS and IFVD by 4.82%,
3.18% and 2.64%. The gain on Deeplab-R18 with our CD is
2.48%, outperforming the SKDS and IFVD by 1.85% and
0.84%. Finally, the performance of Deeplab-MBV2 with
our channel-wise distillation is increased from 24.98% to

Method Params **mIoU(%) **mAcc(%)

FCN [19] 134.5 69.9 78.1

DeepLabV3 [6] 87.1 77.9 85.7

PSANet [47] 78.13 77.9 86.6

GCNet [4] 68.82 77.8 85.9

ANN [51] 65.2 76.7 84.5

OCRNet [39] 70.37 80.3 87.1

Results w/ and w/o our distillation schemes

T:PSPNet [48] 70.43 78.52 79.57

S:PSPNet-R18 13.07 65.42 80.43

+SKDS [24] 13.07 67.73 81.73

+IFDV [34] 13.07 68.04 82.25

+Ours 13.07 69.25 83.14

S:PSPNet-MBV2 1.98 62.38 77.82

+SKDS [24] 1.98 63.95 78.93

+IFDV [34] 1.98 64.73 79.81

+Ours 1.98 65.93 81.45

S:Deeplab-R18 12.62 66.81 81.14

+SKDS [24] 12.62 68.13 82.26

+IFDV [34] 12.62 68.42 82.70

+Ours 12.62 69.97 83.47

S:Deeplab-MBV2 2.45 50.80 74.24

+SKDS [24] 2.45 52.11 75.17

+IFDV [34] 2.45 53.39 76.02

+Ours 2.45 54.62 77.13

Table 7 – mIoU and mAcc on validation set of VOC 2012, R18
(MBV2) is the abbreviation for Resnet18 (MobileNetV2).

29.18%, outperforming the SKDS and IFVD by 3.08% and
1.93% respectively.

B. More visualization results

We list the visualization results in Figure 6 to intu-
itively demonstrate that, the channel distribution distillation
method (CD) outperforms the spatial distillation strategy
(attention transfer). Besides, to evaluate the effectiveness
of the proposed channel distribution distillation, we visu-
alize the channel distribution of the student network under
three paradigms, i.e., original network, distilled by the at-
tention transfer (AT) and channel distribution distillation re-
spectively, in Figure 7 and Figure 8.
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