
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields

Jonathan T. Barron1 Ben Mildenhall1 Matthew Tancik2

Peter Hedman1 Ricardo Martin-Brualla1 Pratul P. Srinivasan1

1Google 2UC Berkeley

Abstract

The rendering procedure used by neural radiance fields
(NeRF) samples a scene with a single ray per pixel and may
therefore produce renderings that are excessively blurred or
aliased when training or testing images observe scene con-
tent at different resolutions. The straightforward solution of
supersampling by rendering with multiple rays per pixel is
impractical for NeRF, because rendering each ray requires
querying a multilayer perceptron hundreds of times. Our
solution, which we call “mip-NeRF” (à la “mipmap”), ex-
tends NeRF to represent the scene at a continuously-valued
scale. By efficiently rendering anti-aliased conical frustums
instead of rays, mip-NeRF reduces objectionable aliasing
artifacts and significantly improves NeRF’s ability to repre-
sent fine details, while also being 7% faster than NeRF and
half the size. Compared to NeRF, mip-NeRF reduces aver-
age error rates by 17% on the dataset presented with NeRF
and by 60% on a challenging multiscale variant of that
dataset that we present. Mip-NeRF is also able to match
the accuracy of a brute-force supersampled NeRF on our
multiscale dataset while being 22× faster.

1. Introduction

Neural volumetric representations such as neural radi-
ance fields (NeRF) [30] have emerged as a compelling strat-
egy for learning to represent 3D objects and scenes from im-
ages for the purpose of rendering photorealistic novel views.
Although NeRF and its variants have demonstrated impres-
sive results across a range of view synthesis tasks, NeRF’s
rendering model is flawed in a manner that can cause ex-
cessive blurring and aliasing. NeRF replaces traditional dis-
crete sampled geometry with a continuous volumetric func-
tion, parameterized as a multilayer perceptron (MLP) that
maps from an input 5D coordinate (3D position and 2D
viewing direction) to properties of the scene (volume den-
sity and view-dependent emitted radiance) at that location.
To render a pixel’s color, NeRF casts a single ray through
that pixel and out into its volumetric representation, queries

a) NeRF b) Mip-NeRF

Figure 1: NeRF (a) samples points x along rays that are
traced from the camera center of projection through each
pixel, then encodes those points with a positional encoding
(PE) γ to produce a feature γ(x). Mip-NeRF (b) instead
reasons about the 3D conical frustum defined by a camera
pixel. These conical frustums are then featurized with our
integrated positional encoding (IPE), which works by ap-
proximating the frustum with a multivariate Gaussian and
then computing the (closed form) integral E[γ(x)] over the
positional encodings of the coordinates within the Gaussian.

the MLP for scene properties at samples along that ray, and
composites these values into a single color.

While this approach works well when all training and
testing images observe scene content from a roughly con-
stant distance (as done in NeRF and most follow-ups),
NeRF renderings exhibit significant artifacts in less con-
trived scenarios. When the training images observe scene
content at multiple resolutions, renderings from the recov-
ered NeRF appear excessively blurred in close-up views and
contain aliasing artifacts in distant views. A straightfor-
ward solution is to adopt the strategy used in offline raytrac-
ing: supersampling each pixel by marching multiple rays
through its footprint. But this is prohibitively expensive for
neural volumetric representations such as NeRF, which re-
quire hundreds of MLP evaluations to render a single ray
and several hours to reconstruct a single scene.

In this paper, we take inspiration from the mipmapping
approach used to prevent aliasing in computer graphics ren-
dering pipelines. A mipmap represents a signal (typically
an image or a texture map) at a set of different discrete
downsampling scales and selects the appropriate scale to
use for a ray based on the projection of the pixel footprint



onto the geometry intersected by that ray. This strategy
is known as pre-filtering, since the computational burden
of anti-aliasing is shifted from render time (as in the brute
force supersampling solution) to a precomputation phase—
the mipmap need only be created once for a given texture,
regardless of how many times that texture is rendered.

Our solution, which we call mip-NeRF (multum in parvo
NeRF, as in “mipmap”), extends NeRF to simultaneously
represent the prefiltered radiance field for a continuous
space of scales. The input to mip-NeRF is a 3D Gaus-
sian that represents the region over which the radiance field
should be integrated. As illustrated in Figure 1, we can then
render a prefiltered pixel by querying mip-NeRF at intervals
along a cone, using Gaussians that approximate the conical
frustums corresponding to the pixel. To encode a 3D po-
sition and its surrounding Gaussian region, we propose a
new feature representation: an integrated positional encod-
ing (IPE). This is a generalization of NeRF’s positional en-
coding (PE) that allows a region of space to be compactly
featurized, as opposed to a single point in space.

Mip-NeRF substantially improves upon the accuracy of
NeRF, and this benefit is even greater in situations where
scene content is observed at different resolutions (i.e. se-
tups where the camera moves closer and farther from the
scene). On a challenging multiresolution benchmark we
present, mip-NeRF is able to reduce error rates relative to
NeRF by 60% on average (see Figure 2 for visualisations).
Mip-NeRF’s scale-aware structure also allows us to merge
the separate “coarse” and “fine” MLPs used by NeRF for
hierarchical sampling [30] into a single MLP. As a conse-
quence, mip-NeRF is slightly faster than NeRF (∼ 7%), and
has half as many parameters.

2. Related Work
Our work directly extends NeRF [30], a highly influen-

tial technique for learning a 3D scene representation from
observed images in order to synthesize novel photorealis-
tic views. Here we review the 3D representations used by
computer graphics and view synthesis, including recently-
introduced continuous neural representations such as NeRF,
with a focus on sampling and aliasing.
Anti-aliasing in Rendering Sampling and aliasing are
fundamental issues that have been extensively studied
throughout the development of rendering algorithms in
computer graphics. Reducing aliasing artifacts (“anti-
aliasing”) is typically done via either supersampling or pre-
filtering. Supersampling-based techniques [46] cast multi-
ple rays per pixel while rendering in order to sample closer
to the Nyquist frequency. This is an effective strategy to
reduce aliasing, but it is expensive, as runtime generally
scales linearly with the supersampling rate. Supersampling
is therefore typically used only in offline rendering contexts.
Instead of sampling more rays to match the Nyquist fre-
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Figure 2: (a, top) A NeRF trained on full-resolution im-
ages is capable of producing photorealistic renderings at
new view locations, but only at the resolution or scale of
the training images. (a, bottom) Pulling the camera back
and zooming in (or similarly, adjusting the camera intrin-
sics to reduce image resolution, as is done here) results in
renderings that exhibit severe aliasing. (b) Training a NeRF
on multi-resolution images ameliorates this issue slightly
but results in poor quality renderings across scales: blur at
full resolution, and “jaggies” at low resolutions. (c) Mip-
NeRF, also trained on multi-resolution images, is capable of
producing photorealistic renderings across different scales.
SSIMs for each image relative to the ground-truth (d) are
inset, with the highest SSIM for both scales shown in red.

quency, prefiltering-based techniques use lowpass-filtered
versions of scene content to decrease the Nyquist frequency
required to render the scene without aliasing. Prefiltering
techniques [18, 20, 32, 49] are better suited for realtime
rendering, because filtered versions of scene content can be
precomputed ahead of time, and the correct “scale” can be
used at render time depending on the target sampling rate.
In the context of rendering, prefiltering can be thought of as
tracing a cone instead of a ray through each pixel [1, 16]:
wherever the cone intersects scene content, a precomputed
multiscale representation of the scene content (such as a
sparse voxel octree [15, 21] or a mipmap [47]) is queried
at the scale corresponding to the cone’s footprint.

Our work takes inspiration from this line of work in
graphics and presents a multiscale scene representation for
NeRF. Our strategy differs from multiscale representations
used in traditional graphics pipelines in two crucial ways.
First, we cannot precompute the multiscale representation
because the scene’s geometry is not known ahead of time
in our problem setting — we are recovering a model of
the scene using computer vision, not rendering a predefined
CGI asset. Mip-NeRF therefore must learn a prefiltered rep-
resentation of the scene during training. Second, our notion



of scale is continuous instead of discrete. Instead of repre-
senting the scene using multiple copies at a fixed number of
scales (like in a mipmap), mip-NeRF learns a single neural
scene model that can be queried at arbitrary scales.
Scene Representations for View Synthesis Various scene
representations have been proposed for the task of view
synthesis: using observed images of a scene to recover a
representation that supports rendering novel photorealistic
images of the scene from unobserved camera viewpoints.
When images of the scene are captured densely, light field
interpolation techniques [9, 14, 22] can be used to render
novel views without reconstructing an intermediate repre-
sentation of the scene. Issues related to sampling and alias-
ing have been thoroughly studied within this setting [7].

Methods that synthesize novel views from sparsely-
captured images typically reconstruct explicit representa-
tions of the scene’s 3D geometry and appearance. Many
classic view synthesis algorithms use mesh-based represen-
tations along with either diffuse [28] or view-dependent [6,
10, 48] textures. Mesh-based representations can be stored
efficiently and are naturally compatible with existing graph-
ics rendering pipelines. However, using gradient-based
methods to optimize mesh geometry and topology is typ-
ically difficult due to discontinuities and local minima.
Volumetric representations have therefore become increas-
ingly popular for view synthesis. Early approaches directly
color voxel grids using observed images [37], and more re-
cent volumetric approaches use gradient-based learning to
train deep networks to predict voxel grid representations of
scenes [12, 25, 29, 38, 41, 53]. Discrete voxel-based repre-
sentations are effective for view synthesis, but they do not
scale well to scenes at higher resolutions.

A recent trend within computer vision and graphics
research is to replace these discrete representations with
coordinate-based neural representations, which represent
3D scenes as continuous functions parameterized by MLPs
that map from a 3D coordinate to properties of the scene
at that location. Some recent methods use coordinate-
based neural representations to model scenes as implicit
surfaces [31, 50], but the majority of recent view synthe-
sis methods are based on the volumetric NeRF representa-
tion [30]. NeRF has inspired many subsequent works that
extend its continuous neural volumetric representation for
generative modeling [8, 36], dynamic scenes [23, 33], non-
rigidly deforming objects [13, 34], phototourism settings
with changing illumination and occluders [26, 43], and re-
flectance modeling for relighting [2, 3, 40].

Relatively little attention has been paid to the issues of
sampling and aliasing within the context of view synthe-
sis using coordinate-based neural representations. Discrete
representations used for view synthesis, such as polygon
meshes and voxel grids, can be efficiently rendered without
aliasing using traditional multiscale prefiltering approaches

such as mipmaps and octrees. However, coordinate-based
neural representations for view synthesis can currently only
be anti-aliased using supersampling, which exacerbates
their already slow rendering procedure. Recent work by
Takikawa et al. [42] proposes a multiscale representation
based on sparse voxel octrees for continuous neural repre-
sentations of implicit surfaces, but their approach requires
that the scene geometry be known a priori, as opposed to our
view synthesis setting where the only inputs are observed
images. Mip-NeRF addresses this open problem, enabling
the efficient rendering of anti-aliased images during both
training and testing as well as the use of multiscale images
during training.

2.1. Preliminaries: NeRF
NeRF uses the weights of a multilayer perceptron (MLP)

to represent a scene as a continuous volumetric field of par-
ticles that block and emit light. NeRF renders each pixel
of a camera as follows: A ray r(t) = o + td is emitted
from the camera’s center of projection o along the direction
d such that it passes through the pixel. A sampling strat-
egy (discussed later) is used to determine a vector of sorted
distances t between the camera’s predefined near and far
planes tn and tf . For each distance tk ∈ t, we compute its
corresponding 3D position along the ray x = r(tk), then
transform each position using a positional encoding:

γ(x)=
[
sin(x), cos(x), . . . , sin

(
2L−1x

)
, cos

(
2L−1x

)]T
. (1)

This is simply the concatenation of the sines and cosines
of each dimension of the 3D position x scaled by powers
of 2 from 1 to 2L−1, where L is a hyperparameter. The
fidelity of NeRF depends critically on the use of positional
encoding, as it allows the MLP parameterizing the scene to
behave as an interpolation function, where L determines the
bandwidth of the interpolation kernel (see Tancik et al. [44]
for details). The positional encoding of each ray position
γ(r(tk)) is provided as input to an MLP parameterized by
weights Θ, which outputs a density τ and an RGB color c:

∀tk ∈ t, [τk, ck] = MLP(γ(r(tk)); Θ) . (2)

The MLP also takes the view direction as input, which is
omitted from notation for simplicity. These estimated den-
sities and colors are used to approximate the volume render-
ing integral using numerical quadrature, as per Max [27]:

C(r; Θ, t) =
∑
k

Tk(1− exp(−τk(tk+1 − tk)))ck ,

with Tk = exp

(
−
∑
k′<k

τk′(tk′+1 − tk′)

)
, (3)

where C(r; Θ, t) is the final predicted color of the pixel.
With this procedure for rendering a NeRF parameterized

by Θ, training a NeRF is straightforward: using a set of



observed images with known camera poses, we minimize
the sum of squared differences between all input pixel val-
ues and all predicted pixel values using gradient descent. To
improve sample efficiency, NeRF trains two separate MLPs,
one “coarse” and one “fine”, with parameters Θc and Θf :

min
Θc,Θf

∑
r∈R

(∥∥C∗(r)−C(r; Θc, tc)
∥∥2
2

(4)

+
∥∥C∗(r)−C(r; Θf , sort(tc ∪ tf ))

∥∥2
2

)
,

where C∗(r) is the observed pixel color taken from the in-
put image, and R is the set of all pixels/rays across all im-
ages. Mildenhall et al. construct tc by sampling 64 evenly-
spaced random t values with stratified sampling. The com-
positing weights wk = Tk (1− exp(−τk(tk+1 − tk))) pro-
duced by the “coarse” model are then taken as a piecewise
constant PDF describing the distribution of visible scene
content, and 128 new t values are drawn from that PDF us-
ing inverse transform sampling to produce tf . The union of
these 192 t values are then sorted and passed to the “fine”
MLP to produce a final predicted pixel color.

3. Method
As discussed, NeRF’s point-sampling makes it vulner-

able to issues related to sampling and aliasing: Though
a pixel’s color is the integration of all incoming radiance
within the pixel’s frustum, NeRF casts a single infinites-
imally narrow ray per pixel, resulting in aliasing. Mip-
NeRF ameliorates this issue by casting a cone from each
pixel. Instead of performing point-sampling along each ray,
we divide the cone being cast into a series of conical frus-
tums (cones cut perpendicular to their axis). And instead
of constructing positional encoding (PE) features from an
infinitesimally small point in space, we construct an inte-
grated positional encoding (IPE) representation of the vol-
ume covered by each conical frustum. These changes allow
the MLP to reason about the size and shape of each conical
frustum, instead of just its centroid. The ambiguity result-
ing from NeRF’s insensitivity to scale and mip-NeRF’s so-
lution to this problem are visualized in Figure 3. This use of
conical frustums and IPE features also allows us to reduce
NeRF’s two separate “coarse” and “fine” MLPs into a sin-
gle multiscale MLP, which increases training and evaluation
speed and reduces model size by 50%.

3.1. Cone Tracing and Positional Encoding

Here we describe mip-NeRF’s rendering and featuriza-
tion procedure, in which we cast a cone and featurize con-
ical frustums along that cone. As in NeRF, images in mip-
NeRF are rendered one pixel at a time, so we can describe
our procedure in terms of an individual pixel of interest be-
ing rendered. For that pixel, we cast a cone from the cam-

Figure 3: NeRF works by extracting point-sampled posi-
tional encoding features (shown here as dots) along each
pixel’s ray. Those point-sampled features ignore the shape
and size of the volume viewed by each ray, so two differ-
ent cameras imaging the same position at different scales
may produce the same ambiguous point-sampled feature,
thereby significantly degrading NeRF’s performance. In
contrast, Mip-NeRF casts cones instead of rays and explic-
itly models the volume of each sampled conical frustum
(shown here as trapezoids), thus resolving this ambiguity.

era’s center of projection o along the direction d that passes
through the pixel’s center. The apex of that cone lies at
o, and the radius of the cone at the image plane o + d
is parameterized as ṙ. We set ṙ to the width of the pixel
in world coordinates scaled by 2/

√
12, which yields a cone

whose section on the image plane has a variance in x and y
that matches the variance of the pixel’s footprint. The set of
positions x that lie within a conical frustum between two t
values [t0, t1] (visualized in Figure 1) is:

F(x,o,d, ṙ, t0, t1) = 1

{(
t0 <

dT(x− o)

∥d∥22
< t1

)

∧

(
dT(x− o)

∥d∥2∥x− o∥2
>

1√
1 + (ṙ/∥d∥2)2

)}
, (5)

where 1{·} is an indicator function: F(x, ·) = 1 iff x is
within the conical frustum defined by (o,d, ṙ, t0, t1).

We must now construct a featurized representation of the
volume inside this conical frustum. Ideally, this featurized
representation should be of a similar form to the positional
encoding features used in NeRF, as Mildenhall et al. show
that this feature representation is critical to NeRF’s suc-
cess [30]. There are many viable approaches for this (see
the supplement for further discussion) but the simplest and
most effective solution we found was to simply compute
the expected positional encoding of all coordinates that lie
within the conical frustum:

γ∗(o,d, ṙ, t0, t1) =

∫
γ(x) F(x,o,d, ṙ, t0, t1) dx∫

F(x,o,d, ṙ, t0, t1) dx
. (6)

However, it is unclear how such a feature could be com-
puted efficiently, as the integral in the numerator has no



closed form solution. We therefore approximate the coni-
cal frustum with a multivariate Gaussian which allows for
an efficient approximation to the desired feature, which we
will call an “integrated positional encoding” (IPE).

To approximate a conical frustum with a multivariate
Gaussian, we must compute the mean and covariance of
F(x, ·). Because each conical frustum is assumed to be cir-
cular, and because conical frustums are symmetric around
the axis of the cone, such a Gaussian is fully characterized
by three values (in addition to o and d): the mean distance
along the ray µt, the variance along the ray σ2

t , and the vari-
ance perpendicular to the ray σ2

r :

µt = tµ +
2tµt

2
δ

3t2µ + t2δ
, σ2

t =
t2δ
3
−

4t4δ(12t
2
µ − t2δ)

15(3t2µ + t2δ)
2
,

σ2
r = ṙ2

(
t2µ
4

+
5t2δ
12

− 4t4δ
15(3t2µ + t2δ)

)
. (7)

These quantities are parameterized with respect to a mid-
point tµ = (t0 + t1)/2 and a half-width tδ = (t1 − t0)/2,
which is critical for numerical stability. Please refer to the
supplement for a detailed derivation. We can transform this
Gaussian from the coordinate frame of the conical frustum
into world coordinates as follows:

µ = o+ µtd , Σ = σ2
t

(
ddT

)
+ σ2

r

(
I− ddT

∥d∥22

)
, (8)

giving us our final multivariate Gaussian.
Next, we derive the IPE, which is the expectation of

a positionally-encoded coordinate distributed according to
the aforementioned Gaussian. To accomplish this, it is help-
ful to first rewrite the PE in Equation 1 as a Fourier fea-
ture [35, 44]:

P=

1 0 0 2 0 0 2L−1 0 0
0 1 0 0 2 0 · · · 0 2L−1 0
0 0 1 0 0 2 0 0 2L−1

T

, γ(x)=

[
sin(Px)
cos(Px)

]
.

(9)
This reparameterization allows us to derive a closed form
for IPE. Using the fact that the covariance of a linear trans-
formation of a variable is a linear transformation of the vari-
able’s covariance (Cov[Ax,By] = ACov[x,y]BT) we
can identify the mean and covariance of our conical frus-
tum Gaussian after it has been lifted into the PE basis P:

µγ = Pµ , Σγ = PΣPT . (10)

The final step in producing an IPE feature is computing the
expectation over this lifted multivariate Gaussian, modu-
lated by the sine and the cosine of position. These expecta-
tions have simple closed-form expressions:

Ex∼N (µ,σ2)[sin(x)] = sin(µ) exp
(
−(1/2)σ2

)
, (11)

Ex∼N (µ,σ2)[cos(x)] = cos(µ) exp
(
−(1/2)σ2

)
. (12)

We see that this expected sine or cosine is simply the sine or
cosine of the mean attenuated by a Gaussian function of the
variance. With this we can compute our final IPE feature as
the expected sines and cosines of the mean and the diagonal
of the covariance matrix:

γ(µ,Σ) = Ex∼N (µγ ,Σγ)[γ(x)] (13)

=

[
sin(µγ) ◦ exp(−(1/2) diag(Σγ))
cos(µγ) ◦ exp(−(1/2) diag(Σγ))

]
, (14)

where ◦ denotes element-wise multiplication. Because po-
sitional encoding encodes each dimension independently,
this expected encoding relies on only the marginal distribu-
tion of γ(x), and only the diagonal of the covariance matrix
(a vector of per-dimension variances) is needed. Because
Σγ is prohibitively expensive to compute due its relatively
large size, we directly compute the diagonal of Σγ :

diag(Σγ)=
[
diag(Σ), 4 diag(Σ), . . . , 4L−1 diag(Σ)

]T
(15)

This vector depends on just the diagonal of the 3D posi-
tion’s covariance Σ, which can be computed as:

diag(Σ) = σ2
t (d ◦ d) + σ2

r

(
1− d ◦ d

∥d∥22

)
. (16)

If these diagonals are computed directly, IPE features are
roughly as expensive as PE features to construct.

Figure 4 visualizes the difference between IPE and con-
ventional PE features in a toy 1D domain. IPE features be-
have intuitively: If a particular frequency in the positional
encoding has a period that is larger than the width of the
interval being used to construct the IPE feature, then the
encoding at that frequency is unaffected. But if the pe-
riod is smaller than the interval (in which case the PE over
that interval will oscillate repeatedly), then the encoding
at that frequency is scaled down towards zero. In short,
IPE preserves frequencies that are constant over an interval
and softly “removes” frequencies that vary over an interval,
while PE preserves all frequencies up to some manually-
tuned hyperparameter L. By scaling each sine and cosine in
this way, IPE features are effectively anti-aliased positional
encoding features that smoothly encode the size and shape
of a volume of space. IPE also effectively removes L as a
hyperparameter: it can simply be set to an extremely large
value and then never tuned (see supplement).

3.2. Architecture

Aside from cone-tracing and IPE features, mip-NeRF
behaves similarly to NeRF, as described in Section 2.1. For
each pixel being rendered, instead of a ray as in NeRF, a
cone is cast. Instead of sampling n values for tk along the
ray, we sample n + 1 values for tk, computing IPE fea-
tures for the interval spanning each adjacent pair of sam-
pled tk values as previously described. These IPE features
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Figure 4: Toy 1D visualizations of the positional encoding
(PE) used by NeRF (left) and our integrated positional en-
coding (IPE) (right). Because NeRF samples points along
each ray and encodes all frequencies equally, the high-
frequency PE features are aliased, which results in render-
ing artifacts. By integrating PE features over each interval,
the high frequency dimensions of IPE features shrink to-
wards zero when the period of the frequency is small com-
pared to the size of the interval being integrated, resulting
in anti-aliased features that implicitly encode the size (and
in higher dimensions, the shape) of the interval.

are passed as input into an MLP to produce a density τk
and a color ck, as in Equation 2. Rendering in mip-NeRF
follows Equation 3.

Recall that NeRF uses a hierarchical sampling proce-
dure with two distinct MLPs, one “coarse” and one “fine”
(see Equation 4). This was necessary in NeRF because its
PE features meant that its MLPs were only able to learn a
model of the scene for one single scale. But our cone cast-
ing and IPE features allow us to explicitly encode scale into
our input features and thereby enable an MLP to learn a
multiscale representation of the scene. Mip-NeRF therefore
uses a single MLP with parameters Θ, which we repeatedly
query in a hierarchical sampling strategy. This has multiple
benefits: model size is cut in half, renderings are more ac-
curate, sampling is more efficient, and the overall algorithm
becomes simpler. Our optimization problem is:

min
Θ

∑
r∈R

(
λ
∥∥C∗(r)−C(r; Θ, tc)

∥∥2

2
+
∥∥C∗(r)−C(r; Θ, tf )

∥∥2

2

)
(17)

Because we have a single MLP, the “coarse” loss must be
balanced against the “fine” loss, which is accomplished us-
ing a hyperparameter λ (we set λ = 0.1 in all experiments).
As in Mildenhall et al. [30], our coarse samples tc are pro-
duced with stratified sampling, and our fine samples tf are
sampled from the resulting alpha compositing weights w
using inverse transform sampling. Unlike NeRF, in which
the fine MLP is given the sorted union of 64 coarse samples
and 128 fine samples, in mip-NeRF we simply sample 128

samples for the coarse model and 128 samples from the fine
model (yielding the same number of total MLP evaluations
as in NeRF, for fair comparison). Before sampling tf , we
modify the weights w slightly:

w′
k =

1

2
(max(wk−1, wk) + max(wk, wk+1)) + α . (18)

We filter w with a 2-tap max filter followed by a 2-tap
blur filter (a “blurpool” [51]), which produces a wide and
smooth upper envelope on w. A hyperparameter α is added
to that envelope before it is re-normalized to sum to 1,
which ensures that some samples are drawn even in empty
regions of space (we set α = 0.01 in all experiments).

Mip-NeRF is implemented on top of JaxNeRF [11], a
JAX [4] reimplementation of NeRF that achieves better ac-
curacy and trains faster than the original TensorFlow im-
plementation. We follow NeRF’s training procedure: 1
million iterations of Adam [19] with a batch size of 4096
and a learning rate that is annealed logarithmically from
5 · 10−4 to 5 · 10−6. See the supplement for additional de-
tails and some additional differences between JaxNeRF and
mip-NeRF that do not affect performance significantly and
are incidental to our primary contributions: cone-tracing,
IPE, and the use of a single multiscale MLP.

4. Results

We evaluate mip-NeRF on the Blender dataset presented
in the original NeRF paper [30] and also on a simple mul-
tiscale variant of that dataset designed to better probe ac-
curacy on multi-resolution scenes and to highlight NeRF’s
critical vulnerability on such tasks. We report the three error
metrics used by NeRF: PSNR, SSIM [45], and LPIPS [52].
To enable easier comparison, we also present an “average”
error metric that summarizes all three metrics: the geomet-
ric mean of MSE = 10−PSNR/10,

√
1− SSIM (as per [5]),

and LPIPS. We additionally report runtimes (median and
median absolute deviation of wall time) as well as the num-
ber of network parameters for each variant of NeRF and
mip-NeRF. All JaxNeRF and mip-NeRF experiments are
trained on a TPU v2 with 32 cores [17].

We constructed our multiscale Blender benchmark be-
cause the original Blender dataset used by NeRF has a sub-
tle but critical weakness: all cameras have the same focal
length and resolution and are placed at the same distance
from the object. As a result, this Blender task is signif-
icantly easier than most real-world datasets, where cam-
eras may be more close or more distant from the subject
or may zoom in and out. The limitation of this dataset is
complemented by the limitations of NeRF: despite NeRF’s
tendency to produce aliased renderings, it is able to produce
excellent results on the Blender dataset because that dataset
systematically avoids this failure mode.
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Figure 5: Visualizations of the output of mip-NeRF compared to the ground truth, NeRF, and an improved version of NeRF
on test set images from two scenes in our multiscale Blender dataset. We visualize a cropped region of both scenes at 4
different scales, displayed as an image pyramid with the SSIM for each scale shown to its lower right and with the highest
SSIM at each scale highlighted in red. Mip-NeRF outperforms NeRF and its improved version by a significant margin, both
visually and quantitatively. See the supplement for more such visualizations.

PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg. ↓ Time (hours) # Params

NeRF (Jax Impl.) [11, 30] 31.196 30.647 26.252 22.533 0.9498 0.9560 0.9299 0.8709 0.0546 0.0342 0.0428 0.0750 0.0288 3.05 ± 0.04 1,191K
NeRF + Area Loss 27.224 29.578 29.445 25.039 0.9113 0.9394 0.9524 0.9176 0.1041 0.0677 0.0406 0.0469 0.0305 3.03 ± 0.03 1,191K
NeRF + Area, Centered Pixels 29.893 32.118 33.399 29.463 0.9376 0.9590 0.9728 0.9620 0.0747 0.0405 0.0245 0.0398 0.0191 3.02 ± 0.05 1,191K
NeRF + Area, Center, Misc. 29.900 32.127 33.404 29.470 0.9378 0.9592 0.9730 0.9622 0.0743 0.0402 0.0243 0.0394 0.0190 2.94 ± 0.02 1,191K
Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.84 ± 0.01 612K
Mip-NeRF w/o Misc. 32.610 34.333 35.497 35.638 0.9577 0.9703 0.9787 0.9834 0.0470 0.0259 0.0167 0.0120 0.0114 2.82 ± 0.03 612K
Mip-NeRF w/o Single MLP 32.401 34.131 35.462 35.967 0.9566 0.9693 0.9780 0.9834 0.0479 0.0268 0.0169 0.0116 0.0115 3.40 ± 0.01 1,191K
Mip-NeRF w/o Area Loss 33.059 34.280 33.866 30.714 0.9605 0.9704 0.9747 0.9679 0.0427 0.0256 0.0213 0.0308 0.0139 2.82 ± 0.01 612K
Mip-NeRF w/o IPE 29.876 32.160 33.679 29.647 0.9384 0.9602 0.9742 0.9633 0.0742 0.0393 0.0226 0.0378 0.0186 2.79 ± 0.01 612K

Table 1: A quantitative comparison of mip-NeRF and its ablations against NeRF and several NeRF variants on the test set of
our multiscale Blender dataset. See the text for details.

Multiscale Blender Dataset Our multiscale Blender
dataset is a straightforward modification to NeRF’s Blender
dataset, designed to probe aliasing and scale-space reason-
ing. This dataset was constructed by taking each image in
the Blender dataset, box downsampling it a factor of 2, 4,
and 8 (and modifying the camera intrinsics accordingly),
and combining the original images and the three downsam-
pled images into one single dataset. Due to the nature of
projective geometry, this is similar to re-rendering the orig-
inal dataset where the distance to the camera has been in-
creased by scale factors of 2, 4, and 8. When training mip-
NeRF on this dataset, we scale the loss of each pixel by the
area of that pixel’s footprint in the original image (the loss
for pixels from the 1/4 images is scaled by 16, etc) so that
the few low-resolution pixels have comparable influence to
the many high-resolution pixels. The average error metric
for this task uses the arithmetic mean of each error metric
across all four scales.

The performance of mip-NeRF for this multiscale
dataset can be seen in Table 1. Because NeRF is the state of
the art on the Blender dataset (as will be shown in Table 2),
we evaluate against only NeRF and several improved ver-
sions of NeRF: “Area Loss” adds the aforementioned scal-
ing of the loss function by pixel area used by mip-NeRF,

“Centered Pixels” adds a half-pixel offset added to each
ray’s direction such that rays pass through the center of
each pixel (as opposed to the corner of each pixel as was
done in Mildenhall et al.) and “Misc” adds some small
changes that slightly improve the stability of training (see
supplement). We also evaluate against several ablations of
mip-NeRF: “w/o Misc” removes those small changes, “w/o
Single MLP” uses NeRF’s two-MLP training scheme from
Equation 4, “w/o Area Loss” removes the loss scaling by
pixel area, and “w/o IPE” uses PE instead of IPE, which
causes mip-NeRF to use NeRF’s ray-casting (with centered
pixels) instead of our cone-casting.

Mip-NeRF reduces average error by 60% on this task
and outperforms NeRF by a large margin on all metrics
and all scales. “Centering” pixels improves NeRF’s perfor-
mance substantially, but not enough to approach mip-NeRF.
Removing IPE features causes mip-NeRF’s performance to
degrade to the performance of “Centered” NeRF, thereby
demonstrating that cone-casting and IPE features are the
primary factors driving performance (though the area loss
contributes substantially). The “Single MLP” mip-NeRF
ablation performs well but has twice as many parameters
and is nearly 20% slower than mip-NeRF (likely due to this
ablation’s need to sort t values and poor hardware through-
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Figure 6: Even on the less challenging single-scale Blender
dataset of Mildenhall et al. [30], mip-NeRF significantly
outperforms NeRF and our improved version of NeRF, par-
ticularly on small or thin objects such as the holes of the
LEGO truck (top) and the ropes of the ship (bottom).

PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓ Time (hours) # Params
SRN [39] 22.26 0.846 0.170 0.0735 - -
Neural Volumes [25] 26.05 0.893 0.160 0.0507 - -
LLFF [29] 24.88 0.911 0.114 0.0480 ∼0.16 -
NSVF [24] 31.74 0.953 0.047 0.0190 - 3.2M - 16M
NeRF (TF Impl.) [30] 31.01 0.947 0.081 0.0245 >12 1,191K
NeRF (Jax Impl.) [11, 30] 31.74 0.953 0.050 0.0194 3.05± 0.01 1,191K
NeRF + Centered Pixels 32.30 0.957 0.046 0.0178 2.99± 0.06 1,191K
NeRF + Center, Misc. 32.28 0.957 0.046 0.0178 3.06± 0.03 1,191K
Mip-NeRF 33.09 0.961 0.043 0.0161 2.89± 0.00 612K
Mip-NeRF w/o Misc. 33.04 0.960 0.043 0.0162 2.89± 0.01 612K
Mip-NeRF w/o Single MLP 32.71 0.959 0.044 0.0168 3.63± 0.02 1,191K
Mip-NeRF w/o IPE 32.48 0.958 0.045 0.0173 2.84± 0.00 612K

Table 2: A comparison of mip-NeRF and its ablations
against several baseline algorithms and variants of NeRF
on the single-scale Blender dataset of Mildenhall et al. [30].
Training times taken from prior work (when available) are
indicated in gray, as they are not directly comparable.

put due to its changing tensor sizes across its “coarse” and
“fine” scales). Mip-NeRF is also ∼ 7% faster than NeRF.
See Figure 9 and the supplement for visualizations.
Blender Dataset Though the sampling issues that mip-
NeRF was designed to fix are most prominent in the Multi-
scale Blender dataset, mip-NeRF also outperforms NeRF on
the easier single-scale Blender dataset presented in Milden-
hall et al. [30], as shown in Table 2. We evaluate against
the baselines used by NeRF, NSVF [24], and the same
variants and ablations that were used previously (excluding
“Area Loss”, which is not used by mip-NeRF for this task).
Though less striking than the multiscale Blender dataset,
mip-NeRF is able to reduce average error by ∼ 17% com-
pared to NeRF while also being faster. This improvement in
performance is most visually apparent in challenging cases
such as small or thin structures, as shown in Figure 6.
Supersampling As discussed in the introduction, mip-
NeRF is a prefiltering approach for anti-aliasing. An al-
ternative approach is supersampling, which can be accom-
plished in NeRF by casting multiple jittered rays per pixel.
Because our multiscale dataset consists of downsampled

PSNR ↑ Avg. Time
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Mean (sec./MP)

NeRF + Area, Center, Misc. 29.90 32.13 33.40 29.47 31.23 2.61
SS NeRF + Area, Center, Misc. 32.25 34.27 35.99 35.73 34.56 55.52
Mip-NeRF 32.60 34.30 35.41 35.55 34.46 2.48
SS Mip-NeRF 32.60 34.78 36.59 36.16 35.03 52.75

Table 3: A comparison of mip-NeRF and our improved
NeRF variant where both algorithms are supersampled
(“SS”). Mip-NeRF nearly matches the accuracy of “SS
NeRF” while being 22× faster. Adding supersampling
to mip-NeRF improves its accuracy slightly. We report
times for rendering the test set, normalized to seconds-per-
megapixel (training times are the same as Tables 1 and 2).

versions of full-resolution images, we can construct a “su-
persampled NeRF” by training a NeRF (the “NeRF + Area,
Center, Misc.” variant that performed best previously) using
only full-resolution images, and then rendering only full-
resolution images, which we then manually downsample.
This baseline has an unfair advantage: we manually re-
move the low-resolution images in the multiscale dataset,
which would otherwise degrade NeRF’s performance as
previously demonstrated. This strategy is not viable in most
real-world datasets, as it is usually not possible to known
a-priori which images correspond to which scales of im-
age content. Despite this baseline’s advantage, mip-NeRF
matches its accuracy while being ∼22× faster (see Table 3).

5. Conclusion
We have presented mip-NeRF, a multiscale NeRF-like

model that addresses the inherent aliasing of NeRF. NeRF
works by casting rays, encoding the positions of points
along those rays, and training separate neural networks at
distinct scales. In contrast, mip-NeRF casts cones, en-
codes the positions and sizes of conical frustums, and trains
a single neural network that models the scene at multiple
scales. By reasoning explicitly about sampling and scale,
mip-NeRF is able to reduce error rates relative to NeRF by
60% on our own multiscale dataset, and by 17% on NeRF’s
single-scale dataset, while also being 7% faster than NeRF.
Mip-NeRF is also able to match the accuracy of a brute-
force supersampled NeRF variant, while being 22× faster.
We hope that the general techniques presented here will be
valuable to other researchers working to improve the per-
formance of raytracing-based neural rendering models.
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A. Conical Frustum Integral Derivations

In order to derive formulas for the various moments of
the uniform distribution over a conical frustum, we con-
sider an axis-aligned cone parameterized as (x, y, z) =
φ(r, t, θ) = (rt cos θ, rt sin θ, t) for θ ∈ [0, 2π), t ≥ 0,
|r| ≤ ṙ. This change of variables from Cartesian space
gives us a differential term:

dx dy dz = |det(Dφ)(r, t, θ)|dr dt dθ (19)

=

∣∣∣∣∣∣
t cos θ t sin θ 0
r cos θ r sin θ 1

−rt sin θ rt cos θ 0

∣∣∣∣∣∣dr dt dθ (20)

= (rt2 cos2 θ + rt2 sin θ)dr dt dθ (21)

= rt2dr dt dθ . (22)

The volume of the conical frustum (which serves as the
normalizing constant for the uniform distribution) is:

V =

∫ 2π

0

∫ t1

t0

∫ ṙ

0

rt2 dr dt dθ (23)

=
ṙ2

2
· t

3
1 − t30
3

· 2π (24)

= πṙ2
t31 − t30

3
(25)

Thus the probability density function for points uniformly
sampled from the conical frustum is rt2/V . The first mo-
ment of t is:

E[t] =
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ

0

t · rt2 dr dt dθ (26)

=
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ

0

rt3 dr dt dθ (27)

=
1

V
· πṙ2 t

4
1 − t40
4

(28)

=
3(t41 − t40)

4(t31 − t30)
. (29)

The moments of x and y are both zero by symmetry. The
second moment of t is

E[t2] =
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ

0

t2 · rt2 dr dt dθ (30)

=
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ

0

rt4 dr dt dθ (31)

=
1

V
· πṙ2 t

5
1 − t50
5

(32)

=
3(t51 − t50)

5(t31 − t30)
. (33)

And the second moment of x is:

E[x2] =
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ

0

(rt cos θ)2 · rt2 dr dt dθ (34)

=
1

V

∫ t1

t0

∫ ṙ

0

r3t4
∫ 2π

0

cos2 θ dθ dr dt (35)

=
1

V
· ṙ

4

4
· t

5
1 − t50
5

· π (36)

=
ṙ2

4
· 3(t

5
1 − t50)

5(t31 − t30)
. (37)

The second moment of y is the same by symmetry. All cross
terms in the covariance are z, also by symmetry.

With these moments defined, we can construct the mean
and covariance for a random point within our conical frus-
tum. The mean along the ray direction µt is simply the first
moment with respect to t:

µt =
3
(
t41 − t40

)
4(t31 − t30)

. (38)

The variance of the conical frustum with respect to t follows
from the definition of variance as Var(t) = E

[
t2
]
− E[t]2:

σ2
t =

3
(
t51 − t50

)
5(t31 − t30)

− µ2
t . (39)

The variance of the conical frustum with respect to its radius
r is equal to the variance of the frustum with respect to x or
(by symmetry) y. Since the first moment with respect to x
is zero, the variance is equal to the second moment:

σ2
r = ṙ2

(
3
(
t51 − t50

)
20(t31 − t30)

)
. (40)

Computing all three of these quantities in their given form
is numerically unstable — the ratio of the differences be-
tween t1 and t0 raised to large powers is difficult to com-
pute accurately when t0 and t1 are near each other, which
occurs frequently during training. Using these quantities in
practice often produces 0 or NaN instead of accurate values,
which causes training to fail. We therefore reparameterize
these equations as a function of the center and spread of t0
and t1: tµ = (t0 + t1)/2, tδ = (t1 − t0)/2. This allows us
to rewrite each mean and variance as a first-order term that
is then corrected by higher-order terms, which are scaled by
tδ . This gives us stable and accurate values even when tδ is
small. Our reparameterized values are:

µt = tµ +
2tµt

2
δ

3t2µ + t2δ
, σ2

t =
t2δ
3
−

4t4δ(12t
2
µ − t2δ)

15(3t2µ + t2δ)
2
,

σ2
r = ṙ2

(
t2µ
4

+
5t2δ
12

− 4t4δ
15(3t2µ + t2δ)

)
. (41)
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Figure 7: PSNRs for NeRF and mip-NeRF on the test set
of the lego scene, as we vary the positional encoding degree
L. In NeRF, performance decreases due to overfitting for
large values of L, but in mip-NeRF this parameter is effec-
tively removed from tuning — it can just be set to a large
value and forgotten, because IPE features “tune” their own
frequencies automatically.

Note that our multivariate Gaussian approximation of a
conical frustum will be inaccurate if there is a significant
difference between the base and top radii of the frustum,
which will be true for frustums that are very near the cam-
era’s center of projection when the camera FOV is large.
This is highly uncommon in most datasets, but may be an is-
sue if one were to use mip-NeRF in unusual circumstances,
such as macro photography with a fisheye lens.

B. The L Hyperparameter in PE and IPE
IPE features can be viewed as a generalization of PE fea-

tures: γ(x) = γ(µ = x,Σ = 0). Or more rigorously, PE
features can be thought of as “hard” IPE features in which
all points are assumed to have identical isotropic covariance
matrices whose variance has been heuristically determined
by the L hyperparameter: the value of L determines the fre-
quency at which PE features are truncated, just as the Gaus-
sian function of variance in IPE serves as a “soft” truncation
of IPE features. Because the “soft” maximum frequency of
IPE features is determined entirely by the geometry and in-
trinsics of the camera, IPE features do not depend on the L
hyperparameter, and so using IPE features removes the need
for tuning L. This is because in PE the L parameter deter-
mines where the high frequencies in the PE are truncated,
but in IPE those high frequencies are naturally attenuated
by the size of the multivariate Gaussian used as input to the
encoding: the smaller the Gaussian, the more high frequen-
cies will be retained. To demonstrate this, we performed as
“sweep” of L in both mip-NeRF and NeRF, and report the

test-set PSNR for a single scene, which is visualized in Fig-
ure 7. We see that in NeRF, there is a range of values for L
in which performance is maximized, but values that are too
large or too small will hurt performance. But in mip-NeRF,
we see that L can be set to an arbitrarily large value and
performance is unaffected. In practice, in all mip-NeRF ex-
periments in the paper we set L = 16, which is a value that
results in the last dimension of all IPE features constructed
during training to be less than numerical epsilon.

C. Hyperparameters

In all experiments in the paper we take care to use ex-
actly the same set of hyperparameters that were used in
Mildenhall et al. [30], so as to isolate the specific contri-
butions of mip-NeRF as they relate to cone-casting and IPE
features. The three relevant hyperparameters that govern
mip-NeRF’s behavior are: 1) the number of samples N
drawn at each of the two levels (N = 128), 2) the his-
togram “padding” hyperparameter α on the coarse trans-
mittance weights that are used to sample the fine t values
(α = 0.01), and 3) the multiplier λ on the “coarse” com-
ponent of the loss function (λ = 0.1). And though mip-
NeRF adds these three hyperparameters, it also deprecates
three NeRF hyperparameters that are no longer used: 1)
The number of samples Nc drawn for the “coarse” MLP
(Nc = 64), 2) The number of samples Nf drawn for the
“fine” MLP (Nf = 128), and 3) The degree L used for
the spatial positional encoding (L = 10). The α parame-
ter used by mip-NeRF serves a similar purpose as the bal-
ance between Nc and Nf did in NeRF — a larger value of
α biases the final samples used during rendering towards
a uniform distribution, just as a larger value of Nc biases
the final samples (which are the sorted union of the uniform
coarse samples and the biased fine samples) towards a uni-
form distribution. Mip-NeRF’s multiplier λ has no analog
in NeRF, as NeRF’s usage of two distinct MLPs means that
the “coarse” and “fine” losses in NeRF do not need to be
balanced — thankfully, though mip-NeRF adds the need to
tune this new hyperparameter λ, it simultaneously removes
the need to tune the L hyperparameter as discussed in Sec-
tion B, so the total number of hyperparameters that require
tuning remains constant across the two models.

Before running the experiments in the paper, we briefly
tuned the α and λ hyperparameters by hand on the valida-
tion set of the lego scene. N was not tuned, and was just set
to 128 such that the total number of MLP evaluations used
by mip-NeRF matched the total number used by NeRF.

D. Forward-Facing Scenes

Note that this paper does not evaluate on the LLFF
dataset [29], which consists of scenes captured by a
“forward-facing” handheld cellphone camera. For these



scenes, NeRF trained and evaluated models in a “normal-
ized device coordinates” (NDC) space. NDC coordinates
work by nonlinearly warping a frustum-shaped space into a
unit cube, which sidesteps some otherwise challenging de-
sign decisions (such as how an unbounded 3D space should
be represented using positional encoding). NDC coordi-
nates can only be used for these “forward-facing” scenes;
in scenes where the camera rotates significantly (which is
the case for the vast majority of 3D datasets) NeRF uses
conventional 3D “world coordinates”. One interesting con-
sequence of NDC space is that the 3D volume correspond-
ing to a pixel is not a frustum, but is instead a rectangle —
in NDC the spatial support of a pixel in the xy plane does
not increase with the distance from the image plane, as it
would in conventional projective geometry.

We briefly experimented with a variant of mip-NeRF
that works in NDC space by casting cylinders instead of
cones. The average PSNR achieved by JaxNeRF on this
task is 26.843, and this cylinder-casting variant of mip-
NeRF achieves an average PSNR of 26.838. Because this
mip-NeRF variant roughly matches the accuracy of NeRF,
the only substantial benefit it appears to provide is remov-
ing the need to tune the L parameter in positional encoding.
This result provides some insight into why NeRF works so
well on forward-facing scenes: in NDC space there is lit-
tle difference between NeRF’s “incorrect” aliased approach
of casting rays and tuning the L hyperparameter (which as
discussed in Section B, is approximately equivalent to using
IPE features with isotropic Gaussians) and the more “cor-
rect” anti-aliased approach of mip-NeRF. In essence, NeRF
is already able to get most of the benefit provided by cone-
casting and IPE features in NDC space, because in NDC
space NeRF’s aliased model is already very similar to mip-
NeRF’s approach. This interplay between scene parameter-
ization and anti-aliasing suggests that a signal processing
analysis of coordinate spaces in neural rendering problems
may provide additional unexpected benefits or insights.

E. Model Details

The primary contributions of this paper are the use of
cone tracing, integrated positional encoding features, and
our use of a single unified multiscale model (as opposed
to NeRF’s separate per-scale models), which together allow
mip-NeRF to better handle multiscale data and reduce alias-
ing. Additionally, mip-NeRF includes a small number of
changes that do not meaningfully change mip-NeRF’s accu-
racy or speed, but slightly simplify our method and increase
its robustness during optimization. These “miscellaneous”
changes, as noted by the “w/o Misc.” ablation in the main
paper, do not significantly affect mip-NeRF’s performance,
but are described here in full for the sake of reproducibility
with the hopes that future work will find them useful.

E.1. Identity Concatenation

In the original NeRF paper, the input to the MLP is not
just the positional encoding of the position and view direc-
tion, but is instead the concatenation of the positional en-
coding with the position and view direction being encoded.
We found this “identity” encoding to not contribute mean-
ingfully to performance or speed, and its presence makes
the formalization of our IPE features somewhat challeng-
ing, so this in mip-NeRF this identity mapping is removed
and the only input to the MLP is the integrated positional
encoding itself.

E.2. Activation Functions

In the original NeRF paper, the activation functions used
by the MLP to construct the predicted density τ and color c
are a ReLU and a sigmoid, respectively. Instead of a ReLU
as the activation function to produce τ , we use a shifted soft-
plus: log(1 + exp(x − 1)). We found that using a softplus
yielded a smoother optimization problem that is less prone
to catastrophic failure modes in which the MLP emits neg-
ative values everywhere (in which case all gradients from τ
are zero and optimization will fail). The shift by −1 within
the softplus is equivalent to initializing the biases that pro-
duce τ in mip-NeRF to −1, and this causes initial τ values
to be small. Initializing the density of the NeRF to small
values results in slightly faster optimization at the beginning
of training, as dense scene content causes gradients from
scene content “behind” that dense content to be suppressed.
Instead of a sigmoid to produce color c, we use a “widened”
sigmoid that saturates slightly outside of [0, 1] (the range
of input RGB intensities): (1 + 2ϵ)/(1 + exp(−x)) − ϵ,
with ϵ = 0.001. This avoids an uncommon failure mode in
which training tries to explain away a black or white pixel
by saturating network activations into the tails of the sig-
moid where the gradient is zero, which may cause optimiza-
tion to fail. By having the network saturate at values slightly
outside of the range of input values, activations are never en-
couraged to saturate. These changes to activation functions
have little effect on performance, but we found that they
improved training stability when using large learning rates
(though all results in this paper use the same lower learning
rates used by Mildenhall et al. [30] for fair comparison).

E.3. Optimization

In all experiments we train mip-NeRF and JaxNeRF us-
ing the default training procedure specified in the JaxNeRF
codebase: 1 million iterations of Adam [19] with a batch
size of 4096 and a learning rate that is annealed logarith-
mically from η0 = 5 · 10−4 to ηn = 5 · 10−6. We addi-
tionally “warm up” the learning rate using the functionality
provided by JaxNeRF, which does not improve the perfor-
mance of mip-NeRF itself, but which we found to improve
the stability of some of the mip-NeRF ablations. To allow



PSNR ↑ SSIM ↑ LPIPS ↓ Train Time Test Time
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg. ↓ (hours) (sec/MP) # Params

NeRF + Area, Center, 1× SS 27.471 28.016 27.816 26.657 0.9187 0.9301 0.9365 0.9304 0.1064 0.0924 0.0934 0.1064 0.0362 2.85 2.61 1,191K
NeRF + Area, Center, 4× SS 28.424 29.420 29.863 29.233 0.9297 0.9426 0.9526 0.9547 0.0807 0.0598 0.0530 0.0536 0.0259 17.69 10.44 1,191K
NeRF + Area, Center, 16× SS 31.566 33.116 33.982 32.933 0.9524 0.9660 0.9753 0.9768 0.0537 0.0316 0.0227 0.0216 0.0144 37.18 41.76 1,191K
Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.79 2.48 612K

Table 4: Here we evaluate mip-NeRF against an extension of NeRF in which brute-force supersampling with jittered rays is
used during training and evaluation, on our multiscale Blender dataset (“16× SS” indicates that 16 rays are cast per pixel,
etc). Mip-NeRF is able to outperform this baseline by a significant margin in terms of quality, while also being 13× faster to
train and 16× faster to evaluate.
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Figure 8: The learning rate used in all JaxNeRF and mip-
NeRF experiments.

our ablations to be competitive, and to enable a fair compar-
ison across all models, we therefore use this warm up strat-
egy in all mip-NeRF and JaxNeRF experiments. Because
the warm up procedure in JaxNeRF is not described in its
documentation [11], for the sake of reproducibility we will
describe it here. For the first nw = 2500 iterations of opti-
mization, we scale the basic learning rate by an additional
scale factor that is smoothly annealed between λw = 0.01
and 1 during this warm up period. The learning rate at iter-
ation i during training is:

ηi =(λw + (1− λw) sin((π/2) clip(i/nw, 0, 1)))

× (exp((1− i/n) log(η0) + (i/n) log(ηn))) (42)

See Figure 8 for a visualization.

E.4. View Dependent Effects

We handle viewing directions exactly as was done in
NeRF: the ray direction d is normalized, positionally en-
coded (L = 4), and injected into the last layer of the MLP
after τ is predicted but before c is predicted. This is omitted
from our notation in the main paper for simplicity’s sake.
see Mildenhall et al. for details [30].

F. Supersampling Baseline
In the main paper we presented a generous baseline ap-

proach in which NeRF is trained on only full-resolution
images (thereby sidestepping its poor performance when
trained on multi-resolution data) and then evaluated on our
multiscale Blender dataset by brute-force supersampling:
rendering a full-resolution image that is then downsampled
to match the resolution of the ground truth. This roughly
matches the performance of mip-NeRF, but is 22× slower
and relies on “oracle” scale information that does not exist
for most datasets. Here we explore an alternative super-
sampling baseline, in which we train an extension of NeRF
on the multiscale dataset while supersampling during both
training and evaluation: for every pixel we cast multiple jit-
tered rays (sampled uniformly at random) through the spa-
tial footprint of each pixel, render each ray with the NeRF,
and then use the mean of those rendered values as the pre-
dicted color of that pixel in the loss function. As shown
by the results of this experiment (Table 4) this brute-force
supersampling model not only performs worse than mip-
NeRF even when casting as many as 16 rays per pixel, but
is also significantly more expensive during both training and
evaluation.

G. Alternative Gaussian Positional Encoding
During experimentation we explored alternative ap-

proaches for featurizing the mean and covariance matrix of
the multivariate Gaussians used by mip-NeRF. One such al-
ternative strategy is to simply apply positional encoding to
the mean and to the (signed) square root of the elements of
the covariance matrix, and use the concatenation of the two
as input. Specifically, we compute the positional encoding
of µ with L = 12, and compute the positional encoding
of vec(triu(sign(Σ) ◦

√
|Σ|)) with L = 2. We found that

this approach performs comparably to the IPE features pre-
sented in the main paper, as shown in Table 5. We chose to
advocate for IPE features in the main paper instead of this
concatenation alternative because 1) IPE features are more
compact (thereby reducing model size and evaluation time),
2) IPE features are easy to justify and reason about (as they
approximate an expectation of positional encoding features
with respect to a conical frustum), and 3) IPE features have



Multiscale Blender PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓
Integrated PE 34.51 0.973 0.025 0.0113
Concatenated PE 34.40 0.973 0.025 0.0114

Blender PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓
Integrated PE 33.09 0.961 0.043 0.0161
Concatenated PE 33.09 0.961 0.042 0.0160

Table 5: An evaluation of the IPE features against an al-
ternative approach in which the mean and covariance of
the multivariate Gaussian corresponding to a conical frus-
tum are positionally encoded and concatenated. Both ap-
proaches perform comparably on the multiscale and single-
scale Blender datasets.

no hyperparameters (while this concatenation alternative is
sensitive to its two L hyperparameters and the design deci-
sions used when parameterizing Σ).

This experiment with using this alternative to IPE also
provides some insight into the inner workings of mip-NeRF.
While IPE features are insensitive to the off-diagonal el-
ements of Σ, this concatenation alternative should endow
the MLP with the ability to reason about the correlation of
dimensions of the multivariate Gaussian. The fact that this
ability does not improve accuracy may suggest that correla-
tion is not a helpful cue, which contradicted the intuition of
the authors. Additionally, this experiment reinforces the as-
sertions made in the paper that the reason for mip-NeRF’s
improved performance is its explicit modeling of conical
frustums, as opposed to NeRF’s usage of point samples
along a ray. Though it is critical that the geometry of im-
age formation be modeled accurately, there are likely many
effective ways to featurize that geometry.

H. Additional Results
Multiscale Blender Dataset. To demonstrate the relative
accuracy of mip-NeRF compared to NeRF on each indi-
vidual scene in the multiscale Blender dataset, the error
metrics for each individual scene are provided in Table 6.
Mip-NeRF yields a significant reduction in error compared
to NeRF across all scenes. Renderings produced by mip-
NeRF and baseline algorithms compared to the ground truth
can be visually inspected in Figures 9 and 10.
Blender Dataset. Test-set error metrics for each individual
scene in the (single scale) Blender dataset of Mildenhall et
al. [30] can be seen in Table 7. Mip-NeRF yields lower
error rates than NeRF on all scenes and all metrics.



Average PSNR
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [11, 30] 29.923 23.273 27.153 32.001 27.748 26.295 28.401 26.462
NeRF + Area Loss 30.277 24.032 27.149 32.025 27.602 26.533 28.120 26.834
NeRF + Area, Centered Pixels 33.460 25.802 30.400 35.672 31.606 30.155 32.633 30.019
NeRF + Area, Center, Misc. 33.394 25.874 30.369 35.641 31.646 30.184 32.601 30.092
Mip-NeRF 37.141 27.021 33.188 39.313 35.736 32.558 38.036 33.083
Mip-NeRF w/o Misc. 37.275 26.979 33.160 39.357 35.749 32.563 37.997 33.078
Mip-NeRF w/o Single MLP 37.310 26.922 33.045 39.378 35.605 32.635 38.016 33.011
Mip-NeRF w/o Area Loss 35.188 26.063 32.542 37.165 34.319 31.004 35.922 31.636
Mip-NeRF w/o IPE 33.559 25.864 30.499 35.793 31.728 30.272 32.736 30.276

Average SSIM
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [11, 30] 0.9436 0.8908 0.9423 0.9586 0.9256 0.9335 0.9580 0.8607
NeRF + Area Loss 0.9488 0.9028 0.9429 0.9622 0.9274 0.9372 0.9592 0.8610
NeRF + Area, Centered Pixels 0.9710 0.9310 0.9705 0.9794 0.9643 0.9670 0.9800 0.8994
NeRF + Area, Center, Misc. 0.9707 0.9318 0.9705 0.9793 0.9646 0.9671 0.9799 0.9004
Mip-NeRF 0.9875 0.9450 0.9836 0.9880 0.9843 0.9767 0.9928 0.9221
Mip-NeRF w/o Misc. 0.9877 0.9448 0.9835 0.9880 0.9842 0.9767 0.9927 0.9227
Mip-NeRF w/o Single MLP 0.9875 0.9432 0.9829 0.9876 0.9836 0.9763 0.9922 0.9211
Mip-NeRF w/o Area Loss 0.9817 0.9371 0.9823 0.9849 0.9792 0.9731 0.9911 0.9175
Mip-NeRF w/o IPE 0.9714 0.9322 0.9713 0.9796 0.9658 0.9678 0.9804 0.9039

Average LPIPS
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [11, 30] 0.0347 0.0689 0.0324 0.0279 0.0410 0.0452 0.0307 0.0948
NeRF + Area Loss 0.0414 0.0762 0.0438 0.0365 0.0568 0.0499 0.0444 0.1139
NeRF + Area, Centered Pixels 0.0281 0.0593 0.0264 0.0240 0.0348 0.0330 0.0249 0.0865
NeRF + Area, Center, Misc. 0.0283 0.0586 0.0264 0.0241 0.0346 0.0330 0.0249 0.0850
Mip-NeRF 0.0111 0.0439 0.0135 0.0121 0.0127 0.0186 0.0065 0.0624
Mip-NeRF w/o Misc. 0.0111 0.0436 0.0136 0.0123 0.0127 0.0186 0.0066 0.0620
Mip-NeRF w/o Single MLP 0.0113 0.0443 0.0142 0.0122 0.0132 0.0187 0.0068 0.0628
Mip-NeRF w/o Area Loss 0.0171 0.0503 0.0146 0.0151 0.0163 0.0259 0.0095 0.0665
Mip-NeRF w/o IPE 0.0276 0.0578 0.0259 0.0240 0.0340 0.0320 0.0231 0.0829

Table 6: Per-scene results on the test set images of the multiscale Blender dataset presented in this work. We report the
arithmetic mean of each metric averaged over the four scales used in the dataset.
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Figure 9: Visualizations of the output renderings from mip-NeRF compared to the ground truth, NeRF, and our improved
version of NeRF, on test set images from the 8 scenes in our multiscale Blender dataset. We visualize a cropped region of
each scene for better visualization, and render out that scene at 4 different resolutions, displayed as an image pyramid. The
SSIM for each scale of each image pyramid truth is shown to its lower right, with the highest SSIM for each algorithm at
each scale highlighted in red.
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Figure 10: Additional visualizations of the output renderings from mip-NeRF compared to the ground truth, NeRF, and an
improved version of NeRF presented in this work, on test set images from the 8 scenes in our multiscale Blender dataset, in
the same format as Figure 9.



PSNR
chair drums ficus hotdog lego materials mic ship

SRN [39] 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
Neural Volumes [25] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93
LLFF [29] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22
NSVF [24] 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93
NeRF (TF Implementation) [30] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
NeRF (Jax Implementation) [11, 30] 34.17 25.08 30.39 36.82 33.31 30.03 34.78 29.30
NeRF + Centered Pixels 34.88 25.17 31.02 37.13 34.39 30.50 35.38 29.95
NeRF + Center, Misc. 34.94 25.19 31.05 37.15 34.12 30.47 35.33 29.95
Mip-NeRF 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41
Mip-NeRF w/o Single MLP 35.07 25.28 32.52 37.34 34.93 30.38 35.59 30.55
Mip-NeRF w/o Misc. 35.16 25.46 32.96 37.55 35.68 30.69 36.32 30.47
Mip-NeRF w/o IPE 35.10 25.23 31.30 37.17 34.89 30.56 35.75 29.85
Mip-NeRF, Stopped Early 34.21 25.23 30.79 36.89 33.72 29.86 35.02 29.44

SSIM
chair drums ficus hotdog lego materials mic ship

SRN [39] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
Neural Volumes [25] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
LLFF [29] 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823
NSVF [24] 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854
NeRF (TF Implementation) [30] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
NeRF (Jax Implementation) [11, 30] 0.975 0.925 0.967 0.979 0.968 0.953 0.987 0.869
NeRF + Centered Pixels 0.979 0.928 0.971 0.980 0.973 0.956 0.989 0.877
NeRF + Center, Misc. 0.979 0.927 0.971 0.980 0.972 0.956 0.989 0.877
Mip-NeRF 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882
Mip-NeRF w/o Single MLP 0.980 0.929 0.977 0.981 0.976 0.956 0.989 0.883
Mip-NeRF w/o Misc. 0.981 0.932 0.979 0.982 0.978 0.959 0.991 0.883
Mip-NeRF w/o IPE 0.981 0.929 0.972 0.981 0.975 0.958 0.990 0.878
Mip-NeRF, Stopped Early 0.976 0.927 0.969 0.979 0.969 0.954 0.988 0.869

LPIPS
chair drums ficus hotdog lego materials mic ship

SRN [39] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
Neural Volumes [25] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
LLFF [29] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218
NSVF [24] 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162
NeRF (TF Implementation) [30] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
NeRF (Jax Implementation) [11, 30] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150
NeRF + Centered Pixels 0.022 0.069 0.028 0.028 0.026 0.043 0.010 0.143
NeRF + Center, Misc. 0.022 0.069 0.028 0.028 0.027 0.044 0.011 0.142
Mip-NeRF 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138
Mip-NeRF w/o Single MLP 0.022 0.067 0.023 0.028 0.024 0.044 0.011 0.135
Mip-NeRF w/o Misc. 0.021 0.066 0.022 0.026 0.021 0.040 0.009 0.136
Mip-NeRF w/o IPE 0.020 0.068 0.027 0.028 0.024 0.041 0.009 0.142
Mip-NeRF, Stopped Early 0.027 0.074 0.035 0.031 0.035 0.046 0.013 0.155

Table 7: Per-scene results on the test set images of the (single-scale) Blender dataset from Mildenhall et al. [30]


