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Figure 1: Qualitative results for multi-view depth estimation on ScanNet [4]. Our method clearly surpasses leading multi-
view estimation methods [29, 34] by building on top of neural radiance fields [33]. While also using test-time optimization,
CVD [29] suffers from inaccurate estimation of flow correspondences. NeRF [33] fails to produce accurate geometry due to
the inherent shape-radiance ambiguity [61] (See Figure 3) in indoor scenes.With guided optimization, our method success-
fully integrates the learning-based depth priors into NeRF, significantly improving the geometry of the radiance fields.

Abstract

In this work, we present a new multi-view depth esti-
mation method that utilizes both conventional reconstruc-
tion and learning-based priors over the recently proposed
neural radiance fields (NeRF). Unlike existing neural net-
work based optimization method that relies on estimated
correspondences, our method directly optimizes over im-
plicit volumes, eliminating the challenging step of match-
ing pixels in indoor scenes. The key to our approach
is to utilize the learning-based priors to guide the op-
timization process of NeRF. Our system firstly adapts a
monocular depth network over the target scene by finetun-
ing on its sparse SfM+MVS reconstruction from COLMAP.
Then, we show that the shape-radiance ambiguity of NeRF
still exists in indoor environments and propose to address
the issue by employing the adapted depth priors to mon-

itor the sampling process of volume rendering. Finally,
a per-pixel confidence map acquired by error computa-
tion on the rendered image can be used to further improve
the depth quality. Experiments show that our proposed
framework significantly outperforms state-of-the-art meth-
ods on indoor scenes, with surprising findings presented
on the effectiveness of correspondence-based optimization
and NeRF-based optimization over the adapted depth pri-
ors. In addition, we show that the guided optimization
scheme does not sacrifice the original synthesis capabil-
ity of neural radiance fields, improving the rendering qual-
ity on both seen and novel views. Code is available at
https://github.com/weiyithu/NerfingMVS.

1. Introduction

Reconstructing 3D scenes from multi-view posed im-
ages, also named as multi-view stereo (MVS), has been a

https://github.com/weiyithu/NerfingMVS


fundamental topic in computer vision over decades. The
application varies from robotics, 3D modeling, to virtual
reality, etc. Conventional multi-view stereo approaches
[2, 9, 13, 60] densely match pixels across views by compar-
ing the similarity of cross-view image patches. While pro-
ducing impressive results, those methods often suffer from
poorly textured regions, thin structures and non-Lambertian
surfaces, especially in real-world indoor environments.

Recently, with the success of deep neural networks, sev-
eral learning-based methods [17,20,24,53] are proposed to
tackle the multi-view stereo problem often by employing a
cost volume based architecture. Those methods perform a
direct neural network inference at test time for multi-view
depth estimation and achieve remarkable performance on
benchmarks. However, due to the lack of constraints at in-
ference, the predicted depth maps across views are often not
consistent and the photometric consistency is often violated.
To address this issue, [29] proposed a test-time optimiza-
tion framework that optimizes over learning-based priors
acquired from single-image depth estimation. While being
computationally inefficient, the method produces accurate
and consistent depth maps that are available for various vi-
sual effects. However, the optimization formulation of this
method relies heavily on an optical flow network [16] to es-
tablish correspondences, which becomes problematic when
estimated correspondences are unreliable.

In this paper, we present a new neural network based
optimization framework for multi-view depth estimation
based on the recently proposed neural radiance fields [33].
Instead of relying on estimated correspondences and cross-
view depth reprojection for optimization [29], our method
directly optimizes over volumes. However, we show that
the shape-radiance ambiguity [61] of NeRF becomes the
bottleneck on estimating accurate per-view depths in indoor
scenes. To address the issue, we propose a guided optimiza-
tion scheme to help train NeRF with learning-based depth
priors. Specifically, our system firstly adapts a monocular
depth network onto the test scene by finetuning on its con-
ventional SfM+MVS reconstruction. Then, we employ the
adapted depth priors to guide the sampling process of vol-
ume rendering for NeRF. Finally, we acquire a confidence
map from the rendered RGB image of NeRF and improve
the depth map with a post-filtering step.

Our findings indicate that the scene-specific depth prior
adaptation significantly improves the depth quality. How-
ever, performing existing correspondence-based optimiza-
tion on the adapted depth priors will surprisingly degrade
the performance. On the contrary, with direct optimiza-
tion over neural radiance fields, our method consistently
improves the depth quality over adapted depth priors. This
phenomenon demonstrates the potential of exploiting neural
radiance fields for accurate depth estimation.

Experiments show that our proposed framework signifi-

cantly improves upon state-of-the-art multi-view depth esti-
mation methods on tested indoor scenes. In addition, the
guided optimization from learning-based priors can help
improve the rendering quality of NeRF on both seen and
novel views, achieving comparable or better quality with
state-of-the-art novel view synthesis methods. This indi-
cates that conventional non-learning reconstruction method,
while demonstrated to be effective on helping image-based
view synthesis in [39, 40], can also help improve the syn-
thesis quality on neural implicit representations.

2. Related Work

Multi-view Reconstruction: Recently, 3D vision [14,
48, 54–56, 62]has attracted more and more attention. Early
multi-view reconstruction approaches include volumetric
optimization [7, 21, 52], which perform global optimiza-
tion with photo-consistency based assumptions. However,
those methods suffer from large computational complex-
ity. Another direction [2, 9] is to estimate per-view depth
map. Compared to volumetric approaches, these methods
can produce finer geometry. However, they rely on accu-
rately matched pixels by comparing the similarity of cross-
view patches at different depth hypotheses, which will be
problematic over poorly textured regions in indoor scenes.
Recently, a number of learning-based methods are pro-
posed. While some of them predict on voxelized grids
[19, 49], they suffer from limited resolution. An excep-
tion of this is Atlas [34], which predicts TSDF values via
back-projection of the image features. Most learning-based
methods [15, 17, 20, 24, 28, 53] follow the spirit of conven-
tional approaches [9] and generate per-view depth map from
a cost volume based architecture. Most related to us, [29]
performs test-time optimization over per-view depth maps
with learning-based priors. While our work also utilizes the
learning-based priors, we build on top of the recently pro-
posed neural radiance fields [30] and introduce a new way to
accurately estimate multi-view depths by directly optimiz-
ing over implicit volumes with the guide of learning-based
priors. Our method neither suffers from the resolution prob-
lem nor relies on accurately estimated correspondences.

Neural Implicit Representation: Recently, several sem-
inal works [3,31,36] demonstrate the potential of represent-
ing implicit surfaces with a neural network, which enables
memory-efficient geometric representation with infinite res-
olution. Variations include applying neural implicit repre-
sentations on part hierarchies [11, 18], human reconstruc-
tion [41, 42], view synthesis [27, 46], differentiable render-
ing [26, 35], etc. Neural radiance fields (NeRF) [33] repre-
sent scenes as continuous implicit function of positions and
orientations for high quality view synthesis, which leads to
several follow-up works [1, 38, 61] improving its perfor-
mance. There are several extensions for NeRF including



Figure 2: An overview of our method. We first adopt conventional SfM and MVS from COLMAP to get sparse depth (after
fusion), which is used to train a monocular depth network to get scene-specific depth priors. Then, we utilize the depth priors
to guide volume sampling in the optimization of NeRF [33]. Finally, by computing the errors between the rendered images
and the original input images we acquire confidence scores, which enables us to employ a confidence-based filter to improve
the rendered depths.

dynamic scenes [37,57], portrait avatars [10], relighting [1],
pose estimation [59], etc. In this paper, we propose a guided
optimization scheme to enrich NeRF [33] with the ability
of accurate depth estimation which surpasses leading multi-
view depth estimation approaches.

View Synthesis: View synthesis is conventionally often
referred as view interpolation [12, 22], where the goal is to
interpolate views within the convex hull of the initial cam-
era positions. With the success of deep learning, learning-
based methods [8,32,47,64] have been proposed to address
the problem and have achieved remarkable improvements.
Recently, neural radiance fields [30] demonstrates impres-
sive results of view synthesis by representing scenes as con-
tinuous implicit radiance fields. It is further extended to
operate on dynamic scenes [37, 57]. [25] employs a sparse
voxel octree and achieves great improvement over [33]. [39]
employs image-based encoder-decoder architecture to pro-
cess the proxy generated from the conventional sparse re-
construction, and is later improved by [40]. While view
synthesis is not the major focus of this work, we show
that our guided optimization scheme consistently improves
the synthesis quality of NeRF [33] on both seen and novel
views, which shows the potential of using conventional
sparse reconstructions to help improve the synthesis qual-
ity of NeRF-like methods.

3. Approach

3.1. Overview

We introduce a multi-view depth estimation method that
utilizes conventional sparse reconstruction and learning-

based priors. Our proposed system builds on top of the
recently proposed neural radiance fields (NeRF) [33] and
performs test-time optimization at inference. Compared to
the existing test-time optimization method [29] that relies
on estimated correspondences, directly optimizing over vol-
umes eliminates the necessity of accurately matching cross-
view pixels. This idea is also exploited by direct meth-
ods in the context of simultaneous localization and mapping
(SLAM) [6].

The key to our approach is to effectively integrate the
additional information from the learning-based priors into
the NeRF training pipeline. Figure 2 shows an overview of
our proposed system. Section 3.2 shows how we adapt the
depth priors to specific scenes at test time. In Section 3.3,
we analyze the reason why NeRF fails on producing accu-
rate geometry in indoor scenes and describe our learning-
based priors guided optimization scheme. In Section 3.4,
we discuss how to infer depth and synthesize views from
the neural radiance fields trained with guided optimization.

3.2. Scene-specific Adaptation of the Depth Priors

Similar to CVD [29], our method also aims to utilize
learning-based depth priors to help optimize the geometry
at test time. However, unlike [29] that employs the same
monocular depth network for all test scenes, we propose
to adapt the network onto each scene to get scene-specific
depth priors. Empirically this test-time adaptation method
largely improves the quality of the final depth output.

Our proposal on adapting scene-specific depth priors is
to finetune a monocular depth network over its conven-
tional sparse reconstruction. Specifically, we run COLMAP
[43,44] on the test scene and acquire per-view sparse depth



maps by projecting the fused 3D point clouds after multi-
view stereo. Since geometric consistency check is adopted
in the fusion step, the acquired depth map is sparse but ro-
bust and can be used as a supervision source for training the
scene-specific depth priors.

Due to the scale ambiguity of acquired depth map, we
employ the scale-invariant loss [5] to train the depth net-
work, which is written as follows:

L(Di
p, D

i
Sparse) =

1

n

n∑
j=1

| logDi
p(j)− logDi

Sparse(j)

+ α(Di
p, D

i
Sparse)|,

(1)
where Di

p is the predicted depth map and Di
Sparse is the

sparse depths acquired from COLMAP [43, 44]. We align
the scale of the predicted depth map with the sparse depth
supervision by employing the scale factor α(Di

p, D
i
Sparse)

in the loss formulation, which can be computed by averag-
ing the difference over all valid pixels:

α(Di
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i
Sparse) =

1

n

∑
j

(logDi
p(j)− logDi

Sparse(j)).

(2)
The finetuned monocular depth network is a stronger

prior that fits the specific target scene. The quality of the
adapted priors can be further improved with our guided op-
timization over NeRF, while Table 2 shows that applying
existing correspondence-based neural optimization will sur-
prisingly degrade the quality of the adapted depth priors.

3.3. Guided Optimization of NeRF

Neural radiance fields were initially proposed in [33],
which achieves impressive results on view synthesis. Our
system exploits its potential for accurate depth estimation.
By integrating the aforementioned adapted depth priors, we
directly optimizate on implicit volumes. The key to the suc-
cess of NeRF is to employ a fully connected network pa-
rameterized by θ to represent implicit radiance fields with
Fθ : (x,d) → (c, σ), where x and d denotes the loca-
tion and direction, c and σ denotes the color and density as
the network outputs. View synthesis can be easily achieved
over NeRF with volume rendering, which enables NeRF to
train itself directly over multi-view RGB images. During
volume rendering, NeRF adopts the near bound tn and the
far bound tf computed from the sparse 3D reconstruction
to monitor the sampling space along each ray. Specifically,
it partitions [tn, tf ] into M bins and one query point is ran-
domly sampled for each bin with a uniform distribution:

ti ∼ U
[
tn +

i− 1

M
(tf − tn), tn +

i

M
(tf − tn)

]
. (3)

The rendered RGB value C(r) for each ray can be calcu-
lated from the finite samples with volume rendering. More-

(a) rendered RGB (b) sampled points

(c) rendered depth (d) GT depth

Figure 3: The inherent shape-radiance ambiguity [61] be-
comes a bottleneck in indoor scenes. Top row: (a) rendered
RGB of NeRF [33]. (b) visualization of the sampled points
along the camera ray at the position colored in red. The blue
line indicates the groundtruth depth value. Bottom row: (c)
the rendered depth map of NeRF [33]. (d) the groundtruth
depth map. While NeRF produces high quality rendered
image (PSNR: 31.53), the rendered depth largely deviates
from the groundtruth.

over, per-view depth D(r) can also be approximated by cal-
culating the expectation of the samples along the ray:

C(r) =

M∑
i=1

Ti(1− exp (−σiδi))ci

D(r) =

M∑
i=1

Ti(1− exp (−σiδi))ti

(4)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
indicates the accumulated

transmittance from tn to ti and δi = ti+1−ti is the distance
between adjacent samples.

While simply satisfying the radiance field over the in-
put image does not guarantee a correct geometry, the shape-
radiance ambiguity between the 3D geometry and radiance
has been studied in [61]. It is believed in the paper that be-
cause incorrect geometry leads to high intrinsic complexity,
the correct shape, with smoother surface light field, is more
favored by the learned neural radiance fields with limited
network capacity. This assumption generally holds for rich
textured outdoor scenes. However, we empirically observe
that NeRF struggles on poorly textured areas (e.g. walls),
which are common in indoor environments. Figure 3 shows
one failure case of NeRF that suffers from shape-radiance
ambiguity in texture-less areas, where NeRF perfectly syn-
thesizes the input image with a geometry largely deviated
from the groundtruth. The failure comes from the fact that



while extremely implausible shapes are ignored with the fa-
vor of smoothed surface light field [61], there still exists a
family of smoothed radiance fields that perfectly explains
the training images. Further, the blurred images and large-
motion real-world indoor scenes will reduce the capacity
of NeRF and aggravate the shape-radiance ambiguity is-
sue. We find that this is a common issue in all tested indoor
scenes.

In Figure 3(b), we show that all the sampled points along
the camera ray that corresponds to a poorly textured pixel
predict roughly the same RGB values, with the confidence
distribution concentrated only in a limited range. Moti-
vated by this observation, we consider guiding the NeRF
sampling process with our adapted depth priors from the
monocular depth network. By explicitly limiting the sam-
pling range to be distributed around the depth priors, we
avoid most degenerate cases for NeRF in indoor scenes.
This enables accurate depth estimation by directly optimiz-
ing over RGB images.

Specifically, we first acquire error maps of the adapted
depth priors with a geometric consistency check. Denote
the adapted depth priors as {Di}Ni=1 for the N input views.
We project the depth map of each view to all the other
views:

pi→j , Di→j = proj(K,T i→j , Di)

Dj′ = Dj(pi→j),
(5)

where K is the camera intrinsics, T i→j is the relative pose.
ps→t and Di→j are the 2D coordinates and depth of the pro-
jection in jth view. Then we calculate the depth reprojection
error using the relative error between Dj′ and Di→j . Note
that there are pixels that do not overlap across some view
pairs. Thus, we define the error map of the depth priors for
each view ei as the average value of the top K minimum
cross-view depth projection error.

We use the error maps {ei}Ni=1 to calculate adaptive sam-
ple ranges [tn, tf ] for each camera ray:

tn = D(1− clamp(e, αl, αh))

tf = D(1 + clamp(e, αl, αh))
(6)

where αl and αh defines the relative lower and higher
bounds of the ranges. With the adaptive ranges we achieve
a balance between diversity and precision of the confidence
distribution along camera rays. As illustrated in Figure 4,
the sampling over pixels with relatively low error is more
concentrated around the adapted depth priors, while the
sampling over pixels with large error is close to the origi-
nal NeRF formulation.

3.4. Inference and View Synthesis

For inference, we can directly predict the depth map for
each input view by resampling within the sampling range

Figure 4: Guided optimization of NeRF [33]. We adopt
multi-view consistency check on adapted depth priors to get
error maps, which help calculate adaptive depth ranges for
each camera ray to sample points for NeRF optimization.

defined in Eq. (6) and applying Eq. (3) to compute the ex-
pectation. This gives an accurate output depth for the NeRF
equipped with our proposed guided optimization scheme.

To further improve depth quality, we exploit the potential
of using the view synthesis results of NeRF to compute per-
pixel confidence for the predicted geometry. If the rendered
RGB at a specific pixel does not match the input training
image well, we attach a relatively low confidence for the
depth prediction of this pixel. The confidence Si

j for the jth
pixel in the ith view is specifically defined as:

Si
j = 1− 1

3
||Ci

gt(j)− Ci
render(j)||1, (7)

where Ci
gt and Ci

render are the groundtruth images and ren-
dered images for each seen view with all the values divided
by 255. The absolute difference is employed. This confi-
dence map can be further used to refine the predicted depth
map with off-the-shelf post-filtering techniques. We employ
plane bilateral filtering introduced in [51] over the depth to
get the final output, which improves depth quality especially
for the regions where rendered RGB images are not accu-
rate.

While the proposed guided optimization strategy needs
the adapted depth priors as input to guide point sampling
along the camera ray, we can still perform novel view syn-
thesis by directly using the adapted depth priors from the
nearest seen view. Empirically this is sufficient to produce
accurate depth maps and significantly outperforms the orig-
inal NeRF in terms of view synthesis quality (See Table 5).

4. Experiments
4.1. Experimental Setup

Dataset: We conducted experiments on ScanNet [4]
dataset. Following the experimental setup in NeRF [33],



Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

COLMAP [43, 44] 0.4619 0.6308 1.0125 1.7345 0.4811 0.5139 0.5333
ACMP [58] 0.1945 0.1710 0.4551 0.3056 0.7309 0.8810 0.9419
DELTAS [45] 0.1001 0.0319 0.2070 0.1284 0.8618 0.9920 0.9991
Atlas [34] 0.0776 0.0631 0.2441 0.2693 0.9289 0.9536 0.9594
DeepV2D [50] 0.0818 0.0226 0.1714 0.1095 0.9414 0.9908 0.9979
NeRF [33] 0.3929 1.4849 1.0901 0.5210 0.4886 0.7318 0.8285
Mannequin [23] 0.1554 0.0636 0.2969 0.1806 0.7859 0.9735 0.9953
CVD [29] 0.0995 0.0304 0.1945 0.1269 0.9008 0.9879 0.9971
Ours w/o filter 0.0635 0.0145 0.1455 0.0936 0.9541 0.9910 0.9989
Ours 0.0614 0.0126 0.1345 0.0861 0.9601 0.9955 0.9996

Table 1: Quantitative comparisons for multi-view depth estimation. Scores are averaged over 8 scenes from ScanNet.

Method Abs Rel Sq Rel δ < 1.25
Mannequin [23] 0.1554 0.0636 0.7859

adapted depth priors 0.0844 0.0223 0.9410
CVD optimization 0.0886 0.0251 0.9128
Our optimization 0.0635 0.0145 0.9541

Table 2: Comparison of the effectiveness of test-time opti-
mization between CVD [29] and our method. Both methods
perform optimization over the adapted depth priors, which
is acquired by training the Mannequin Challenge depth net-
work [23] with sparse supervision from COLMAP [43,44].
Scores are averaged over 8 scenes.

we randomly selected 8 scenes to evaluate our method. For
each scene, we picked 40 images covering a local region and
held out 1/8 of these as the test set for novel view synthesis.
All images are resized as 484 × 648 resolution. Due to the
scale ambiguity issue, we adopted the median groundtruth
scaling strategy [63] for depth evaluation.
Implementation Details: For the adapted depth priors, fol-
lowing CVD [29], we used the network architecture in-
troduced in Mannequin Challenge [23] with its pretrained
weights as our monocular depth network. 15 finetuning
epochs were used in the scene-specific adaptation. We
set K = 4 for multi-view consistency check and αl =
0.05, αh = 0.15 as the bounds of sample ranges. Please
refer to our supplementary material for more details.

4.2. Results on Multi-view Depth Estimation

Table 1 shows the results for depth estimation task on
ScanNet [4]. For all methods, we used their released im-
plementation in the experiments. We also report results
without applying the filtering step. Our method outper-
forms state-of-the-art depth estimation methods in all met-
rics. Note that DeepV2D [50], DELTAS [45] and Atlas [34]
are all trained on ScanNet with groundtruth depth supervi-
sion. With the proposed guided optimization scheme, our
method mitigates the problem of the shape-radiance ambi-

RGB
adapted

depth priors
CVD

optimization
Our

optimization

Figure 5: The optimization of CVD [29] surprisingly de-
grades the quality of the depth priors due to unreliable flow
correspondences, while our method achieves improvement
with guided optimization of NeRF [33]

NeRF
depth
priors filter Abs Rel Sq Rel δ < 1.25

✓ 0.302 0.210 0.518
✓ 0.067 0.010 0.960

✓ ✓ 0.287 0.167 0.546
✓ ✓ 0.065 0.009 0.966

✓ ✓ 0.053 0.006 0.979
✓ ✓ ✓ 0.051 0.005 0.987

Table 3: Ablation studies on each component of our system.
For the experiments ‘NeRF + filter’ and ‘depth priors + fil-
ter’, we compute the confidence scores by using the relative
errors between the prediction depths and the groundtruth.
The experiment was conducted on scene0521.

guity and demonstrates the potential of exploiting NeRF for
accurate depth estimation. Figure 6 shows some qualitative
results. While the original NeRF [33] fails to predict rea-
sonable geometry, our method generates visually appealing
depth maps. The confidence-based filter can further refine
the predicted depth by smoothing the per-pixel estimation
of NeRF [33].

To further study the advantages of optimizing over im-
plicit volumes, we also applied the optimization of CVD
[29] on our adapted depth priors. Results are shown in Ta-
ble 2 and one example is exhibited in Figure 5. We surpris-



RGB GT depths COLMAP [44] Atlas [34] CVD [29] NeRF [33] Ours w/o filter Ours

Figure 6: Qualitative comparisons on ScanNet [4] dataset. Our method, without the post-filtering step, outperforms all
compared methods in terms of depth quality. The filter further smooths the per-pixel estimated depth maps. Better viewed
when zoomed in.

ingly find that the optimization of CVD degrades the depth
quality of the initial depth priors. This is mainly due to
wrong estimated correspondences from the employed flow
network in [29]. The flow estimation is particularly chal-
lenging over poorly textured regions, which is ubiquitous in
indoor scenes. The proposed guided optimization enables
us to integrate depth priors on top of NeRF [33], which
directly optimizes on raw RGB images, avoiding the chal-
lenging step of correspondence estimation in indoor scenes.

4.3. Ablation Studies

To better understand the working mechanism of our
method, we performed ablation studies over each compo-
nent of the proposed system. Results in Table 3 show that
each component is beneficial to the final depth quality. This
verifies the advantages of integrating depth priors into the
optimization of NeRF [33].

We further study the design of adaptive ranges used in
the guided optimization. It is shown that both the adaptive
strategy and the use of bounds contribute to the performance
gain. With the computed error maps, αl and αh avoid the
samples being over-concentrated or overly random respec-
tively, which enables the sampling to reach a balance be-
tween diversity and precision of the sampled points.

adaptive bound Abs Rel Sq Rel δ < 1.25
0.065 0.009 0.971

✓ 0.056 0.009 0.978
✓ ✓ 0.051 0.005 0.987

Table 4: Ablation studies on the design of the proposed
guided optimization with adaptive ranges. ‘bound’ denotes
the use of αl and αh in Eq. (6). For the experiment without
using adaptive depth ranges for each camera ray, we set a
fixed relative depth range to [0.9, 1.1]. The experiment was
conducted on scene0521.

4.4. Results on View Synthesis

We also observe that the proposed guided optimization
scheme is beneficial to the view synthesis quality of NeRF.
Figure 7 illustrates some visualizations. Table 5 shows re-
sults on novel view synthesis, where our method consis-
tently improves NeRF on all 8 scenes. Although view syn-
thesis is not the main focus of our work, we achieve com-
parable or even better results compared to state-of-the-art
novel view synthesis methods [1, 40]. Note that SVS [40]
employs image-based novel view synthesis methods over
the information extracted from sparse reconstruction. Our



Method scene 0616 scene 0521 scene 0000 scene 0158
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NSVF [25] 15.71 0.704 27.73 0.892 23.36 0.823 31.98 0.951
SVS [40] 21.38 0.899 27.97 0.924 21.39 0.914 29.43 0.953
NeRF [33] 15.76 0.699 24.41 0.871 18.75 0.751 29.19 0.928
Ours 18.07 0.748 28.07 0.901 22.10 0.880 30.55 0.948

Method scene 0316 scene 0553 scene 0653 scene 0079
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NSVF [25] 22.29 0.917 31.15 0.947 28.95 0.929 26.88 0.887
SVS [40] 20.63 0.941 30.95 0.968 27.91 0.965 25.18 0.923
NeRF [33] 17.09 0.828 30.76 0.950 30.89 0.953 25.48 0.896
Ours 20.88 0.899 32.56 0.965 31.43 0.964 27.27 0.916

Table 5: Quantitative comparisons for novel view synthesis. Numbers in bold are within 1% of the best.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [33] 28.62 0.909 0.319
Ours 31.55 0.942 0.200

Table 6: Comparison between NeRF [33] and our method
on seen views. Results are averaged over 8 scenes.

method, with the guided optimization scheme, opens a new
way to employ the robust conventional sparse reconstruc-
tion to improve the synthesis quality directly over implicit
3D volumes. In addition, results in Table 6 show that our
method can improve the view synthesis quality of NeRF on
seen views. The guided optimization helps NeRF to focus
on more informative regions and improves its capacity for
rendering RGB images.

5. Conclusion and Future Work
In this work, we present a multi-view depth estima-

tion method that integrates learning-based depth priors into
the optimization of NeRF. Contrary to existing studies, we
show that the shape-radiance ambiguity of NeRF becomes
a bottleneck for NeRF-based depth estimation in indoor
scenes. To address the issue, we propose a guided optimiza-
tion framework to regularize the sampling process of NeRF
during volume rendering with the adapted depth priors. Our
proposed system demonstrates the significant improvement
over prior works for indoor multi-view depth estimation,
with a surprising finding that correspondence-based opti-
mization can degrade the quality of depth priors in indoor
scenes due to wrongly estimated flow correspondence. In
addition, we also observe that the guided optimization im-
proves the view synthesis quality of NeRF.

While our optimization is 3x faster than NeRF due to
the advantages of guided optimization, the current method
is still not efficient and thus hard to be scaled up to large
datasets. Nonetheless, our work demonstrates the potential
of using neural radiance fields for accurate depth estima-

GT NeRF [33] Ours

Figure 7: Results on view synthesis. The top two rows are
rendering results on seen (training) views while the bottom
two rows are on the novel views. With the adapted depth
priors, our method improves the rendering quality for both
seen and novel views. Better viewed when zoomed in.

tion. Future work includes efficient optimization, non-rigid
reconstruction and visual effects based on the improved ge-
ometric structure in the learned neural radiance fields.
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[6] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In ECCV, pages
834–849. Springer, 2014. 3

[7] Olivier Faugeras and Renaud Keriven. Variational princi-
ples, surface evolution, PDE’s, level set methods and the
stereo problem. IEEE, 2002. 2

[8] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned gra-
dient descent. In CVPR, pages 2367–2376, 2019. 3

[9] David Gallup, Jan-Michael Frahm, Philippos Mordohai,
Qingxiong Yang, and Marc Pollefeys. Real-time plane-
sweeping stereo with multiple sweeping directions. In
CVPR, pages 1–8. IEEE, 2007. 2

[10] Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang,
and Jia-Bin Huang. Portrait neural radiance fields from a
single image. arXiv preprint arXiv:2012.05903, 2020. 3

[11] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In CVPR, pages 4857–4866, 2020. 2

[12] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In SIGGRAPH, pages
43–54, 1996. 3

[13] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten
Rother, and Margrit Gelautz. Fast cost-volume filtering for
visual correspondence and beyond. TPAMI, 35(2):504–511,
2012. 2

[14] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d seman-
tic instance segmentation of rgb-d scans. In CVPR, pages
4421–4430, 2019. 2

[15] Yuxin Hou, Juho Kannala, and Arno Solin. Multi-view
stereo by temporal nonparametric fusion. In ICCV, pages
2651–2660, 2019. 2

[16] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
pages 2462–2470, 2017. 2

[17] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So
Kweon. Dpsnet: End-to-end deep plane sweep stereo. arXiv
preprint arXiv:1905.00538, 2019. 2

[18] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Local
implicit grid representations for 3d scenes. In CVPR, pages
6001–6010, 2020. 2

[19] Abhishek Kar, Christian Häne, and Jitendra Malik.
Learning a multi-view stereo machine. arXiv preprint
arXiv:1708.05375, 2017. 2

[20] Uday Kusupati, Shuo Cheng, Rui Chen, and Hao Su. Normal
assisted stereo depth estimation. In CVPR, pages 2189–2199,
2020. 2, 11

[21] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. IJCV, 38(3):199–218, 2000. 2

[22] Marc Levoy and Pat Hanrahan. Light field rendering. In
SIGGRAPH, pages 31–42, 1996. 3

[23] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T Freeman. Learning
the depths of moving people by watching frozen people. In
CVPR, pages 4521–4530, 2019. 6, 11

[24] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan,
and Jan Kautz. Neural rgb (r) d sensing: Depth and uncer-
tainty from a video camera. In CVPR, pages 10986–10995,
2019. 2

[25] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 3, 8

[26] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In CVPR, pages 2019–2028, 2020. 2

[27] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751, 2019. 2

[28] Xiaoxiao Long, Lingjie Liu, Christian Theobalt, and Wen-
ping Wang. Occlusion-aware depth estimation with adap-
tive normal constraints. In ECCV, pages 640–657. Springer,
2020. 2

[29] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,
and Johannes Kopf. Consistent video depth estimation. TOG,
39(4):71–1, 2020. 1, 2, 3, 6, 7, 11

[30] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 2, 3

[31] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
pages 4460–4470, 2019. 2

[32] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. TOG, 38(4):1–
14, 2019. 3



[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In ECCV, pages 405–421. Springer, 2020. 1, 2, 3,
4, 5, 6, 7, 8, 11

[34] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3d scene reconstruction from posed images. In ECCV,
2020. 1, 2, 6, 7, 11

[35] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, pages 3504–3515, 2020. 2

[36] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, pages 165–174, 2019. 2

[37] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo-
Martin Brualla. Deformable Neural Radiance Fields. arXiv
preprint arXiv:2011.12948, 2020. 3

[38] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: Decom-
posed Radiance Fields. arXiv preprint arXiv:2011.12490,
2020. 2

[39] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
ECCV, pages 623–640. Springer, 2020. 2, 3

[40] Gernot Riegler and Vladlen Koltun. Stable View Synthesis.
In CVPR, 2021. 2, 3, 7, 8

[41] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, pages 2304–2314, 2019. 2

[42] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In CVPR, pages 84–
93, 2020. 2

[43] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, pages 4104–4113, 2016. 3,
4, 6, 11

[44] Johannes L Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In ECCV, pages 501–518.
Springer, 2016. 3, 4, 6, 7, 11

[45] Ayan Sinha, Zak Murez, James Bartolozzi, Vijay Badri-
narayanan, and Andrew Rabinovich. Deltas: Depth esti-
mation by learning triangulation and densification of sparse
points. In ECCV, 2020. 6, 11

[46] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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K αl αh Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

2 0.05 0.15 0.055 0.006 0.083 0.075 0.977 0.998 1.000
8 0.05 0.15 0.054 0.006 0.084 0.074 0.979 0.999 1.000
4 0.01 0.3 0.054 0.007 0.087 0.080 0.971 0.997 1.000
4 0.05 0.3 0.055 0.007 0.087 0.079 0.976 0.998 1.000
4 0.01 0.15 0.053 0.006 0.083 0.075 0.980 0.998 1.000
4 0.05 0.15 0.051 0.005 0.076 0.069 0.987 0.998 1.000

Table 7: Hyperparameter analysis. The experiment was conducted on scene0521.

Appendix

A. Implementation Details
To train the proposed system, we mostly followed NeRF

[33]. Specifically, we sampled 64 points in each ray and
used a batch of 1024 rays. Since we did not adopt coarse-
to-fine strategy in the sampling process, we only need one
network (the architecture is same with [33]) to optimize the
neural radiance fields. We added random Gaussian noise
with zero mean and unit variance to the density σ to reg-
ularize the network. In addition, following [33], positional
encoding was also employed. Adam was adopted as our op-
timizer with the initial learning rate as 5×10−4 and decayed
exponentially to 5 × 10−5. We utilized PyTorch in our im-
plementation. Each scene was trained with 200K iterations
on a single RTX 2080 Ti.
Error metrics. We follow the metrics in [20, 29, 34, 45, 50,
63] to evaluate depth estimation results:

• Abs Rel: 1
|T |

∑
y∈T |y − y∗|/y∗

• Sq Rel: 1
|T |

∑
y∈T ||y − y∗||2/y∗

• RMSE:
√

1
|T |

∑
y∈T ||y − y∗||2

• RMSE log:
√

1
|T |

∑
y∈T || log y − log y∗||2

• δ < t: % of y s.t. max( y
y∗ ,

y∗

y ) = δ < t

where y and y∗ indicate predicted and groundtruth depths
respectively, and T indicates all pixels on the depth image.

B. Baseline Method Details
We compared our results with several state-of-the-art

depth estimation method, which can be roughly classified
as four categories:
Conventional multi-view stereo: COLMAP [43, 44],
ACMP [58]. COLMAP is a non-learning MVS method
for 3D reconstruction building upon PatchMatch stereo [2].
Based on COLMAP, ACMP introduces planar models to
solve low-textured areas in complex indoor environments.
Learning-based multi-view stereo: DELTAS [45], At-
las [34]. These two methods are trained on ScanNet with
groundtruth depth supervision. For DELTAS, we used two
neighboring frames as the reference frames.

Monocular depth estimation: Mannequin Challenge [23].
Mannequin Challenge is a state-of-the-art monocular depth
estimation method. We directly used their pretrained weight
for evaluation.
Video-based depth estimation: CVD [29], DeepV2D [50].
For video-based methods, we sorted images in a scene ac-
cording to the timeline. DeepV2D is trained on ScanNet
with groundtruth depth supervision.

C. Hyperparameter Analysis
To further demonstrate the effectiveness of our method,

we did hyperparameter analysis for the number of used min-
imum errors K, and the bounds αl, αh used in the guided
sampling process. The experiments were conducted on
scene0521. Table 7 shows experimental results. We find
that using a K that is too small or too large will degrade
the performance. On the one hand, it is possible to satisfy
the multi-view consistency check although the depths are
not correct. Small K will increase the probability of this
phenomenon. On the other hand, there are pixels that do
not overlap across some view pairs. Thus, the projection
errors on some views are invalid and a large K may cover
these invalid views. In addition, a large upper bound αh

or a small lower bound αl for sampling range will lead to
worse results, which indicates the necessity to set bounds in
sampling process.


