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Abstract

Neural volumetric representations such as Neural Ra-
diance Fields (NeRF) have emerged as a compelling tech-
nique for learning to represent 3D scenes from images with
the goal of rendering photorealistic images of the scene
from unobserved viewpoints. However, NeRF’s computa-
tional requirements are prohibitive for real-time applica-
tions: rendering views from a trained NeRF requires query-
ing a multilayer perceptron (MLP) hundreds of times per
ray. We present a method to train a NeRE, then precompute
and store (i.e. “bake”) it as a novel representation called
a Sparse Neural Radiance Grid (SNeRG) that enables real-
time rendering on commodity hardware. To achieve this, we
introduce 1) a reformulation of NeRF’s architecture, and
2) a sparse voxel grid representation with learned feature
vectors. The resulting scene representation retains NeRF'’s
ability to render fine geometric details and view-dependent
appearance, is compact (averaging less than 90 MB per
scene), and can be rendered in real-time (higher than 30
frames per second on a laptop GPU). Actual screen cap-
tures are shown in our video.

1. Introduction

The task of view synthesis — using observed images
to recover a 3D scene representation that can render the
scene from novel unobserved viewpoints — has recently
seen dramatic progress as a result of using neural volumet-
ric representations. In particular, Neural Radiance Fields
(NeRF) [29] are able to render photorealistic novel views
with fine geometric details and realistic view-dependent ap-
pearance by representing a scene as a continuous volumetric
function, parameterized by a multilayer perceptron (MLP)
that maps from a continuous 3D position to the volume
density and view-dependent emitted radiance at that loca-
tion. Unfortunately, NeRF’s rendering procedure is quite
slow: rendering a ray requires querying an MLP hundreds
of times, such that rendering a frame at 800 x 800 resolu-
tion takes roughly a minute on a modern GPU. This pre-
vents NeRF from being used for interactive view synthesis
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Figure 1: Our method “bakes” NeRF’s continuous neural
volumetric scene representation into a discrete Sparse Neu-
ral Radiance Grid (SNeRG) for real-time rendering on com-
modity hardware (~ 65 frames per second on a MacBook
Pro in the example shown here and in our supplemental
video). Our method is more than two orders of magnitude
faster than prior work for accelerating NeRF’s rendering
procedure and more than an order of magnitude faster than
the next-fastest alternative (Neural Volumes) while produc-
ing substantially higher-quality renderings.

applications such as virtual and augmented reality, or even
simply inspecting a recovered 3D model in a web browser.

In this paper, we address the problem of rendering a
trained NeRF in real-time, see Figure Our approach
accelerates NeRF’s rendering procedure by three orders of
magnitude, resulting in a rendering time of 12 milliseconds
per frame on a single GPU. We precompute and store (i.e.
“bake”) a trained NeRF into a sparse 3D voxel grid data



structure, which we call a Sparse Neural Radiance Grid
(SNeRG). Each active voxel in a SNeRG contains opac-
ity, diffuse color, and a learned feature vector that encodes
view-dependent effects. To render this representation, we
first accumulate the diffuse colors and feature vectors along
each ray. Next, we pass the accumulated feature vector
through a lightweight MLP to produce a view-dependent
residual that is added to the accumulated diffuse color.

We introduce two key modifications to NeRF that enable
it to be effectively baked into this sparse voxel represen-
tation: 1) we design a “deferred” NeRF architecture that
represents view-dependent effects with an MLP that only
runs once per pixel (instead of once per 3D sample as in the
original NeRF architecture), and 2) we regularize NeRF’s
predicted opacity field during training to encourage spar-
sity, which improves both the storage cost and rendering
time for the resulting SNeRG.

We demonstrate that our approach is able to increase the
rendering speed of NeRF so that frames can be rendered in
real-time, while retaining NeRF’s ability to represent fine
geometric details and convincing view-dependent effects.
Furthermore, our representation is compact, and requires
less than 90 MB on average to represent a scene.

2. Related work

Our work draws upon ideas from computer graphics to
enable the real-time rendering of NeRFs. In this section, we
review scene representations used for view synthesis with a
specific focus on their ability to support real-time render-
ing, and discuss prior work in efficient representation and
rendering of volumetric representations within the field of
computer graphics.

Scene Representations for View Synthesis The task of
view synthesis, using observed images of an object or
scene to render photorealistic images from novel unob-
served viewpoints, has a rich history within the fields of
graphics and computer vision. The majority of prior work
in this space has used traditional 3D representations from
computer graphics which are naturally amenable to effi-
cient rendering. For scenarios where the scene is cap-
tured by densely-sampled images, light field rendering tech-
niques [8, 14, 21] can be used to efficiently render novel
views by interpolating between sampled rays. Unfortu-
nately, the sampling and storage requirements of light field
interpolation techniques are typically intractable for settings
with significant viewpoint motion. Methods that aim to sup-
port free-viewpoint rendering from sparsely-sampled im-
ages typically reconstruct an explicit 3D representation of
the scene [9]. One popular class of view synthesis methods
uses mesh-based representations, with either diffuse [27]
or view-dependent [5, 9, 46] appearance. Recent methods
have trained deep networks to increase the quality of mesh
renderings, improving robustness to errors in the recon-

structed mesh geometry [15, 42]. Mesh-based approaches
are naturally amenable to real-time rendering with highly-
optimized rasterization pipelines. However, gradient-based
optimization of a rendering loss with a mesh representation
is difficult, so these methods have difficulties reconstructing
fine structures and detailed scene geometry.

Another popular class of view synthesis methods
uses discretized volumetric representations such as voxel
grids [25, 36, 37, 39] or multiplane images [12, 33, 40, 48].
While volumetric approaches are better suited to gradient-
based optimization, discretized voxel representations are
fundamentally limited by their cubic scaling. This restricts
their usage to representing scenes at relatively low resolu-
tions in the case of voxel grids, or rendering from a limited
range of viewpoints in the case of multiplane images.

NeRF [29] proposes replacing these discretized volumet-
ric representations with an MLP that represents a scene as
a continuous neural volumetric function by mapping from a
3D coordinate to the volume density and view-dependent
emitted radiance at that position. The NeRF representa-
tion has been remarkably successful for view synthesis, and
follow-on works have extended NeRF for generative mod-
eling [6, 35], dynamic scenes [22, 31], non-rigidly deform-
ing objects [13, 32], and relighting [2, 38]. NeRF is able
to represent detailed geometry and realistic appearance ex-
tremely efficiently (NeRF uses approximately 5 MB of net-
work weights to represent each scene), but this comes at
the cost of slow rendering. NeRF needs to query its MLP
hundreds of times per ray, and requires roughly a minute
to render a single frame. We specifically address this is-
sue, and present a method that enables a trained NeRF to be
rendered in real-time.

Recent works have explored a few strategies for improv-
ing the efficiency of NeRF’s neural volumetric rendering.
Autolnt [23] designs a network architecture that automati-
cally computes integrals along rays, which enables a piece-
wise ray-marching procedure that requires far fewer MLP
evaluations. Neural Sparse Voxel Fields [24] store a 3D
voxel grid of latent codes, and sparsifies this grid during
training to enable NeRF to skip free space during render-
ing. Decomposed Radiance Fields [34] represents a scene
using a set of smaller MLPs instead of a single large MLP.
However, these methods only achieve moderate speedups
of around 10X at best, and are therefore not suited for real-
time rendering. In contrast to these methods, we specifically
focus on accelerating the rendering of a NeRF after it has
been trained, which allows us to leverage precomputation
strategies that are difficult to incorporate during training.
Efficient Volume Rendering Discretized volumetric rep-
resentations have been used extensively in computer graph-
ics to make rendering more efficient both in terms of storage
and rendering speed. Our representation is inspired by this
long line of prior work on efficient volume rendering, and
we extend these approaches with a deferred neural render-
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Figure 2: Rendering pipeline overview. We jointly design a “deferred” NeRF as well as a procedure to precompute and
store the outputs of a trained deferred NeRF in a sparse 3D voxel grid data structure for real-time rendering. At training
time, we query the deferred NeRF’s MLP for the diffuse color, volume density, and feature-vector at any 3D location along
aray. At test time, we instead precompute and store these values in a sparse 3D voxel grid data structure. Next, we alpha-
composite the diffuse colors and feature vectors along the ray. Once the ray has terminated, we use another MLP to predict a
view-dependent specular color from the accumulated feature vector, diffuse color, and the ray’s viewing direction. Note that

this MLP is only run once per pixel.

ing technique to model view-dependent effects.

Early works in volume rendering [!7, 20, 45] primar-
ily focused on fast rendering of dense voxel grids. How-
ever, as shown by Laine and Karras [ 18], sparse voxel grids
can be an effective and efficient representation for opaque
surfaces. In situations where large regions of space share
the same data value or a prefiltered representation is re-
quired to combat aliasing, hierarchical representations such
as sparse voxel octrees [7] are a popular choice of data struc-
ture to represent this sparse volumetric content. However,
for scenes with detailed geometry and appearance and sce-
narios where a variable level-of-detail is not required dur-
ing rendering, octrees’ intermediate non-leaf nodes and the
tree traversals required to query them can incur a significant
memory and time overhead.

Alternatively, sparse voxel grids can be efficiently rep-
resented with hash tables [19, 30]. However, hashing each
voxel independently can lead to incoherent memory fetches
when traversing the representation during rendering. We
make a deliberate trade-off to use a block-sparse represen-
tation, which improves memory coherence but slightly in-
creases the size of our representation.

Our work aims to combine the reconstruction quality and
view-dependence of NeRF with the speed of these efficient
volume rendering techniques. We achieve this by extending
deferred neural rendering [42] to volumetric scene repre-
sentations. This allows us to visualize trained NeRF models
in real-time on commodity hardware, with minimal quality
degradation.

3. Method Overview

Our overall goal is to design a practical representation
that enables the serving and real-time rendering of scenes
reconstructed by NeRF. This implies three requirements: 1)
Rendering a 800 x 800 resolution frame (the resolution used
by NeRF) should require less than 30 milliseconds on com-
modity hardware. 2) The representation should be com-
pressible to 100 MB or less. 3) The uncompressed repre-
sentation should fit within GPU memory (approximately 4
GB) and should not require streaming.

Rendering a standard NeRF in real-time is completely
intractable on current hardware. NeRF requires about 100
teraflops to render a single 800 x 800 frame, which re-
sults in a best-case rendering time of 10 seconds per frame
on an NVIDIA RTX 2080 GPU with full GPU utilization.
To enable real-time rendering, we must therefore exchange
some of this computation for storage. However, we do not
want to precompute and store the entire 5D view-dependent
representation [ 14, 21], as that would require a prohibitive
amount of GPU memory.

We propose a hybrid approach that precomputes and
stores some content in a sparse 3D data structure but de-
fers the computation of view-dependent effects to render-
ing time. We jointly design a reformulation of NeRF (Sec-
tion <) as well as a procedure to bake this modified NeRF
into a discrete volumetric representation that is suited for
real-time rendering (Section 5).



4. Modifying NeRF for Real-time Rendering

We reformulate NeRF in three ways: 1) we limit the
computation of view-dependent effects to a single network
evaluation per ray, 2) we introduce a small bottleneck in
the network architecture that can be efficiently stored as 8
bit integers, and 3) we introduce a sparsity loss during train-
ing, which concentrates the opacity field around surfaces in
the scene. Here, we first review NeRF’s architecture and
rendering procedure before describing our modifications.

4.1. Review of NeRF

NeRF represents a scene as a continuous volumetric
function parameterized by a MLP. Concretely, the 3D po-
sition r(¢) and viewing direction d along a camera ray
r(t) = o+td, are passed as inputs to an MLP with weights
O to produce the volume density o of particles at that lo-
cation as well as the RGB color ¢ corresponding to the ra-
diance emitted by particles at the input location along the
input viewing direction:

a(t),c(t)

A key design decision made in NeRF is to architect the MLP
such that volume density is only predicted as a function of
3D position, while emitted radiance is predicted as a func-
tion of both 3D position and 2D viewing direction.

To render the color C(r) of a pixel, NeRF queries
the MLP at sampled positions ¢; along the corresponding
ray and uses the estimated volume densities and colors to
approximate a volume rendering integral using numerical
quadrature, as discussed by Max [26]:
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where d; = tp1 — t is the distance between two adjacent
points along the ray.

NeRF trains the MLP by minimizing the squared error
between input pixels from a set of observed images (with
known camera poses) and the pixel values predicted by ren-
dering the scene as described above:

L= llck)

%
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where C(r;) is the color of pixel 4 in the input images.

By replacing a traditional discrete volumetric represen-
tation with an MLP, NeRF makes a strong space-time trade-
off: NeRF’s MLP requires multiple orders of magnitude
less space than a dense voxel grid, but accessing the prop-
erties of the volumetric scene representation at any loca-
tion requires an MLP evaluation instead of a simple mem-
ory lookup. Rendering a single ray that passes through the

volume requires hundreds of these MLP queries, resulting
in extremely slow rendering times. This tradeoff is benefi-
cial during training; since we do not know where the scene
geometry lies during optimization, it is crucial to use a com-
pact representation that can represent highly-detailed geom-
etry at arbitrary locations. However, after a NeRF has been
trained, we argue that it is prudent to rethink this space-
time tradeoff and bake the NeRF representation into a data
structure that stores pre-computed values from the MLP to
enable real-time rendering.

4.2. Deferred NeRF Architecture

NeRF’s MLP can be thought of as predicting a 256-
dimensional feature vector for each input 3D location,
which is then concatenated with the viewing direction and
decoded into an RGB color. NeRF then accumulates these
view-dependent colors into a single pixel color. However,
evaluating an MLP at every sample along a ray to estimate
the view-dependent color is prohibitively expensive for real-
time rendering. Instead, we modify NeRF to use a strategy
similar to deferred rendering [ 10, 42]. We restructure NeRF
to output a diffuse RGB color ¢4 and a 4-dimensional fea-
ture vector v, (which is constrained to [0, 1] via a sigmoid
so that it can be compressed, as discussed in Section 5.4) in
addition to the volume density o at each input 3D location:

o(t),ca(t), vs(t)

To render a pixel, we accumulate the diffuse colors and fea-
ture vectors along each ray and pass the accumulated fea-
ture vector and color, concatenated to the ray’s direction,
to a very small MLP with parameters ® (2 layers with 16
channels each) to produce a view-dependent residual that
we add to the accumulated diffuse color:

= MLPo (x(t)). @)

ZT (tr) a(o(tr)drk) calte) , o)
ZT tk tk 5k) Vs(tk) (6)
C(r) = Cd(r) + MLPg(V,(r),d) (7)

This modification enables us to precompute and store the
diffuse colors and 4-dimensional feature vectors within our
sparse voxel grid representation discussed below. Criti-
cally, we only need to evaluate the MLPg to produce view-
dependent effects once per pixel, instead of once per sample
in 3D space as in the standard NeRF model.

4.3. Opacity Regularization

Both the rendering time and required storage for a vol-
umetric representation strongly depend on the sparsity of
opacity within the scene. To encourage NeRF’s opacity
field to be sparse, we add a regularizer that penalizes pre-



dicted density using a Cauchy loss during training:

ES—ASZIOg<1+W>, (8)
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where ¢ indexes pixels in the input (training) images, k in-
dexes samples along the corresponding rays, and hyperpa-
rameters As; and c control the magnitude and scale of the
regularizer respectively (A, = 10™* and ¢ = 1/2 in all ex-
periments). To ensure that this loss is not unevenly applied
due to NeRF’s hierarchical sampling procedure, we only
compute it for the “coarse” samples that are distributed with
uniform density along each ray.

5. Sparse Neural Radiance Grids

We now convert a trained deferred NeRF model, de-
scribed above, into a representation suitable for real-time
rendering. The core idea is to trade computation for storage,
significantly reducing the time required to render frames. In
other words, we are looking to replace the MLP evaluations
in NeRF with fast lookups in a precomputed data structure.
We achieve this by precomputing and storing, i.e. baking,
the diffuse colors ¢4, volume densities o, and 4-dimensional
feature vectors v in a voxel grid data structure.

It is crucial for us to store this volumetric grid using a
sparse representation, as a dense voxel grid can easily fill
up all available memory on a modern high-end GPU. By
exploiting sparsity and only storing voxels that are both oc-
cupied and visible, we end up with a much more compact
representation.

5.1. SNeRG Data Structure

Our Sparse Neural Radiance Grid (SNeRG) data struc-
ture represents an N> voxel grid in a block-sparse format
using two smaller dense arrays.

The first array is a 3D texture atlas containing densely-
packed “macroblocks” of size B? each, corresponding to
the content (diffuse color, feature vectors, and opacity) that
actually exists in the sparse volume. Each voxel in the 3D
atlas represents the scene at the full resolution of the dense
N3 grid, but the 3D texture atlas is much smaller than NV 3
since it only contains the sparse “occupied” content. Com-
pared to hashing-based data structures (where B3 = 1), this
approach helps keep spatially close content nearby in mem-
ory, which is beneficial for efficient rendering.

The second array is a low resolution (N/B)? indirection
grid, which either stores a value indicating that the corre-
sponding B> macroblock within the full voxel grid is empty,
or stores an index that points to the high-resolution content
of that macroblock within the 3D texture atlas. This struc-
ture crucially lets us skip blocks of empty space during ren-
dering, as we describe below.

Standard NeRF Rendering Accelerated SNeRG Rendering

'Y

Final color

Colors, features,
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Figure 3: Comparison of ray-marching procedures for
NeRF and SNeRG. Left: To render a ray with NeRF, we
densely sample points along the ray and pass the coordi-
nates to a large MLP to compute colors and opacities, which
are alpha-composited into a pixel color. Right: SNeRG
significantly accelerates rendering by replacing compute-
intensive MLP evaluations with lookups into a precomputed
sparse 3D grid representation. We use an indirection grid to
map occupied voxel blocks to locations within a compact
3D texture atlas. During ray-marching, we skip unoccupied
blocks, and alpha-composite the diffuse colors and feature
vectors fetched along the ray. We terminate ray-marching
once the accumulated opacity saturates, and pass the accu-
mulated color and features to a small MLP that evaluates
the view-dependent component for the ray.

5.2. Rendering

We render a SNeRG using a ray-marching procedure, as
done in NeRF. The critical differences that enable real-time
rendering are: 1) we precompute the diffuse colors and fea-
ture vectors at each 3D location, allowing us to look them
up within our data structure instead of evaluating an MLP,
and 2) we only evaluate an MLP to produce view-dependent
effects once per pixel, as opposed to once per 3D location.

To estimate the color of each ray, we first march the ray
through the indirection grid, skipping macroblocks that are
marked as empty. For macroblocks that are occupied, we



(a) Frame rendered by our method. (b) Cross-section of (a).

(c) Trained without L. (d) No L, no visibility culling.

Figure 4: Visualization of sparsity loss and visibility
culling. We render cross-sections of the Hotdog scene to in-
spect the effect of our sparsity loss L and visibility culling.
Our full method (b) represents the scene by only allocating
content around visible scene surfaces. Removing either the
sparsity loss alone (c) or both the sparsity loss and visibility
culling (d) results in a much less compact representation.

step at the voxel width !/~ through the corresponding block
in the 3D texture atlas, and use trilinear interpolation to
fetch values at each sample location. We further accelerate
rendering and conserve memory bandwidth by only fetch-
ing features where the volume density is non-zero. We use
standard alpha compositing to accumulate the diffuse color
and features, terminating ray-marching once the opacity has
saturated. Finally, we compute the view-dependent specular
color for the ray by evaluating MLP ¢ with the accumulated
color, feature vector and the ray’s viewing direction. We
then add the resulting residual color to the accumulated dif-
fuse color, as described in Equation 7.

5.3. Baking

To minimize storage cost and rendering time, our bak-
ing procedure aims to only allocate storage for voxels in
the scene that are both non-empty and visible in at least
one of the training views. We start by densely evaluating
the NeRF network for the full N3 voxel grid. We convert
NeRF’s unbounded volume density values, o, to traditional
opacity values « = 1—exp(ov), where v = 1/ is the width
of a voxel. Next, we sparsify this voxel grid by culling
empty space, i.e. macroblocks where the maximum opacity
is low (below 7,,), and culling macroblocks for which the
voxel visibilities are low (maximum transmittance 7" be-
tween the voxel and all training views is below 7,;5). In
all experiments, we set 7, = 0.005 and 7,;5 = 0.01. Fi-
nally, we compute an anti-aliased estimate for the content
in the remaining macroblocks by densely evaluating the
trained NeRF at 16 Gaussian distributed locations within
each voxel (¢ = v/v12) and averaging the resulting diffuse
colors, feature vectors, and volume densities.

5.4. Compression

We quantize all values in the baked SNeRG representa-
tion to 8 bits and separately compress the indirection grid

(a) No FT (23.30)

(b) FT (28.35) (c) Ground Truth

Figure 5: Impact of fine-tuning (FT) the view-dependent
appearance network (PSNR in parentheses). (a) Render-
ings from a SNeRG representation can be lower-quality
than those from the deferred NeRF, primarily due the quan-
tization from 32-bit floating point to 8-bit integer values
(see Sections 5.7, 5.4). (b) We are able to regain most of
the lost quality by fine-tuning the weights of the deferred
shading network MLPg (Section 5.5).

and the 3D texture atlas. We compress each slice of the in-
direction grid as a lossless PNG, and we compress the 3D
texture atlas as either a set of lossless PNGs, a set of JPEGs,
or as a single video encoded with H264. The quality ver-
sus storage tradeoff of this choice is evaluated in Table
For synthetic scenes, compressing the texture atlas results
in approximately 80x, 100, and 230X compression rates
for PNG, JPEG, and H264, respectively. We specifically
choose a macroblock size of 322 voxels to align the 3D tex-
ture atlas macroblocks with the blocks used in image com-
pression. This reduces the size of the compressed 3D tex-
ture atlas because additional coefficients are not needed to
represent discontinuities between macroblocks.

5.5. Fine-tuning

While the compression and quantization procedure de-
scribed above is crucial for making SNeRG compact and
easy to distribute, the quality of images rendered from the
baked SNeRG is lower than the quality of images rendered
from the corresponding deferred NeRF. Figure 5 visualizes
how quantization affects view-dependent effects by biasing
renderings towards a darker, diffuse-only color Cd(r).

Fortunately, we are able to recoup almost all of that lost
accuracy by fine-tuning the weights of the deferred per-
pixel shading MLPg to improve the final rendering quality
(Table 7). We optimize the parameters ¢ to minimize the
squared error between the observed input images used to
train the deferred NeRF and the images rendered from our
SNeRG. We use the Adam optimizer [16] with a learning
rate of 3 x 10~ and optimize for 100 epochs.

6. Implementation Details

Our deferred NeRF model is based on JAXNeRF [11],
an implementation of NeRF in JAX [3]. As in NeRF, we
apply a positional encoding [41] to positions and view di-
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Figure 6: Ablation study showing visual examples from
Table ”. Note the minimal difference in quality between
the full JAXNeRF+ network and the successive approxima-
tions we make to speed up view-dependence (Tinyview, De-
ferred NeRF and SNeRG). For completeness, we show the
floating alpha artifacts introduced by not modelling view-
dependence at all (Diffuse).

rections. We train all networks for 250k iterations with a
learning rate which decays log-linearly from 2 x 10~ to
2 x 1075, To improve stability we use JAXNeRF’s “warm
up” functionality to reduce the learning rate to 2 x 10~* for
the first 2500 iterations, and we clip gradients by value (at
0.01) and then by norm (also at 0.01). We use a batch size
of 8,192 for synthetic scenes and a batch size of 16,384 for
real scenes.

As our rendering time is independent of MLPg’s model
size, we can afford to use a larger network for our experi-
ments. To this end, we base our method on the JAXNeRF+
model, which was trained with 576 samples per ray (192
coarse, 384 fine) and uses 512 channels per layer in MLPg.

During baking, we set the voxel grid resolution to be
slightly larger than the size of the training images: 10003
for the synthetic scenes, and 13003 for the real datasets.
We implement the SNeRG renderer in Javascript and We-
bGL using the THREE.js library. We load the indirection
grid and 3D texture atlas into 8 bit 3D textures. The view-
dependence MLPg is stored uncompressed and is imple-
mented in a WebGL shader. In all experiments, we run this
renderer on a 2019 MacBook Pro laptop equipped with a
85W AMD Radeon Pro 5500M GPU.

(d) Ground Truth

Figure 7: Real 360° scene (PSNR in parentheses). Note
how our real-time method is able to model the mirror-like
reflective surface of the garden spheres.

(c) SNeRG (21.45)

7. Experiments

We validate our design decisions with an extensive set
of ablation studies and comparisons to recent techniques
for accelerating NeRF. Our experiments primarily focus
on free-viewpoint rendering of 360° scenes (scenes cap-
tured by inwards-facing cameras on the upper hemisphere).
Though acceleration techniques already exist for the spe-
cial case in which all cameras face the same direction (see
Broxton et al. [4]), 360° scenes represent a challenging and
general use-case that has not yet been addressed. In Fig-
ure /, we show an example of a real 360° scene and present
more results in our supplement, including the forward-
facing scenes from Local Light Field Fusion (LLFF) [28].

We evaluate all ablations and baseline methods accord-
ing to three criteria: render-time performance (measured by
frames per second as well as GPU memory consumption in
gigabytes), storage cost (measured by megabytes required
to store the compressed representation), and rendering qual-
ity (measured using the PSNR, SSIM [44], and LPIPS [47]
image quality metrics). It is important to explicitly account
for power consumption when evaluating performance — al-
gorithms that are fast on a high performance GPU are not
necessarily fast on a laptop. We therefore adopt the conven-
tion used by the high performance graphics community of
measuring performance relative to power consumption, i.e.
FPS per watt, or equivalently, frames per joule [1].

Please refer to our video for screen captures of our tech-
nique being used for real-time rendering on a laptop.



| MLP £, Defer | ms/frame | GPUGB |

Ours v v v 11.9+ 4.5 1.73 £ 1.48
1) v 9.2+ 4.6 1.73 £1.48

2) v v 20.0*£ 5.3 4.26 + 1.56
3) v v 343.6247.5 1.73+1.48

Table 1: Performance ablation study, including uncom-
pressed GPU memory used during rendering, on the Syn-
thetic 360° scenes. Ablation 2 ran out of memory on the
Ficus scene, which biases the average runtime for that row.

7.1. Ablation Studies

In Table |, we ablate combinations of three compo-
nents of our method that primarily affect speed and GPU
memory usage. Ablation 1 shows that removing the view-
dependence MLP has a minimal effect on runtime perfor-
mance. Ablation 2 shows that removing the sparsity loss
L greatly increases (uncompressed) memory usage. Abla-
tion 3 shows that switching from our “deferred” rendering
back to NeRF’s approach of querying an MLP at each sam-
ple along the ray results in prohibitively large render times.

Table ” and Figure 6 show the impact on rendering qual-
ity of each of our design decisions in building a representa-
tion suitable for real-time rendering. Although our simpli-
fications of using a deferred rendering scheme (“Deferred”)
and a smaller network architecture (“Tinyview”) for view-
dependent appearance do slightly reduce rendering quality,
they are crucial for enabling real-time rendering, as dis-
cussed above. Note that the initial impact on quality from
quantizing and compressing our representation is signifi-
cant. However, after fine tuning (“FT”), the final rendering
quality of our SNeRG model remains competitive with the
neural model from which it was derived (“Deferred”).

In Table 5 we explore the impact of various compression
schemes on disk storage space requirements. Our sparse
voxel grid benefits greatly from applying compression tech-
niques such as JPEG or H264 to its 3D texture atlas, achiev-
ing a file size over 200x more compact than a naive 32
bit float array while sacrificing less than 1dB of PSNR.
Because our sparsity loss L5 concentrates opaque voxels
around surfaces (see Figure <), ablating it significantly in-
creases model size. Our compressed SNeRG representa-
tions are small enough to be quickly loaded in a web page.

The positive impact of training our models using the
sparsity loss L is visible across these ablations — it more
than doubles rendering speed, halves the storage require-
ments of both the compressed representation on disk and
the uncompressed representation in GPU memory, and min-
imally impacts rendering quality.

7.2. Baseline Comparisons

As shown in Table “, the quality of our method is compa-
rable to all other methods, while our run-time performance

PSNRT SSIM+ LPIPS |
JAXNeRF+ 33.00 0.962 0.038
JAXNeRF+ Tinyview 31.65 0.954 0.047
JAXNeRF+ Deferred 30.55 0.952 0.049
SNeRG (PNG) 30.38 0.950 0.050
SNeRG (PNG, no L) 30.22 0.949 0.050
SNeRG (PNG, no FT) 26.68 0.930 0.053
JAXNeRF+ Diffuse 27.39 0.927 0.068

Table 2: Quality ablation study on Synthetic 360° scenes.

PSNR1 SSIM+ LPIPS| MB|
SNeRG (Float) 3047 0951  0.049 6883.6
SNeRG (PNG,no £,) | 3022 0949 0050  176.0
SNeRG (PNG) 3038 0950  0.050 86.7
SNeRG (JPEG) 2971 0939  0.062 70.9
SNeRG (H264) 2986 0938  0.065 30.2
JAXNeRF+ 33.00 0962  0.038 18.0
JAXNeRF 3165 0952 0.051 4.8

Table 3: Storage ablation study on Synthetic 360° scenes.

PSNR 1 SSIM 1 LPIPS | W | FPS 1 FPS/W 1
JAXNeRF+[11]| 33.00 0962 0.038 300 0.01 0.00002
NeRF [29] 31.00 0947 0.081 300 0.03 0.00011
JAXNeRF [11] 31.65 0952 0.051 300 0.05 0.00016
IBRNet [43] 28.14 0942 0.072 300 0.18 0.00061
Autolnt [23] 2555 0911 0.170 300 0.38 0.00128
NSVF [24] 31.74 0953 0.047 300 0.65 0.00217
NV [25] 26.05 0893 0.160 300 3.33 0.01111
SNeRG (PNG) | 30.38 0.950 0.050 = 85 84.06 0.98897

Table 4: Baseline comparisons on Synthetic 360° scenes.

is an order of magnitude faster than the fastest competing
approach (Neural Volumes [25]) and more than a thousand
times faster than the slowest (NeRF). Note that we measure
the run-time rendering performance of our method on a lap-
top with an 85W mobile GPU, while all other methods are
run on servers or workstations equipped with much more
powerful GPUs (over 3 x the power draw).

8. Conclusion

We have presented a technique for rendering Neural Ra-
diance Fields in real-time by precomputing and storing a
Sparse Neural Radiance Grid. This SNeRG uses a sparse
voxel grid representation to store the precomputed scene
geometry, but keeps storage requirements reasonable by
maintaining a neural representation for view-dependent ap-
pearance. Rendering is accelerated by evaluating the view-
dependent shading network only on the visible parts of the
scene, achieving over 30 frames per second on a laptop
GPU for typical NeRF scenes. We hope this ability to ren-
der neural volumetric representations such as NeRF in real
time on commodity graphics hardware will help increase
the adoption of these neural scene representations in vision
and graphics applications.



Acknowledgements

We thank Keunhong Park and

Michael Broxton for their generous help with debugging,
and Ryan Overbeck for last-minute JavaScript help. Many
thanks to John Flynn, Dominik Kaeser, Keunhong Park,
Ricardo Martin-Brualla, Hugues Hoppe, Janne Kontkanen,
Utkarsh Sinha, Per Karlsson, and Mark Matthews for fruit-
ful discussions, brainstorming, and testing out our viewer.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Tomas Akenine-Moller and Bjorn Johnsson. Performance
per what? Journal of Computer Graphics Techniques, 2012.

Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall,
Kalyan Sunkavalli, Milo§ HaSan, Yannick Hold-Geoffroy,

David Kriegman, and Ravi Ramamoorthi. Neural re-
flectance fields for appearance acquisition. arXiv c¢s.CV
arXiv:2008.03824, 2020.

James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018.
http://github.com/google/jax.

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Er-
ickson, Peter Hedman, Matthew DuVall, Jason Dourgarian,
Jay Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics, 2020.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. SIGGRAPH, 2001.

Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-GAN: Periodic implicit generative
adversarial networks for 3D-aware image synthesis. CVPR,
2021.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar
Eisemann. GigaVoxels: Ray-guided streaming for efficient
and detailed voxel rendering. Symposium on Interactive 3D
Graphics and Games, 2009.

Abe Davis, Marc Levoy, and Fredo Durand. Unstructured
light fields. Computer Graphics Forum, 2012.

Paul Debevec, C. J. Taylor, and Jitendra Malik. Model-
ing and rendering architecture from photographs: a hybrid
geometry- and image-based approach. SIGGRAPH, 1992.
Michael Deering, Stephanie Winner, Bic Schediwy, Chris
Duffy, and Neil Hunt. The triangle processor and normal
vector shader: A VLSI system for high performance graph-
ics. SSIGGRAPH, 1988.

Boyang Deng, Jonathan T. Barron, and Pratul P. Srini-
vasan. JaxNeRF: an efficient JAX implementation of NeRF,
2020. http://github.com/google-research/
google—-research/tree/master/jaxnerf. 0, &,

John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. DeepView: View synthesis with learned
gradient descent. CVPR, 2019. 2,

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias
NieBner. Dynamic neural radiance fields for monocular 4D
facial avatar reconstruction. CVPR, 2021.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The lumigraph. SIGGRAPH, 1996. 2,
Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. /CLR, 2015.

Philippe Lacroute and Marc Levoy. Fast volume rendering
using a shear-warp factorization of the viewing transforma-
tion. SIGGRAPH, 1994.

Samuli Laine and Tero Karras. Efficient sparse voxel octrees.
13D, 2010.

Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hash-
ing. ACM Transactions on Graphics, 2006.

Marc Levoy. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 1980.

Marc Levoy and Pat Hanrahan. Light field rendering. SIG-
GRAPH, 1996. 7,

Zhenggqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. CVPR, 2021.

David B. Lindell, Julien N.P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural rendering.
CVPR, 2021. 2, &,

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurlIPS,
2020. 2, &,

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
SIGGRAPH, 2019. 2, &,

Nelson Max. Optical models for direct volume rendering.
IEEE TVCG, 1995.

Michael Goesele Michael Waechter, Nils Moehrle. Let
there be color! Large-scale texturing of 3D reconstructions.
ECCV, 2014.

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima K. Kalantari, Ravi Ramamoorthi, Ren Ng, and Ab-
hishek Kar. Local light field fusion: Practical view synthesis
with prescriptive sampling guidelines. ACM Transactions on
Graphics, 2019. 7,

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. ECCV, 2020. 1, 2, &,

Matthias Niefiner, Michael Zollhofer, Shahram Izadi, and
Marc Stamminger. Real-time 3D reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics, 2013.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. CVPR,
2021.


http://github.com/google/jax
http://github.com/google-research/google-research/tree/master/jaxnerf
http://github.com/google-research/google-research/tree/master/jaxnerf

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Deformable neural radiance fields. arXiv
¢s.CV 2011.12948, 2020.

Eric Penner and Li Zhang. Soft 3D reconstruction for view
synthesis. ACM Transactions on Graphics, 2017. 2,

Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: Decom-
posed radiance fields. CVPR, 2021. 2,

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: Generative radiance fields for 3D-aware im-
age synthesis. NeurlPS, 2020.

Steven M. Seitz and Charles R. Dyer. Photorealistic scene
reconstruction by voxel coloring. IJCV, 1999.

Vincent Sitzmann, Michael Zollhoefer, and Gordon Wet-
zstein.  Scene representation networks: Continuous 3D-
structure-aware neural scene representations.  NeurlPS,
2019.

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
NeRV: Neural reflectance and visibility fields for relighting
and view synthesis. CVPR, 2021.

Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik,
Jonathan T. Barron, Richard Tucker, and Noah Snavely.
Lighthouse: Predicting lighting volumes for spatially-
coherent illumination. CVPR, 2020.

Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing
the boundaries of view extrapolation with multiplane images.
CVPR, 2019. 7,

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020.

Justus Thies, Michael Zollhofer, and Matthias Niener. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics, 2019. 2, 3,

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P.
Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
IBRNet: Learning multi-view image-based rendering.
CVPR, 2021. &,

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. /EEE TIP, 2004.

Lee A Westover. Splatting: A parallel, feed-forward volume
rendering algorithm. Technical report, University of North
Carolina at Chapel Hill, USA, 1991.

Daniel Wood, Daniel Azuma, Wyvern Aldinger, Brian Cur-
less, Tom Duchamp, David Salesin, and Werner Stuetzle.
Surface light fields for 3D photography. SIGGRAPH, 2000.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view

10

synthesis using multiplane images. ACM Transactions on
Graphics, 2018. 2,

A. WebGL Implementation Details

Our web renderer is implemented in WebGL using the
THREE js library. To conserve memory bandwidth, we load
the 3D texture atlas as three separate 8-bit 3D textures: one
for alpha, one for RGB and one for features. We load the
indirection grid as a low resolution 8-bit 3D texture.

During ray marching, we first query the intersection grid
at the current location along the ray. If this value indicates
that the macroblock is empty, we use a ray-box intersection
test to skip ahead to the next macroblock along the ray.

For non-empty macroblocks, we first query the alpha
texture using nearest neighbor interpolation. If alpha is
zero, the current voxel within the macroblock contains
empty space, and we do not fetch any additional informa-
tion. If alpha is non-zero, we use trilinear interpolation
to fetch the high-resolution alpha, colors and features at
that voxel. This reduces the bandwidth requirement from
64 bytes per sample to 1 byte per sample for rays that are
traversing empty space inside each occupied macroblock.

We implement the view-dependence MLP as simple
nested for-loops in a GLSL shader. We load the network
weights as 32-bit floating point textures and hard-code the
network biases directly into the shader. Interestingly, we
found that reducing precision lower than 32 bits did not
improve the rendering performance noticeably. For added
efficiency, we only evaluate the view-dependence MLP for
pixels that have non-zero accumulated alpha.

B. Performance Measurement

We measure performance using the Chrome browser run-
ning on a 2019 MacBook Pro Laptop equipped with an 85
watt AMD Radeon Pro 5500M GPU (8GB of GPU RAM).

For accurate performance measurements, we make sure
the laptop is connected to the charger, close all other ap-
plications on the laptop, and restart our browser to disable
frame-rate limiting from vertical synchronization:

-—-args —--disable-gpu-vsync \
——disable-frame-rate-limit
In our results, we report the average frame time for ren-
dering a 150-frame camera animation orbiting the scene (or
rotating within the camera plane for forward-facing scenes).

Our test-time renderings use the same image resolutions and
camera intrinsics as the input training images:

e 39° field-of-view at 800 x 800 for Synthetic 360°
scenes,

e 53° field-of-view at 1006 x 756 for Real Forward-
Facing, and

e 53° at field-of-view 990 x 773 for Real 360° scenes.



| PSNRT SSIM? LPIPS| FPSt MB.

10003 | 30.38 0.950 0.050 84.06 86.7
7503 29.94 0.947 0.054 89.82 44.7
5003 28.93 0.939 0.064 101.78 17.8

Table 5: Voxel grid resolution ablation using SNeRG (PNG)
on Synthetic 360° Scenes.

C. Additional Experiment Details
C.1. Experiments with Changing 3D Resolution

Table 5 demonstrates that our method is able to achieve
even higher rendering speeds and lower storage costs by
baking the 3D grids at a lower resolution, at the expense
of a slight decrease in rendering quality.

C.2. Real 360° Scenes

We evaluate our method on the two real 360° scenes pro-
vided by the original NeRF paper (Flowers and Pine Cone)
and two new scenes that we have captured ourselves (7oy
Car and Spheres). All four datasets contain 100-200 im-
ages where the camera orbits around an object. Note that
the Spheres scene contains glossy objects that are hard to
model using diffuse geometry alone.

Tables 0, 7, and ¢ demonstrate that our method is able to
maintain rendering quality close to the trained NeRF mod-
els while rendering about 30 frames per second (Table 9).
Table studies the impact of using different image and
video compression algorithms for these datasets, and shows
that we are able to store these scenes using about 50 MB.

We train all NeRF models on this data by shifting and
scaling the camera translations so that they approximately
lie on a sphere around the origin, and sampling points lin-
early in disparity along each camera ray, as done by Milden-
hall ef al. After training, we manually set a bounding box
to isolate the objects of interest in the scene and ignore
the unbounded peripheral content that is not sampled well
enough for NeRF to recover. During baking, we only eval-
uate the subset of the scene which is inside this bounding
box. We change our quality measurements to reflect this,
masking all of the images (our results, baseline results, and
ground truth images) using the alpha mask generated by
our method. Otherwise, the results would be significantly
biased by the missing background geometry that was out-
side the scene bounding box. Interestingly, we find that a
diffuse-only model without any view-dependent effects is
surprisingly competitive for these scenes, potentially due to
the low-frequency lighting conditions during capture. Ad-
ditionally, the diffuse model is able to reasonably fake view-
dependent effects in some cases by hiding mirrored versions
of reflected content inside the objects’ surfaces.
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Toy Pine

Mean Spheres Car Flowers Cone
JAXNeRF+ 2456 23.56 26.13 25.22 23.33
JAXNeRF+ Deferred | 24.31 23.44 26.16 24.81 22.81
SNeRG (PNG) 2397 23.16 26.17 2443 22.14
JAXNeRF+ Diffuse | 24.02 23.26 | 26.17 24.23 2242

Table 6: PSNR 1, Real 360° scenes.

Toy Pine

Mean Spheres Car Flowers Cone
JAXNeRF+ 0.703 0.573 0.792 0.765 0.681
JAXNeRF+ Deferred | 0.693 0.563 0.787 0.754 0.666
SNeRG (PNG) 0.662 0.521 0.788 0.746 0.595
JAXNeRF+ Diffuse | 0.681 0.565 0.788 0.728 0.645

Table 7: SSIM 1, Real 360° scenes.

Toy Pine

Mean Spheres Car Flowers Cone
JAXNeRF+ 0.248 0311 0.195 0.227 0.257
JAXNeRF+ Deferred | 0.261 0.320 0.209 0.244 0.271
SNeRG (PNG) 0.293 0.357 0209 0.272 0.336
JAXNeRF+ Diffuse | 0.260 0.306 0.200 0.257 0.277

Table 8: LPIPS |, Real 360° scenes.

Toy Pine
Spheres  Car  Flowers Cone
53.7 41.1 40.8 39.5

Table 9: Performance (FPS 1), Real 360° Scenes.

(d) Ground Truth

Figure 8: Real forward-facing scene example results
(PSNR in parentheses).



| PSNRT SSIMt LPIPS| W, FPSt FPS/W1
JAXNeRF+ 2695  0.845 | 045 300 0.0 0.00001
DeRF 2481 0767 0274 300  0.03  0.00009
NeRF 2650 0811 0250 300  0.03 0.00011
JAXNeRF 2692 0831 0173 300 0.04 0.00013
IBRNet 2673 | 0851 0175 300 0.18  0.00061
LLFF 2413 0798 0212 250 | 60.00° 0.24000
SNeRG (PNG) | 2563 0818  0.183 85 2738  0.32210

Table 10: Quality and performance comparison for Real
Forward-Facing scenes.

T-Rex Leaves Room Orchids Horns Fortress Fern  Flower
3478 19.02 37.09 18.54 34.02 39.16 26.73  26.58
Table 11: Performance (FPS 1), Real Forward-Facing

Scenes.

C.3. Real Forward-Facing Scenes

We also evaluate our approach on the real forward-facing
scenes in the NeRF paper (Tables 0, |1, and 12). Since
these scenes are only captured and viewed from a limited
range of forward-facing viewpoints, layered representations
such as multi-plane images [12, 28, 33, 40, 48] are a com-
pelling option for real-time rendering. Note that the nor-
malized device coordinate transformation used in NeRF for
these forward-facing scenes can be interpreted as transform-
ing NeRF into a continuous version of a multiplane image
representation that supports larger viewpoint changes.

We found that our baking procedure sometimes reduces
the total alpha mass in the scene, introducing small semi-
transparent holes for these datasets. To overcome this, we
partially un-premultiply alpha after ray marching. That is,
after alpha compositing:

min(1.0, 1.5c)
fe!

rgbafeatures <— rgbafeatures x ©))
if & > 0. This fully saturates alpha values above 0.66, while
still allowing for soft edges and a smooth fall-off.

C.4. Baselines

Here we provide additional details for the baseline meth-
ods we use in our experiments.
NeRF [29] We directly use the results reported in the orig-
inal paper by Mildenhall ef al. Run-time was measured on
a single NVIDIA V100 GPU.
JAXNeRF [11] is a JAX implementation of NeRF, with
default settings (64 + 128 samples per ray, MLP width of
256). Run-time was measured on an NVIDIA V100 GPU.
JAXNeRF+ is a more compute-intensive version of
JAXNEeREF, trained with 192 + 384 samples per ray and an
MLP width of 512 channels. Run-time was measured on a
single NVIDIA V100 GPU. We use this architecture as a
starting point for our modifications (deferred shading and
baking), as using more samples per ray allows us to recover
a sparser representation that better concentrates opacity near
object surfaces.
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JAXNeRF+ Tinyview This baseline measures the effects
of using a smaller network architecture (same as MLPg)
for the view-dependent effects. It uses the same architecture
for the view-dependent effects as our “Deferred” model, but
evaluates view-dependent effects for every 3D sample in-
stead of once per pixel.

JAXNeRF+ Diffuse This baseline measures the effects of
modeling view-dependent appearance. It uses the same ar-
chitecture as JAXNeRF+, but replaces the view dependence
network with a single layer that directly outputs a color
without any knowledge of the viewing direction.

Autolnt [23] We use the N=8 setting reported by Lindell
et al., which achieves their highest ratio of quality to run-
time. The authors did not mention what hardware they ran
on, but we are assuming that they also run on an NVIDIA
V100 GPU since they directly compare to NeRF runtimes.
Neural Volumes [25] We copy the rendering quality re-
sults reported in the NeRF paper and copy the rendering
run-time results reported in the Autolnt paper. We assume
that the run-times reported in the Autolnt paper are mea-
sured on an NVIDIA V100 GPU since the Autolnt paper
directly compares these results with NeRF run-times.
NSVF [24] We use the average run-time of 1.537 seconds
per frame reported by the authors, using early stopping. Per-
formance was measured on an NVIDIA V100 GPU.

DeRF [34] We use the DeRF model with 8 heads and 96
channels per head, which achieves the highest ratio of qual-
ity to run-time according to the results in their paper. Run-
times were measured on an NVIDIA V100 GPU.

IBRNet [43] We use the highest quality results (per-scene
fine-tuned) in their paper. Run-times were estimated by
scaling the NVIDIA V100 GPU NeRF run-times according
to the TFLOPs in Table 3 of their paper.

LLFF [28] Run-times were measured using the original
CUDA implementation on a GTX 2080 Ti (250W).

C.5. Experiments with Changing 3D Resolution

Table 5 demonstrates that our method is able to achieve
even higher rendering speeds and lower storage costs by
baking the 3D grids at a lower resolution, at the expense
of a slight decrease in rendering quality.

C.6. Per-Scene Quality and Performance Metrics

Tables |3-15, provide a per-scene breakdown for the
quality metrics in the Synthetic 360° scenes. Similar break-
downs for the Real Forward Facing scene can be found in
Tables |0- Table shows the per-scene frame time
and Table 20 shows the per-scene GPU memory consump-
tion our performance ablations: 1) removing the view-
dependence MLP, 2) removing the sparsity loss, and 3)
switching from ‘deferred” rendering back to querying an
MLP at each sample along the ray.



Synthetic 360° Real Forward-Facing Real 360°
PSNR1+ SSIM+ LPIPS| MB/| | PSNR1 SSIM{ LPIPS| MB/| | PSNRt SSIMt LPIPS| MB |
SNeRG (Float) 30.47 0.951 0.049 6919.9 | 25.74 0.823 0.180 13830.3 | 24.05 0.661 0.299 72383
SNeRG (PNG) 30.38 0.950 0.050 86.7 25.63 0.818 0.183 373.2 23.97 0.662 0.293  264.7
SNeRG (JPG) 29.71 0.939 0.062 70.9 25.27 0.781 0.232 183.3 23.67 0.638 0.306  129.2
SNeRG (H264) | 29.86 0.938 0.065 302 | 25.13 0.761 0.257 66.9 | 23.60 0.629 0.316 51.3
JAXNeRF+ 33.00 0.962 0.038 18.0 | 26.95 0.845 0.145 18.0 | 24.56 0.703 0.248 18.0

Table 12: Storage ablation.

PSNR 1
Mean Chair Drums Ficus Hotdog Lego  Materials  Mic Ship

AutolInt 25,55 25.60 20.78 2247 3233  25.09 25.90 28.10 24.15
NV 26.05 2833 2258 2479  30.71  26.08 24.22 27.78  23.93
IBRNet 28.14 — — — — — — — —

NeRF 31.00 33.00 25.01 30.13 36.18 3254 29.62 3291  28.65
JAXNeRF 31.65 33.88 2508 30.51 3691 3324 30.03 3452  29.07
NSVF 31.74 33.19 25.18 31.23 37.14 32.29 32.68 3427 2793
JAXNeRF+ 33.00 3535 2565 3277 3758 3535 30.29 36.52 3048
JAXNeRF+ Tinyview | 31.65 3424 2506 29.52  36.75 34.34 29.17 3431 29.84
JAXNeRF+ Deferred | 30.55 33.63 23.73 2846  35.10 34.67 26.74 33.03 29.04
SNeRG (PNG) 3038 3324 2457 2932 3433 3382 27.21 32.60 27.97
JAXNeRF+ Diffuse 27.39 2995 2193 2237 3299 32.17 24.83 28.36  26.57

Table 13: PSNR, Synthetic 360° scenes.

SSIM 1
Mean  Chair Drums Ficus Hotdog Lego  Materials  Mic Ship

AutolInt 0911 0928 0.861 0.898 0974  0.900 0.930 0.948  0.852
NV 0.893 0916 0873 0910 0944  0.880 0.888 0946 0.784
IBRNet 0.942 — — — — — — — —

NeRF 0.947 0967 0925 0964 0974 0.961 0.949 0.980 0.856
JAXNeRF 0952 0974 0927 0967 0979  0.968 0.952 0.987 0.865
NSVF 0953 0968 0931 0973 0.980 0.960 0.973 0.987 0.854
JAXNeRF+ 0962 0982 0936 0980 0983 0979 0.956 0.991 0.887
JAXNeRF+ Tinyview | 0954 0978 0925 0.966 0.979  0.975 0.946 0.986  0.880
JAXNeRF+ Deferred | 0.952 0976 0.922 0964 0.976 0.976 0.939 0.984 0.874
SNeRG (PNG) 0950 0975 0929 0967 0971 0.973 0.938 0.982  0.865
JAXNeRF+ Diffuse 0.927 0951 0.888 0916 0966  0.968 0.911 0.967  0.850

Table 14: SSIM, Synthetic 360° scenes.
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LPIPS |

Mean  Chair Drums Ficus Hotdog Lego  Materials  Mic Ship
Autolnt 0.170 0.141 0.224 0.148 0.080 0.175 0.136 0.131 0.323
NV 0.160 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
IBRNet 0.072 — — — — — — — —
NeRF 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
JAXNeRF 0.051 0.027 0.070 0.033 0.030  0.030 0.048 0.013 0.156
NSVF 0.047 0.043 0.069 @ 0.017 0.025 0.029 0.021 0.010 0.162
JAXNeRF+ 0.038 0.017 0.057 0.018 0.022 0.017 0.041 0.008 0.123
JAXNeRF+ Tinyview | 0.047 0.020 0.079  0.030 0.028 0.020 0.051 0.016  0.130
JAXNeRF+ Deferred | 0.049 0.022 0.069 0.041 0.033 0.019 0.052 0.016  0.138
SNeRG (PNG) 0.050 0.025 0.061 0.028 0.043 0.022 0.052 0.016  0.156
JAXNeRF+ Diffuse 0.068 0.048 0.101 0.074 0.044 0.024 0.074 0.031 0.152

Table 15: LPIPS, Synthetic 360° scenes.
PSNR 1

Mean Room  Fern  Leaves Fortress Orchids Flower T-Rex Horns
LLFF 24.13 2842 2285 19.52 29.40 18.52 2546  24.15 24.70
DeRF 2481 29.72 2487 20.64 26.84 19.97 25.66  24.86 25.89
NeRF 26.50 3270 @ 25.17 20.92 31.16 20.36 2740 2680 2745
IBRNet 26.73 — — — — — — — —
JAXNeRF 26.92 3330 2492 @ 21.24 31.78 20.32 28.09 2743  28.29
JAXNeRF+ 2695 33.79 24.38 20.82 31.14 20.09 28.34 2794 29.08
JAXNeRF+ Deferred | 26.61 32.63 2488  20.67 31.28 19.72 27.40 27.72  28.56
SNeRG (PNG) 25.63  30.04 24.85 20.01 30.91 19.73 27.00 25.80 26.71
JAXNeRF+ Diffuse 26.31 3144 2498 20.64 30.46 19.89 26.95 28.06 28.03

Table 16: PSNR, Real Forward-Facing scenes.
SSIM 1

Mean Room  Fern  Leaves Fortress Orchids Flower T-Rex Horns
LLFF 0.798 0.932 0.753 0.697 0.872 0.588 0.844  0.857 0.840
DeRF 0.767 0.930 0.770 0.680 0.730 0.610 0.790 0.840 0.790
NeRF 0.811 0948 0.792  0.690 0.881 0.641 0.827 0.880 0.828
IBRNet 0.851 — — — — — — — —
JAXNeRF 0.831  0.958 0.806 0.717 0.897 0.657 0.850 0.902 0.863
JAXNeRF+ 0.845 0.966 0.813 0.724 0.900 0.669 0.868 0.921 0.898
JAXNeRF+ Deferred | 0.837 0957 0.816 0.720 0.901 0.657 0.844 0913 0.886
SNeRG (PNG) 0.818 0.936 0.802 0.696 0.889 0.655 0.835 0.882 0.852
JAXNeRF+ Diffuse 0.832 0947 | 0.821 0.715 0.891 0.656 0.827 0.916 0.883

Table 17: SSIM, Real Forward-Facing scenes.
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LPIPS |

Mean Room  Fern  Leaves Fortress Orchids Flower T-Rex Horns
LLFF 0.212  0.155 0.247 0.216 0.173 0.313 0.174 0222 0.193
DeRF 0.274 0.160 0.300 0.310 0.320 0.340 0.240 0.220 0.300
NeRF 0.250 0.178 0.280 0.316 0.171 0.321 0.219  0.249 0.268
IBRNet 0.175 — — — — — — — —
JAXNeRF 0.173  0.086 0.207 0.247 0.108 0.266 0.156 0.143  0.173
JAXNeRF+ 0.145 0.066 0.176  0.233 0.097 0.238 0.124 0.113 0.119
JAXNeRF+ Deferred | 0.160 0.090 0.186  0.240 0.097 0.256 0.149 0.125 0.134
SNeRG (PNG) 0.183 0.133 0.198 0.252 0.125 0.255 0.167 0.157 0.176
JAXNeRF+ Diffuse 0.164 0.115 0.182 0.241 0.105 0.251 0.166 0.116  0.133

Table 18: LPIPS, Real Forward-Facing scenes.

‘ MLP L, Defer ‘ Mean Chair Drums Ficus Hotdog Lego Materials  Mic Ship
Ours v v v 11.9 9.8 9.6 21.1 7.2 9.3 10.1 10.1 17.9
1) v 9.2 6.6 6.6 19.4 53 6.0 7.8 7.6 14.0
2) v v — 15.3 15.7 — 24.4 25.4 19.7 126 270
3) v v 343.6 269.8 2689 9879 1558 2614 262.2 222.6 3204
Table 19: Performance ablation (milliseconds/frame |), Synthetic 360° Scenes.

‘ MLP L, Defer ‘ Mean Chair Drums Ficus Hotdog Lego Materials Mic  Ship

Ours v v v 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78

1) v 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78

2) v v 426 244 3.25 7.57 4.17 3.68 491 233 577

3) v v 1.73 0.78 0.86 4.99 0.53 0.74 0.98 1.18 3.78

Table 20: Performance ablation (GPU Memory in GB |), Synthetic 360° Scenes.
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