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Abstract

Vector graphic documents present visual elements in a
resolution free, compact format and are often seen in cre-
ative applications. In this work, we attempt to learn a gen-
erative model of vector graphic documents. We define vec-
tor graphic documents by a multi-modal set of attributes
associated to a canvas and a sequence of visual elements
such as shapes, images, or texts, and train variational auto-
encoders to learn the representation of the documents. We
collect a new dataset of design templates from an online
service that features complete document structure includ-
ing occluded elements. In experiments, we show that our
model, named CanvasVAE, constitutes a strong baseline for
generative modeling of vector graphic documents.

1. Introduction
In creative workflows, designers work on visual presen-

tation via vector graphic formats. 2D vector graphics rep-
resent images in a compact descriptive structure; instead of
spatial array of pixels, graphic documents describe a canvas
and arrangement of visual elements such as shapes or texts
in a specific format like SVG or PDF. Vector graphics are
crucial in creative production for its resolution-free repre-
sentation, human interpretability, and editability. Because
of its importance in creative applications, there has been a
long but active history of research on tracing vector graphic
representation from a raster image [28, 14, 2, 20, 26].

In this work, we study a generative model of vector
graphic documents. While raster-based generative models
show tremendous progress in synthesizing high-quality im-
ages [10, 24, 12], there has been relatively scarce studies
on vector graphic documents [33, 3, 17]. Although both
raster and vector graphics deal with images, vector graphics
do not have canvas pixels and cannot take advantage of the
current mainstream approach of convolutional neural net-
works without rasterization, which is typically not differen-
tiable [19]. Learning a generative model of vector graphics
therefore imposes us unique challenges in 1) how to repre-
sent complex data structure of vector graphic formats in a

unified manner, 2) how to formulate the learning problem,
and 3) how to evaluate the quality of documents.

We address the task of generative learning of vec-
tor graphics using a variational auto-encoder (VAE) [13],
where we define documents by a multi-modal combination
of canvas attributes and a sequence of element attributes.
Unlike conditional layout inference [33, 15, 17], we con-
sider unconditional document generation including both a
canvas and variable number of elements. Our architecture,
named CanvasVAE, learns an encoder that projects a given
graphic document into a latent code, and a decoder that re-
constructs the given document from the latent code. We
adopt Transformer-based network [5] in both the encoder
and the decoder to process variable-length sequence of el-
ements in a document. The learned decoder can take ran-
domly sampled latent code to generate a new vector graphic
document. For our study, we collect a large-scale dataset
of design templates for our study that offers complete doc-
ument structure and content information. In evaluation, we
propose to combine normalized metrics for all attributes to
measure the overall quality of reconstruction and genera-
tion. We compare several variants of CanvasVAE architec-
ture and show that a Transformer-based model constitutes a
strong baseline for the vector graphic generation task.

We summarize our contributions in the following.

1. We propose the CanvasVAE architecture for the task
of unconditional generative learning of vector graphic
documents, where we model documents by a struc-
tured, multi-modal set of canvas and element at-
tributes.

2. We build Crello dataset, which is a dataset consisting
of large number of design templates and features com-
plete vector information including occluded elements.

3. We empirically show that our Transformer-based vari-
ant of CanvasVAE achieves a strong performance in
both document reconstruction and generation.

2. Related work
Generative layout modeling There has been several at-
tempts at conditional layout modeling where the goal is



to generate bounding box arrangements given certain in-
puts. LayoutVAE [11] learns a two-stage autoregressive
VAE that takes a label set and generates bounding boxes
for each label, for scene image representation. For design
applications, Zheng et al. [33] report a generative model
for magazine layout conditioned on a set of elements and
meta-data, where raster adversarial networks generate lay-
out maps. Lee et al. [15] propose a three-step approach to
predict a layout given an initial set of elements that accepts
partial relation annotation. Li et al. [16, 17] learn a model
that refines the geometry of the given elements, such that
the refined layout looks realistic to a discriminator built on
a differentiable wire-frame rasterizer. Tan et al. [30] pro-
pose text-to-scene generation that explicitly considers a lay-
out and attributes. Wang et al. [31] consider a reinforce-
ment learning approach to select appropriate elements for
the given document. For UI layout domain, Manandhar et
al. [22] propose to learn UI layout representation by metric
learning and raster decoder. Li et al. [18] recently report an
attempt in multi-modal representation learning of UI layout.

In contrast to conditional layout generation, we tackle
on the task of unconditional document generation includ-
ing layout and other attributes. Gupta et al. recently report
autoregressive model for generating layout [7] but without
learning a latent representation and instead relies on beam
search. READ [25] is the only pilot study similar to our
unconditional scenario, although their recursive model only
considers labeled bounding box without content attributes.
Arroyo et al. [1] very recently report a layout generation
model. Our model fully works in symbolic vector data with-
out explicit rasterization [33, 16], which allows us to easily
process data in a resolution free manner.

Vector graphic generation Although our main focus is
document-level generation, there has been several important
work in stroke or path level vector graphic modeling that
aims at learning to generate resolution-free shapes. Sketch
RNN is a pioneering work on learning drawing strokes us-
ing recurrent networks [8]. SPIRAL is a reinforcment ad-
versarial learning approach to vectorize a given raster im-
age [6]. Lopes et al. learn an autoregressive VAE to gener-
ate vector font strokes [21]. Song et al. report a generative
model of Bézier curves for sketch strokes [29]. Carlier et
al. propose DeepSVG architecture that consists of a hierar-
chical auto-encoder that learns a representation for a set of
paths [3]. We get many inspirations from DeepSVG espe-
cially in our design of oneshot decoding architecture.

3. Vector graphic representation
3.1. Document structure

In this work, we define vector graphic documents to be
a single-page canvas and associated sequence of visual el-

ements such as texts, shapes, or raster images. We repre-
sent a document X = (Xc, XE) by a set of canvas at-
tributes Xc = {xk|k ∈ C} and a sequence of elements
XE = {X1

e , X
2
e , · · · , XT

e }, where Xt
e = {xt

k|k ∈ E} is
a set of element attributes. We denote a set of canvas and
element attribute indices by C and E , respectively. Can-
vas attributes represent global document properties, such as
canvas size or document category. Element attributes indi-
cate element-specific configuration, such as position, size,
type of the element, opacity, color, or a texture image if
the element represents a raster image. In addition, we ex-
plicitly include the element length in the canvas attributes
Xc. We represent elements by a sequence, where the order
reflects the depth of which elements appear on top. The ac-
tual attribute definition depends on datasets we describe in
the next section.

3.2. Datasets

Crello dataset Crello dataset consists of design templates
we obtained from online design service, crello.com. The
dataset contains designs for various display formats, such
as social media posts, banner ads, blog headers, or printed
posters, all in a vector format. In dataset construction, we
first downloaded design templates and associated resources
(e.g., linked images) from crello.com. After the initial data
acquisition, we inspected the data structure and identified
useful vector graphic information in each template. Next,
we eliminated mal-formed templates or those having more
than 50 elements, and finally obtained 23,182 templates.
We randomly partition the dataset to 18,714 / 2,316 / 2,331
examples for train, validation, and test splits.

In Crello dataset, each document has canvas attributes
Xc = {xlength, xwidth, xheight, xgroup, xcategory, xformat}
and element attributes Xt

e = {xt
type, xt

position, xt
size, xt

color,
xt
opacity, xt

image}. Table 1 summarizes the detail of each
attribute. Image and color attributes are exclusive; we ex-
tract color for text placeholders and solid backgrounds, and
we extract image features for shapes and image elements in
the document. Except for image features, we quantize nu-
meric attributes to one-hot representations, such as element
position, size, or colors, because 1) discretization implic-
itly enforces element alignment, and 2) attributes often do
not follow normal distribution suitable for regression. The
image feature allows us content-aware document modeling,
and also is useful for visualization purpose.

We obtain image features using a raster-based convolu-
tional VAE that we pre-train from all the image and shape
elements in the Crello dataset. We do not use ImageNet
pre-trained model here, because ImageNet does not con-
tain alpha channels nor vector shapes. For pre-training of
the VAE, we rasterize all the image and shape elements in
256 × 256 pixel canvas with resizing, and saves in RGBA
raster format. From the rasterized images, we learn a VAE



Table 1: Attribute descriptions for vector graphic data

Dataset Attribute of Name Type Size Dim Description

Crello

Canvas

Length Categorical 50 1 Length of elements up to 50
Group Categorical 7 1 Broad design group, such as social media posts or blog headers
Format Categorical 68 1 Detailed design format, such as Instagram post or postcard
Width Categorical 42 1 Canvas pixel width available in crello.com
Height Categorical 47 1 Canvas pixel height available in crello.com
Category Categorical 24 1 Topic category of the design, such as holiday celebration

Element

Type Categorical 6 1 Element type, such as vector shape, image, or text placeholder
Position Categorical 64 2 Left and top position each quantized to 64 bins
Size Categorical 64 2 Width and height each quantized to 64 bins
Opacity Categorical 8 1 Opacity quantized to 8 bins
Color Categorical 16 3 RGB color each quantized to 16 bins, only relevant for solid fill and texts
Image Numerical 1 256 Pre-trained image feature, only relevant for shapes and images

RICO

Canvas Length Categorical 50 1 Length of elements up to 50

Element

Component Categorical 27 1 Element type, such as text, image, icon, etc.
Position Categorical 64 2 Left and top position each quantized to 64 bins
Size Categorical 64 2 Width and height each quantized to 64 bins
Icon Categorical 59 1 Icon type, such as arrow, close, home
Button Categorical 25 1 Text on button, such as login or back
Clickable Categorical 2 1 Binary flag indicating if the element is clickable

consisting of MobileNetV2-based encoder [27] and a 6-
layer convolutional decoder. After pre-training the convo-
lutional VAE, we obtain a 256-dimensional latent represen-
tation using the learned image encoder for all the image and
shape elements in Crello dataset.

In contrast to existing layout datasets that mainly con-
sider a set of labeled bounding boxes [4, 33, 34], our Crello
dataset offers complete vector graphic structure including
appearance for occluded elements. This enables us to learn
a generative model that considers the appearance and at-
tributes of graphic elements in addition to the layout struc-
ture. Also, Crello dataset contains canvas in various aspect
ratio. This imposes us a unique challenge, because we have
to handle variable-sized documents that raster-based mod-
els do not work well with.

RICO dataset RICO dataset offers a large number of user
interface designs for mobile applications with manually an-
notated elements [4]. We use RICO dataset to evaluate the
generalization ability of our CanvasVAE. All the UI screen-
shots from RICO have a fixed resolution of 2560 × 1440
pixels, and there is no document-wise label. We set canvas
attributes to only have element length: Xc = {xlength}, and
for each element, we model Xt

e = {xt
component, x

t
position,

xt
size, xt

icon, xt
button, xt

clickable}. Most of the pre-processing
follows Crello dataset; we quantize numeric attributes to
one-hot representations. Table 1 summarizes the attributes
we consider in this work.

4. CanvasVAE
Our goal is to learn a generative model of vector graphic

documents. We aim at learning a VAE that consists of a
probabilistic encoder and a decoder using neural networks.

VAE basics Let us denote a vector graphic instance by X
and a latent code by z. A VAE learns a generative model
pθ(X, z) = pθ(X|z)pθ(z) and an approximate posterior
qϕ(z|X), using variational lower bounds [13]:

L(X; θ, ϕ) =Eqϕ(z|X) [log pθ(X|z)]
−KL(qϕ(z|X)||pθ(z)), (1)

where ϕ is the parameters of the inference model and θ is
the parameters of the generative model.

We model the approximate variational posterior qϕ(z|X)
by a Gaussian distribution with a diagonal covariance:

qϕ(z|X) ≡ N (z;µϕ(X), σϕ(X)2I), (2)

where µϕ(X) and σϕ(X) are the encoder outputs that we
model by a neural network. We set the prior over the la-
tent code z to be a unit multivariate Gaussian pθ(z) ≡
N (z;0, I). We also model the data likelihood pθ(X|z) us-
ing a neural network. Fig 1 illustrates our CanvasVAE en-
coder and decoder architecture.

Encoder Our encoder takes a vector graphic input X
and predicts the parameters of approximate prior µϕ(X),
σϕ(X). We describe the encoder in the following:

hc =
∑

k∈Cfk(xk;ϕ), (3)

ht
e =

∑
k∈Efk(x

t
k;ϕ) + xt

position,ϕ, (4)

henc =
1

T

∑T
t B({ht

e},hc;ϕ), (5)

µϕ(X) = fµ(henc;ϕ), (6)
σϕ(X) = fσ(henc;ϕ). (7)

The encoder first projects each canvas attribute xk using a
feed-forward layer fk to the dimensionality, and adds up to
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Figure 1: CanvasVAE architecture.

make the hidden side input hc to the Transformer block.
Similarly, the encoder projects each element attribute xt

k

using a feed-forward layer to the same dimensionality, and
adds up together with the position embedding xt

position,ϕ

to make the hidden input ht
e to the Transformer block for

each step t. The positional embedding xt
position,ϕ provides

information on absolute position within the element se-
quence [5]. We learn the positional embedding during train-
ing. B is a variant of Transformer model that adds a side
input between the self attention and the feed-forward layer,
which is similar to the decoder block of DeepSVG [3]. We
stack up multiple Transformer blocks to transform input
embedding hc and ht

e to produce temporally pooled inter-
nal representation henc. fµ and fσ are the last feed-forward
layer of the encoder to produce µϕ(X) and σϕ(X).

Decoder Our decoder takes a sampled latent code
z and produces reconstruction X̂ from pθ(X|z) =∏

k pθ(xk|z)
∏

t pθ(x
t
k|z). We describe our decoder by:

ht
dec = B({xt

position,θ}, z; θ), (8)

pθ(xk|z) = fk(xk, z; θ), (9)

pθ(x
t
k|z) = fk(x

t
k,h

t
dec; θ), (10)

where fk is the last feed-forward network for the attribute
k. Our decoder uses the same Transformer block B with
the encoder. The decoder has the positional embedding
xt
position,θ to feed the absolute position information for se-

quence reconstruction.
At generation, we apply stochastic sampling to z and ob-

tain a maximum likelihood estimate from our decoder head
pθ(xk|z) for categorical attributes, or regression output for

numerical attributes. To generate a sequence from the latent
code z, we have to first decide the number of elements in
the document. We predict the length T from pθ(xlength|z),
and feed the masking information to the Transformer block
to exclude out-of-sequence elements in self-attention, and
drop extra elements at the final reconstruction.

Loss function We derive the loss function for our Canvas-
VAE from the variational lower bounds (Eq 1). For a sam-
ple X in our dataset, the loss for each document is given by:

L(X, X̂; θ, ϕ) =
∑
k∈C

Lk(xk, x̂k) +
∑
k∈E

T∑
t

Lk(x
t
k, x̂

t
k)

+ λKLKL(N (z;µϕ, σϕ)||N (z;0, I))

+ λL2(|ϕ|2 + |θ|2), (11)

where λKL and λL2 are hyper-parameters to weight the reg-
ularization terms. Lk is a loss term for attribute k. We use
cross entropy for categorical attributes and mean squared er-
ror for numeric attributes. At training time, we use teacher-
forcing; we discard the predicted length T̂ and force the
ground truth length T in the decoder.

5. Experiments

We evaluate our CanvasVAE in reconstruction and gen-
eration scenarios. In reconstruction, we evaluate the overall
capability of our encoder-decoder model to reproduce the
given input. In generation scenario, we evaluate the de-
coder capability in terms of the quality of randomly gen-
erated documents.



5.1. Evaluation metrics

5.1.1 Reconstruction metrics

We have to be able to measure the similarity between two
documents to evaluate reconstruction quality. Unlike raster
images, there is no standard metric to measure the dis-
tance between vector graphic documents. Our loss function
(Eq 11) is also not appropriate due to teacher-forcing of se-
quence length. Considering the multi-modal nature of vec-
tor graphic formats, we argue that an ideal metric should
be able to evaluate the quality of all the modalities in the
document at a uniform scale, and that the metric can han-
dle variable length structure. We choose the following two
metrics to evaluate the document similarity.

Structural similarity For document X1 and X2, we mea-
sure the structural similarity by the mean of normalized
scores for each attribute k:

S(X1, X2) =

1

|C′|+ |E|

[∑
k∈C′

sk(xk,1,xk,2) +
∑
k∈E

sk({xt
k,1}, {xt

k,2})

]
,

(12)

where sk ∈ [0, 1] is a scoring function, and C′ =
C\{length}. We exclude length from the canvas attributes
because element scores take length into account. For canvas
attributes, we adopt accuracy as the scoring function since
there are only categorical attributes in our datasets.

For categorical element attributes, a scoring function
must be able to evaluate variable length elements. We use
BLEU score [23] that is a precision-based metric often used
in machine translation. BLEU penalizes a shorter predic-
tion by the brevity term: exp

(
min

(
0, 1− |T |

|T̂ |

))
, where T̂

is the predicted element length. We use unigram BLEU for
evaluation, because vector graphic elements do not exhibit
strong ordinal constraints and elements can be swapped as
long as they do not overlap. For the image feature that is
the only numerical element attribute in Crello, we use the
cosine similarity in [0, 1] scale between the average-pooled
features over sequence, multiplied by the brevity term of
BLEU score. Note that our structural similarity is not sym-
metric because BLEU is not symmetric.

In Crello, the presence of image and color attributes de-
pend on the element type, and {xt

k} can become empty. We
exclude empty attributes from E in the calculation of eq 12
if either X1 or X2 include empty attributes.

We evaluate reconstruction performance by the average
score over the document set X = {Xi}:

Sreconst(X ) =
1

|R|
∑
i

S(Xi, X̂i). (13)

Layout mean IoU We also include evaluation by mean
intersection over union (mIoU) on labeled bounding
boxes [22] to analyze layout quality. We use type attribute
in Crello dataset and component attribute in RICO dataset
as a primary label for elements. To compute mIoU, we draw
bounding boxes on a canvas in the given element order,
compute the IoU for each label, then average over labels.
Since we quantize position and size of each element, we
draw bounding boxes on a 64 × 64 grid canvas. Similar to
Eq 13, we obtain the final score by dataset average.

The mIoU metric ignores attributes other than element
position, element size, and element label. Content attributes
such as image or color have no effect on the mIoU metric.
Although Crello dataset has variable-sized canvas, we ig-
nore the aspect ratio of the canvas and only evaluate on the
relative position and size of elements.

5.1.2 Generation metric

Similar to reconstruction, there is no standard approach to
evaluate the similarity between sets of vector graphic docu-
ments. It is also not appropriate to use a raster metric like
FID score [9] because our document can not be rasterized to
a fixed resolution nor is a natural image. We instead define
the following metric to evaluate the distributional similarity
of vector graphic documents.

For real and generated document sets X1 and X2, we first
obtain descriptive statistics for each attribute k, then com-
pute the similarity between the two sets:

Sgen(X1,X2) =
1

|C|+ |E|
∑

k∈C∪E

dk(ak(X1), ak(X2)),

(14)

where ak is an aggregation function that computes descrip-
tive statistics of attribute k, and dk is a scoring function. For
categorical attributes, we use histogram for ak and normal-
ized histogram intersection for dk. For numerical attributes,
we use average pooling for ak and cosine similarity for dk.

5.2. Baselines

We include the following variants of our CanvasVAE as
baselines. Since there is no reported work that is directly
comparable to CanvasVAE, we carefully pick comparable
building blocks from existing work.
AutoReg LSTM We replace Transformer blocks and tem-
poral pooling in our model (Eq 5, 8) with an LSTM. The
side input to the transformer blocks is treated as initial hid-
den states. Also, we introduce autoregressive inference pro-
cedure instead of our one-shot decoding using positional
embedding; we predict an element at t given the elements
until t − 1 in the decoder. The initial input is a special
beginning-of-sequence embedding, which we learn during
training. Our autoregressive LSTM baseline has a decoder
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Figure 2: Performance curves in terms of Sreconst vs. Sgen and mIoU vs. Sgen over λKL in validation splits. Top-right models
show better performance in both reconstruction and generation.
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Figure 3: Crello reconstruction comparison. For each item, a left picture shows visualization of the design template with
colored text placeholders and textured elements, and a right color map illustrates element types. The legend of types are the
following: green = vector shape, magenta = image, purple = text placeholder, and yellow = solid fill.

similar to LayoutVAE [11], although we do not stochasti-
cally sample at each step nor have conditional inputs but
have an encoder for the latent code.
AutoReg Transformer Similar to Autoregressive LSTM,
we introduce the autoregressive inference but use Trans-
former blocks. The decoding process is similar to Lay-
outTransformer [7], but we add an encoder for the latent
code. We also explicitly predict sequence length instead of
an end-of-sequence flag to terminate the prediction.
Oneshot LSTM We use positional embedding but replace
Transformer blocks with an LSTM. We use a bidrectional
LSTM for this one-shot model because positional embed-
ding allows both past and future information for prediction.
Oneshot Transformer Our CanvasVAE model described
in Sec 4. We also compare the number of Transformer
blocks at 1 and 4 for ablation study.

5.3. Quantitative evaluation

For each baseline, we report the test performance of the
best validation model in terms of Sgen that we find by a grid
search over λKL. For other hyper-parameters, we empiri-

Table 2: Test performance (%).

Dataset Model Sreconst mIoU Sgen

Crello

AutoReg LSTM 79.75 33.52 86.44
AutoReg Trans x1 85.47 33.86 87.48
AutoReg Trans x4 84.65 35.36 86.60
Oneshot LSTM 84.95 40.50 86.85
Oneshot Trans x1 88.67 47.02 87.57
Oneshot Trans x4 87.75 45.50 88.15

RICO

AutoReg LSTM 87.73 42.51 93.74
AutoReg Trans x1 94.96 51.13 94.40
AutoReg Trans x4 92.06 48.74 95.11
Oneshot LSTM 91.01 51.93 92.05
Oneshot Trans x1 94.35 60.42 93.90
Oneshot Trans x4 94.45 59.47 95.14

cally set the size of latent code z to 512 for Crello and 256
for RICO, and λL2 = 1e − 6 in all baselines. We train all
baseline models using Adam optimizer with learning rate
fixed to 1e − 3 for 500 epochs in both datasets. For gener-
ation evaluation, we sample z from zero-mean unit normal
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Figure 5: Stochastic sampling and reconstruction examples.

distribution up to the same size to the test split.
Table 2 summarizes the test evaluation metrics of the

baseline models. In Crello, oneshot Transformer x1 con-
figuration has the best reconstruction in structure (88.67%)
and layout mIoU (47.02%), while oneshot Transformer x4
has the best generation score (88.15%). In RICO, autore-
gressive Transformer x1 has the best structure reconstruc-
tion (94.96%), oneshot Transformer x1 has the best mIoU
(60.42%), and oneshot Transformer x4 has the best genera-
tion score (95.14%).

Performance trade-offs We note that the choice of λKL

has a strong impact on the evaluation metric, and that ex-
plains the varying testing results in Table 2. We plot in Fig 2
the validation performance as we move λKL from 21 to 28

in Crello, and from 21 to 27 in RICO. The plots clearly show
there is a trade-off relationship between reconstruction and
generation. A smaller KL divergence indicates smoother
latent space, which in turn indicates better generation qual-
ity from random sampling of z but hurts the reconstruc-
tion performance. From the plots, oneshot Transformer x4
seems consistently performing well in both datasets except
for Sreconst evaluation in RICO, where most baselines satu-
rate the reconstruction score. We suspect Sreconst saturation

is due to over-fitting tendency in RICO dataset, as RICO
does not contain high dimensional attributes like image fea-
ture. Given the performance characteristics, we conjecture
that oneshot Transformer performs the best.

Autoregressive vs. oneshot Table 2 and Fig 2 suggests
oneshot models consistently perform better than the autore-
gressive counterparts in both datasets. This trend makes
sense, because autoregressive models cannot consider the
layout placement of future elements at the current step. In
contrast, oneshot models can consider spatial relationship
between elements better at inference time.

5.4. Qualitative evaluation

Reconstruction We compare reconstruction quality of
Crello and RICO testing examples in Fig 3 and Fig 4. Here,
we reconstruct the input deterministically by the mean la-
tent code in Eq 2. Since Crello dataset has rich content
attributes, we present a document visualization that fills in
image and shape elements using a nearest neighbor retrieval
by image features (Sec 3.2), and a color map of element
type bounding boxes. For RICO, we show a color map of
component bounding boxes.

We observe that, while all baselines reasonably recon-
struct documents when there are a relatively small number
of elements, oneshot models tend to reconstruct better as a
document becomes more complex (Second row of Fig 3).

We also show how sampling z from qϕ(z|X) results in
variation in the reconstruction quality in Fig 5. Depending
on the input, sampling sometimes leads to different layout
arrangement or canvas size.

Interpolation One characteristic of VAEs is the smooth-
ness of the latent space. We show in Fig 6 an example of
interpolating latent codes between two documents in Crello
dataset. The result shows a gradual transition between two
documents that differ in many aspects, such as the number
of elements or canvas size. The resulting visualization is
discontinuous in that categorical attributes or retrieved im-
ages change at specific point in between, but we can still
observe some sense of continuity in design.

Generation Fig 7 shows randomly generated Crello de-
sign documents from oneshot Transformer x4 configura-
tion. Our CanvasVAE generates documents in diverse lay-
outs and aspect ratios. Generated documents are not real-
istic in that the quality is not sufficient in immediate use in
real-world creative applications, but seem to already serve
for inspirational purposes. Also, we emphasize that these
generated documents are easily editable thanks to the vec-
tor graphic format.
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Figure 6: Interpolation example.
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Figure 7: Randomly generated Crello documents.

Figure 8: Randomly generated RICO documents.

We also show in Fig 8 randomly generated UIs with
RICO dataset. Although sometimes generated layouts in-
clude overlapping elements, they show diverse layout ar-
rangements with semantically meaningful structure such as
toolbar or list components.

6. Conclusion
We present CanvasVAE, an unconditional generative

model of vector graphic documents. Our model learns an
encoder and a decoder that takes vector graphic consisting
of canvas and element attributes including layout geometry.

With our newly built Crello dataset and RICO dataset, we
demonstrate CanvasVAE successfully learns to reconstruct
and generate vector graphic documents. Our results con-
stitute a strong baseline for generative modeling of vector
graphic documents.

In the future, we are interested in further extending Can-
vasVAE by generating text content and font styling, in-
tegrating pre-training of image features in an end-to-end
model, and combining a learning objective that is aware of
appearance, for example, by introducing differentiable ras-
terizer [19] to compute raster reconstruction loss. We also
wish to look at whether feedback-style inference [32] al-
lows partial inputs such as user-specified constraints [15],
which is commonly seen in application scenarios.
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