

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 17, 2024

Faster Multi-Object Segmentation using Parallel Quadratic Pseudo-Boolean
Optimization

Jeppesen, Niels; Jensen, Patrick Møller; Christensen, Anders Nymark; Dahl, Anders Bjørholm; Dahl,
Vedrana Andersen

Published in:
Proceedings of the IEEE/CVF International Conference on Computer Vision

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jeppesen, N., Jensen, P. M., Christensen, A. N., Dahl, A. B., & Dahl, V. A. (2021). Faster Multi-Object
Segmentation using Parallel Quadratic Pseudo-Boolean Optimization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 6260-6269)

https://orbit.dtu.dk/en/publications/e96e6446-687e-4acf-aa19-75f95d811172

Faster Multi-Object Segmentation using
Parallel Quadratic Pseudo-Boolean Optimization

Niels Jeppesen, Patrick M. Jensen, Anders N. Christensen, Anders B. Dahl, and Vedrana A. Dahl
Department of Applied Mathematics and Computer Science
Technical University of Denmark, Kgs. Lyngby, Denmark

{niejep,patmjen,anym,abda,vand}@dtu.dk

Abstract

We introduce a parallel version of the Quadratic Pseudo-
Boolean Optimization (QPBO) algorithm for solving binary
optimization tasks, such as image segmentation. The origi-
nal QPBO implementation by Kolmogorov and Rother relies
on the Boykov-Kolmogorov (BK) maxflow/mincut algorithm
and performs well for many image analysis tasks. However,
the serial nature of their QPBO algorithm results in poor
utilization of modern hardware. By redesigning the QPBO
algorithm to work with parallel maxflow/mincut algorithms,
we significantly reduce solve time of large optimization tasks.
We compare our parallel QPBO implementation to other
state-of-the-art solvers and benchmark them on two large
segmentation tasks and a substantial set of small segmenta-
tion tasks. The results show that our parallel QPBO algo-
rithm is over 20 times faster than the serial QPBO algorithm
on the large tasks and over three times faster for the majority
of the small tasks. Although we focus on image segmentation,
our algorithm is generic and can be used for any QPBO
problem. Our implementation and experimental results are
available at DOI: 10.5281/zenodo.5201620

1. Introduction

Computational parallelism is essential to the performance
and thereby the usefulness of many image segmentation al-
gorithms. The best example is perhaps deep learning, which
owes much of its success to highly efficient parallel imple-
mentations of the matrix operations used during both training
and inference. However, not all algorithms used in computer
vision rely on easily parallelizable matrix operations.

Graph cut algorithms are popular for solving binary op-
timization problems in image analysis, due to their speed
and guarantee of optimality. Thus, they provide efficient
solutions to a variety of computer vision problems – on their
own [8, 9, 11, 16, 23, 26, 33, 35], or in combination with
other methods [18, 29, 30]. While some popular graph cut

algorithms have been parallelized [11, 36, 41, 43], other al-
gorithms have remained serial, which severely limits their
ability to utilize modern hardware. One example is the
Quadratic Pseudo-Boolean Optimization (QPBO) algorithm
[7, 19, 33, 39], which allows non-submodular energy terms,
making it particularly useful for instance segmentation. In-
stance segmentation without training data is common in
microscopy and material science, where manually labeling
large volumetric datasets can be highly impractical. Often,
the input needed for segmentation with QPBO can be ob-
tained much easier.

In this paper, we introduce the first parallel QPBO (P-
QPBO) algorithm. Our goal is to provide an efficient and
scalable algorithm that can take advantage of modern multi-
core processors. With our P-QPBO algorithm, results can
be obtained over an order of magnitude faster than with
previous serial methods, and the scale of the tasks can be
increased significantly. It enables us to segment a volume
with hundreds of interacting 3D objects in minutes based on
limited user input and no training data. Although we only
demonstrate the advantage of P-QPBO for image segmenta-
tion, P-QPBO can be used for any QPBO problem.

This work focuses on our parallel algorithm and its time
and memory efficiency on image segmentation tasks. Thus,
the formulation of suitable energy functions for specific
computer vision tasks is outside the scope of this paper.

1.1. Related work

Several algorithms have been developed to solve
QPBO problems [19, 32, 33]. In computer vision, the
QPBO algorithm [7, 19] implemented by Kolmogorov and
Rother [33, 39], utilizing the serial Boykov-Kolmogorov
maxflow/mincut (BK) algorithm [9] for solving the opti-
mization problem, is arguably the most popular. Gener-
ally, maxflow/mincut algorithms can be separated into three
groups [42]: push-relabel algorithms [3, 10, 14, 15], aug-
menting path algorithms [9, 17], and pseudoflow algorithms
[16, 20, 21], which are a hybrid of the two previous cat-
egories. BK is an augmenting path algorithm. It is the

6260

most popular maxflow/mincut algorithm in computer vi-
sion, due to its performance and ability to handle dynamic
maxflow/mincut scenarios, by reusing computations from
previous solutions when changes are made to the graph [31].
In the last decade, pseudoflow algorithms like Excesses In-
cremental Breadth-First Search (EIBFS) [16] have outper-
formed BK in most static cases, as well as some dynamic
cases. However, the overhead associated with graph changes
for dynamic problems is still higher for EIBFS than for BK.

Push-relabel algorithms have traditionally been the target
of most parallelization efforts [2, 5, 11, 13, 22, 43], as oper-
ations mainly act locally, making them well-suited for par-
allel execution. However, synchronization overhead means
that many threads are needed to achieve good performance
[6, 40]. More recent works [36, 40, 41, 44, 45] have focused
on parallelizing augmenting path algorithms. Here, a graph
is partitioned into multiple sub-graphs and a serial algorithm
is applied to each sub-graph in parallel. Information is then
propagated between sub-graphs, or they are merged. This
process is repeated until a global solution is found. Parallel
pseudoflow algorithms have not been attempted yet.

Finally, as grid-based graphs are relatively common in
computer vision, algorithms specialized for this structure,
such as Grid-Cut [24, 25], have also been developed. Grid
structured graphs have also been the target of GPU-based
implementations [38, 43], as they rely on the highly regu-
lar structure of grid graphs to fully utilize the GPU. While
grid-based algorithms achieve significant performance im-
provements, they are only usable on a limited (but certainly
important) subset of binary optimization problems. In this
paper, we are concerned with a general-purpose parallel
QPBO algorithm and will therefore not discuss the grid-
based algorithms further.

1.2. Contribution

We introduce a fast parallel algorithm for solving QPBO
problems. It is based on the efficient two-stage approach of
the QPBO algorithm as presented in [33] and the bottom-
up merging approach from [36]. Our algorithm is fully
compatible with the original QPBO algorithm and we prove
that it is guaranteed to find equivalent solutions.

We show that our parallel algorithm reduces the solve
time significantly on a large multi-object 3D segmentation
task compared to current state-of-the-art approaches. We
also benchmark our algorithm for segmentation using a large
set of 2D images and show significant performance improve-
ments, even for smaller segmentation tasks.

Our implementation, benchmark code, results, notebooks,
and proof are available at 10.5281/zenodo.5201620.

2. QPBO
We briefly summarize the original QPBO algorithm

here. Both the QPBO algorithm and general-purpose

maxflow/mincut algorithms can be used to minimize energy
functions of the form

E(x) =
∑
p∈V

θp(xp) +
∑
p,q∈V

θpq(xp, xq) . (1)

Here, V is a set of nodes, xp ∈ {0, 1} are the node labels, θp
are unary energy terms, and θpq are pairwise energy terms. If
E is submodular, meaning that all pairwise energies satisfy

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) , (2)

then maxflow/mincut-based algorithms (including QPBO)
are guaranteed to find the global optimal solution to the min-
imization problem [9, 33]. However, if the energy function
contains non-submodular terms, we cannot directly model
it as a maxflow/mincut problem [12, 34]. To overcome this
limitation, the QPBO algorithm uses an extended graph ap-
proach, in which every node is represented by two graph
nodes: a node p ∈ V and a flipped node p ∈ V . Every energy
term is then represented by two graph edges (see Table 1).
This allows the non-submodular terms to be represented as
graph edges between nodes p and q, and the flipped nodes
p and q. Computing the maximum flow/minimum cut of
this extended graph corresponds to minimizing the energy
function (1) [33] given that all terms are non-negative. One
can convert a QPBO function to an equivalent non-negative
one using the linear time algorithm described in [33].

Table 1. Conversion from energy terms to graph edges [33],
where s the source node, t is the sink node, and p, q ∈ V are
the flipped versions of the nodes p, q ∈ V .

Energy term Corresponding edges Edge capacity

θp(0) (p → t), (s → p) 1
2θp(0)

θp(1) (s → p), (p → t) 1
2θp(1)

θpq(0, 1) (p → q), (q → p) 1
2θpq(0, 1)

θpq(1, 0) (q → p), (p → q) 1
2θpq(1, 0)

θpq(0, 0) (p → q), (q → p) 1
2θpq(0, 0)

θpq(1, 1) (q → p), (p → q) 1
2θpq(1, 1)

However, the support for non-submodular terms means
that the guarantee of finding the global optimal solution is
replaced by one of finding a partial optimal solution [33].
This means that we may get a solution with unlabeled nodes,
which may lead to bad segmentation results [23]. However,
when non-submodular terms are used only for exclusion,
[26] has shown that unlabeled nodes are rare and hardly
affect the resulting segmentation.

The original QPBO algorithm uses an efficient two-stage
approach [33]. In Stage 1, only submodular terms are con-
sidered and the problem is modelled and solved as a regular

6261

maxflow problem, i.e., without the flipped nodes. In Stage
2, the flipped graph is created by copying the residual graph
from Stage 1 and reversing the edges. Finally, the edges
for the non-submodular terms are added and the solution is
updated. This two-stage approach reduces the solve time
significantly, but relies on maxflow solvers that can handle
dynamic graphs efficiently, e.g., the BK algorithm [31].

3. Parallel QPBO
We now describe our new Parallel QPBO (P-QPBO) al-

gorithm, which combines the two-stage QPBO approach
described in Section 2 with the bottom-up merging paral-
lelization approach by Liu and Sun [36]. Judging from previ-
ous work [36, 40, 41, 44, 45], bottom-up merging provides
good performance on non-distributed multi-core systems.
Like Liu and Sun’s algorithm, ours has two phases. In Phase
A, the QPBO problem is split into disjoint sub-problems,
which are solved independently in parallel. In Phase B, these
partial solutions are merged and re-solved, also in parallel,
to get the complete solution. Note that Phase A/B strictly
refers to the splitting and merging of sub-problems. Stage
1/2 refers to whether the sub-graph associated with a sub-
problem has had the flipped graph added or not.

In contrast to Liu and Sun’s algorithm, which strictly
works as a maxflow/mincut solver, our algorithm also con-
siders each sub-problem as a QPBO problem. Specifically,
each sub-problem is kept in Stage 1 (where we do not need
the flipped graph) as long as it contains only submodular
terms. Thus, in the case of few non-submodular terms, most
sub-problems will remain in Stage 1 for most of Phases A
and B. This significantly reduces the solve time. We will now
describe the two phases, including the specific conditions,
which will trigger a conversion to Stage 2 for a sub-problem.
Figure 1 shows a visual summary.

Phase A: Partitioning of the QPBO problem is done by
splitting the underlying graph G = ⟨V ∪ V, E⟩. We split the
node set V into N disjoint sets V1,V2, ...,VN . This gives
a partition of the graph nodes into blocks W1,W2, ...,WN

where Wi = {p, p | p ∈ Vi}. Then, for each pair of blocks
Wi,Wj connected by one or more edges, we identify inter-
block edges and store these in separate lists. From now on,
we refer to these edge lists as block interfaces. After building
the block interfaces we remove inter-block edges from G.

We now have a series of sub-graphs Gi = ⟨{Wi, s, t}, Ei⟩
where Ei = {(p → q) ∈ E | p, q ∈ Wi}. Because these sub-
graphs are disconnected, except through the source and sink
nodes, we can compute their individual maxflow solutions
in parallel (see Figure 1a). For each sub-graph, we adapt
the two-stage approach from the serial QPBO algorithm.
First, we only consider submodular terms and do not add the
flipped graph. Then, if (and only if) a sub-graph contains
non-submodular terms, we transition the sub-graph to Stage
2. During this transition, the flipped graph is constructed

by copying the residual graph from Stage 1, the remaining
non-submodular edges are added, and the maxflow solution
is updated (see Figure 1b). When all sub-graphs have been
solved, we move to Phase B.

Phase B: In this phase we merge the sub-graphs to re-
create the original extended graph, G. Merging two sub-
graphs is done by re-adding the inter-block edges, which
were removed in Phase A. If all sub-graphs and inter-block
edges correspond to submodular terms, we keep both sub-
graphs in Stage 1 (see Figure 1c). If some of the inter-block
edges correspond to non-submodular terms, both sub-graphs
are transformed to Stage 2 (see Figure 1d) before the inter-
block edges are added (see Figure 1e). Furthermore, if the
two sub-graphs are in different stages, the sub-graph in Stage
1 is transformed to Stage 2 before inter-block edges are re-
added and the sub-graphs are merged (see Figure 1f). After
merging, the solution of the combined graph is updated.

To further reduce the solve time, we want merges to hap-
pen in parallel, for which we use the strategy from [36].
Updating the maxflow solution is a serial process, so only
one thread can work on a sub-graph at a time. For synchro-
nization, each sub-graph can be locked (meaning it is being
worked on) or unlocked (meaning it is free for merging).

To decide which sub-graphs to merge, each thread scans
through the list of block interfaces created in Phase A, until
it finds one that connects two unlocked sub-graphs. The
thread then locks the sub-graphs and merges them. Then, it
re-computes the maxflow solution for the merged sub-graph
and the sub-graph is unlocked. Note that after sub-graphs
have been merged, there may be several block interfaces
connecting the previously merged sub-graphs. Therefore,
when a thread finds a pair of sub-graphs to merge, it con-
tinues to scan the list of block interfaces to find all block
interfaces connecting the pair. The block interfaces are then
removed from the global list and the merge proceeds. A
global synchronization object is used to ensure that only one
thread can scan the list of block interfaces at a time.

At the end of Phase B, the number of remaining merges
will be less than the number of running threads (unless only
one thread is used). Therefore, if a thread scans the whole
list of block interfaces without encountering a pair of un-
locked sub-graphs, it terminates. As a result, the degree
of parallelism is gradually reduced near the end of Phase
B. However, for most problems, the time required for the
last merge will be small compared to the total solve time.
In total, the number of merges performed will be one less
than the number of blocks. The process for each thread is
summarized in Algorithm 1.

3.1. Correctness

Our P-QPBO algorithm will always give a solution equiv-
alent to that of the serial QPBO algorithm.

Energy: The energy of the solution is given by the unique

6262

Figure 1. Illustration of merging strategy. Blue dots and lines represent nodes and edges in the non-flipped graph, while
red dots and lines are nodes and edges in the flipped graph. Green lines represent edges between a node p ∈ V and flipped
node q ∈ V , corresponding to non-submodular terms. Dashed lines represent inter-block edges, which are re-added when the
sub-graphs are merged. The exception is green dashed lines between two blue nodes. These represent non-submodular energy
terms, which will be translated to edges, once the flipped graphs are added. Source/sink nodes and edges are not shown. (a)
The graph is split into sub-graphs and the Stage 1 solution for each sub-graph is computed in parallel. (b) Sub-graph A contains
internal non-submodular terms, so it is transformed to Stage 2 and the solution is updated. (c) Sub-graphs D and E are merged.
Inter-block edges are re-added and the sub-graph solution is updated. As all intra- and inter-block terms are submodular the
sub-graph remains in Stage 1. (d) A term between B and C is non-submodular, so the sub-graphs are transformed to Stage 2 to
prepare for merge. (e) Sub-graphs B and C are merged. (f) Sub-graph D + E is transferred to Stage 2 to allow merges with the
remaining sub-graphs. All sub-graphs are now in Stage 2, and merging can proceed as normal bottom-up merging.

value of the minimum cut for the extended graph. Since the
final graph is identical for the serial and parallel algorithms,
and they both compute a minimum cut, the solutions must
have the same energy.

Labeling: There may be several minimum cuts which
have the same cost/energy but label a different number of
nodes [33]. However, given a residual graph, the algorithm
from [4, 33] will choose the minimum cut that labels the
maximum number of nodes. It can be shown (proof in sup-
plementary material) that since both QPBO and P-QPBO
compute a minimum cut of the same graph, they must label
the same nodes after running this extra algorithm. Since this
extra step is an insignificant part of the overall runtime, we
do not include it in our runtime experiments.

3.2. Efficient graph partitioning and merging

The partitioning of the graph nodes into blocks is impor-
tant for the performance of the P-QPBO algorithm. While
our method allows for any partitioning of nodes, ideally,
we want as much work as possible to be done in Phase A
(computing the partial solutions) and as little as possible to

be done in Phase B (merging sub-graphs and updating solu-
tions). A good way to achieve this is to separate the nodes
into blocks that are densely packed (many intra-block terms)
and sparsely related (few inter-block terms). This speeds up
the merging by reducing the number of changes made to the
graph. Of course, the ideal partitioning very much depends
on the energy function.

For image segmentation, we can use the spatial position of
the nodes/pixels when partitioning them into blocks. Cutting
the image into evenly sized rectangular blocks, as done by
[36, 41] should result in many intra-block terms, compared
to inter-block terms, as long as the blocks are not very small.
When solving instance segmentation tasks using Sparse Lay-
ered Graphs (SLG) [26], an intuitive way to partition the
nodes is to create a block per label/object. This works well
when the interaction between the objects is low compared
to the size of the objects (which is usually the case), and
we have at least as many objects as the number of parallel
threads available on the system. We use this natural way of
partitioning the nodes for all our experiments, as most of our
images contain many objects.

6263

Algorithm 1: Phase B of the parallel QPBO algo-
rithm for each thread.

while true do
Lock synchronization object
Let S = ∅
foreach block interface s do

Let Gi and Gj be sub-graphs connected by s
if both Gi and Gj are unlocked then

S = {si | si connects Gi and Gj}
break

Remove entries of S from list of block interfaces
if S is empty then

Unlock synchronization object
return

Lock sub-graphs Gi and Gj connected by S
Unlock synchronization object
/* Ensure sub-graphs are in stage 2 if needed. */
if S contains non-submodular terms or Gi in stage 2

or Gj in stage 2 then
if Gi in stage 1 then Transform Gi to stage 2
if Gj in stage 1 then Transform Gj to stage 2

Unite sub-graphs Gi and Gj to sub-graph Gij

/* Re-insert boundary edges */
foreach inter-block edge e in S do

Reinsert e in graph
if Gij in stage 2 then

Reinsert flipped edge of e in graph
if nodes of a have different labels then

Mark nodes of reinserted edges as active
Update maxflow for subgraph Gij

/* Make Gij available for merges */
Lock synchronization object
Unlock sub-graph Gij

Unlock synchronization object

For determining the merging order, P-QPBO uses the
same approach as Liu and Sun [36]. After Phase A, we
loop over each block interface and count the number of
potential new augmenting paths, when merging the sub-
graphs containing the blocks. This serves as a heuristic for
how much work must be done when merging the sub-graphs.
The list of block interfaces is then sorted in descending order
based on the number of potential new augmenting paths, in
the hope that threads will perform the most expensive merges
first. The goal is to do as much work as possible early in
Phase B, while the degree of parallelism is high.

4. Benchmark results

To test the scalability of our P-QPBO algorithm, we com-
pare it with two serial QPBO implementations. The first is
a slightly optimized implementation of the original QPBO
algorithm by Kolmogorov – we call it K-QPBO. The reason
we are using a slightly modified version is that the original

implementation has overflow issues for large graphs. The
second serial implementation is our own re-implementation
of K-QPBO, which contains numerous improvements in
data structures and optimizations of the code that improves
performance. We call this implementation Modern QPBO
(M-QPBO). M-QPBO is included to provide a more fair
comparison between a serial and parallel implementation
since M-QPBO contains the same performance optimization
as P-QPBO. When referring to results for our parallel imple-
mentation, we use the notation P-QPBO(t), where t is the
number of parallel threads used by P-QPBO.

We test the QPBO implementations on the two datasets
used in [26], and use the exact energy functions shared in
[27]. Our notebooks (based on [27]), used to formulate
the energy functions and to benchmark the QPBO algo-
rithms, are included in our supplementary material (DOI:
10.5281/zenodo.5201620). However, as our focus in this pa-
per is purely on the computational performance, the energy
formulations are not included in the paper.

The first dataset used for our experiments is a high-
resolution µCT 3D image of nerves [28] shown in Figure 2a.
This is a large segmentation task with many non-overlapping
objects. It allows us to test the scalability of the parallel
QPBO implementation across many CPU threads. The sec-
ond dataset is the BBBC038v1 stage1 train (S1) nuclei
image set from the Broad Bioimage Benchmark Collection
[37]. An image from the dataset along with the instance
segmentation results is shown in Figure 2b. Using these im-
ages, we test the performance of the QPBO implementations
on a variety of small and medium-sized segmentation tasks.
For both datasets, the energy function creates a nontrivial
graph topology consisting of irregularly interconnected or-
dered multi-column sub-graphs. Unlike general maxflow
problems, where a number of commonly used benchmark
datasets exist [16], there are no commonly used benchmark
datasets specifically for QPBO.

We use two Intel Xeon Gold 6226R (16 cores / 16 threads)
CPUs in dual socket configuration for all our benchmarks.
With this, we test how our implementation scales on a mod-
ern architecture with up to 32 threads executing in parallel.

4.1. Large segmentation tasks

The goal of this experiment is to compare the solve times
of the K-QPBO and M-QPBO to those of P-QPBO at various
parallel thread counts on large segmentation tasks. Although
solve times vary between system architectures, this experi-
ment shows the benefit of using P-QPBO, depending on the
number of CPU cores available.

In the experiment, we segment the myelin and axon of
216 nerves in a 2048× 2048× 2048 volume at two different
radial sampling resolutions, using the SLG method of [26].
The first resolution (N1) is the one used by [26], while the
second resolution (N2) is higher, resulting in a graph more

6264

(a) (b)

Figure 2. (a) Result of N1 nerve segmentation task. Nodes
are split into blocks such that all nodes associated with either
the inner (red) or outer (blue) surface of a nerve are in the
same block (two blocks per nerve). (b) Example of nuclei
segmentation on the image from S1 with the most nuclei.
Nodes are split into blocks such that all nodes associated
with a cell are in the same block (one block per cell).

than twice the size of N1 (see Table 2). In both cases, the
output is a 3D multi-label segmentation with a total of 432
interacting objects (two per nerve). For P-QPBO we use one
block per object (see Figure 2a).

As shown in Table 2, our M-QPBO implementation re-
duces the solve time for the N1 task by 25% compared to the
K-QPBO implementation, while P-QPBO(1) outperforms M-
QPBO slightly for this task, with a 33% reduction compared
to K-QPBO, using only a single thread. Using two threads, P-
QPBO(2) provides a 62% reduction in solve time, compared
to K-QPBO, and a 49% reduction compared to M-QPBO.
The best result is achieved using 40 threads, in which case
P-QPBO is over 11 times faster than K-QPBO. Figure 3a
show the relative speed-up when using P-QPBO compared
to K-QPBO. We see that the performance increases up to
and beyond the number of CPU cores (32) in our test system.

For the larger N2 task, we observe even larger perfor-
mance improvements and better scaling of P-QPBO than
for N1 (see Figure 3b). From the solve times in Table 2,
we see that the bottom-up merging strategy, even without
parallelism, provides a reduction in solve time of 51% for
P-QPBO(1) compared to K-QPBO. Meanwhile, M-QPBO
provides a 26% reduction over K-QPBO. In other words, P-
QPBO clearly improves its relative performance as the task
grows, while M-QPBO performs similarly for N1 and N2,
when looking at the relative improvement over K-QPBO.

Both Figures 3a and 3b show that the speed-up increases
significantly less past 16 threads. This is expected, as we are
testing on a dual socket system, which means we are likely
to experience some degree of computational overhead when
using both CPUs, especially for cache and memory intensive

N1 N2

Nodes 363,748,800 818,434,800
Edges 2,124,073,454 4,864,255,488

Memory footprint

K-QPBO [33] 134.2 GB 306.8 GB
M-QPBO 60.1 GB 182.7 GB
P-QPBO 70.0 GB 224.9 GB

Fastest solve time

K-QPBO [33] 836 s 4,987 s
M-QPBO 628 s 3,704 s
P-QPBO (1) 558 s 2,429 s
P-QPBO (16) 94 s 323 s
P-QPBO (32) 80 s 264 s
P-QPBO (40) 74 s 245 s
P-QPBO (48) 76 s 239 s

Table 2. Graph details for the nerve segmentation tasks.
Nodes and edges refer to the size of the full extended graph.
The memory footprint is the total memory footprint of the
graph and relevant bookkeeping. P-QPBO and M-QPBO
use 32-bit indices for N1, but 64-bit edge indices for N2,
because it has more than 231 edges. K-QPBO always uses
64-bit pointers for indexing. The solve times are shown
for each of the three algorithms, with a number of different
thread configurations for P-QPBO. Each solve time is the
minimum of ten runs for N1 and three runs for N2.

tasks such as computing the maximum flow. Yet, despite
the overhead, the combined 32 CPU cores allow P-QPBO to
scale past 32 threads for both N1 and N2, with P-QPBO(40)
significantly outperforming P-QPBO(32) in both cases. This
is perhaps a result of some threads idling while waiting for
the synchronization lock to be released.

Another reason for the way P-QPBO scales with the num-
ber of threads is the reduction in the degree of parallelism at
the end of Phase B. According to Amdahl’s law [1], this puts
a theoretical maximum to the speed-up, which in our case
will depend on the energies and blocking strategy. For the
nerve segmentation tasks we estimate a parallel fraction of
0.88 and 0.92 (including overhead) for N1 and N2, respec-
tively, meaning that most of the work is done in parallel.

We expect that most of the performance improvement
of M-QPBO over K-QPBO is due to the smaller memory
footprint of the graphs shown in Table 2. We achieve this
reduction by using more compact data structures for nodes
and edges. Instead of 64-bit pointers, we use 32-bit indices
where possible. Furthermore, we store forward and back-
ward edges adjacent in memory to avoid storing pointers
between these. P-QPBO and M-QPBO use the same funda-
mental data structures for nodes and edges. The increased

6265

11111111112222222222 4444444444 8888888888 16161616161616161616 24242424242424242424 32323232323232323232 40404040404040404040 48484848484848484848 56565656565656565656 64646464646464646464
Number of threads

0
2
4
6
8

10
12

So
lv

e
tim

e
sp

ee
d-

up
 (t

im
es

)

K-QPBO
M-QPBO
P-QPBO
Amdahl's law fit (p=0.88)

(a) N1

111222 444 888 161616 242424 323232 404040 484848 565656 646464
Number of threads

0

5

10

15

20

So
lv

e
tim

e
sp

ee
d-

up
 (t

im
es

)

K-QPBO
M-QPBO
P-QPBO
Amdahl's law fit (p=0.92)

(b) N2

Figure 3. Plots showing the relative speed-up in the solve time when using P-QPBO compared to K-QPBO and M-QPBO. The
speed-up is calculated using the fastest solve time out of ten runs for N1 and three runs for N2. K-QPBO and M-QPBO are
represented as horizontal lines, as they always use a single thread. We also show a fit of Amdahl’s law [1] and the parallel
fraction, p. Keep in mind that two 16 core CPUs were used, which means we expect the speed-up to stagnate or even decrease
when using more than parallel 32 threads. For these tasks, the stagnation appears to start at 40 threads on our test system.

M-QPBO
P-QPBO (1)

P-QPBO (2)

P-QPBO (4)

P-QPBO (6)

P-QPBO (8)

P-QPBO (16)
0

1

2

3

4

5

6

So
lv

e
tim

e
sp

ee
d-

up
 (t

im
es

)

K-QPBO

(a)

M-QPBO
P-QPBO (1)

P-QPBO (2)

P-QPBO (4)

P-QPBO (6)

P-QPBO (8)

P-QPBO (16)
0

1

2

3

4

5

6

So
lv

e
tim

e
sp

ee
d-

up
 (t

im
es

)

K-QPBO

(b)

Figure 4. Box plots showing the relative speed-up for each image in the S1 dataset, for M-QPBO and P-QPBO compared
to K-QPBO. Following Tukey’s definition, the green line in the box is the median, the box marks the two quartiles and the
whiskers show the minimum and maximum values, excluding outliers. Outliers are defined as values more than 1.5 times the
interquartile range from the nearest quartile and are shown as rings. In (a) the results for all 670 images are shown, while (b)
only includes the 502 images with 16 or more nuclei. The relative speed-up is calculated using the fastest solve time for each
method, with each method having been run ten times.

memory footprint of the P-QPBO graph is a result of extra
bookkeeping needed for the bottom-up merging. Reducing
the memory footprint of the graph structures is important for
two reasons. 1) It increases performance due to improved
CPU cache and memory efficiency. 2) It allows us to solve
larger tasks without running out of memory.

It is important to remember that the scaling depends
both on the optimization problem and the system architec-
ture. Generally, we would expect M-QPBO to outperform
P-QPBO(1) on smaller tasks, due to the overhead of merging
the sub-graphs. However, for large tasks, using bottom-up
merging, even without parallel computations, actually turns
out to be faster. This behavior was previously noted by
[16, 36] and is probably due to a combination of shorter
augmenting paths and better cache efficiency.

For the N1 task, [26] reported a solve time of 44 minutes
for K-QPBO, which is much higher than the 14 minutes we
found in our experiments. We suspect that the main reason

for the big difference is that their system only had 112 GB
memory, while the graph has a footprint of at least 134 GB.
This could have caused memory swapping, which would
likely impact performance negatively.

4.2. Smaller segmentation tasks

We use the S1 dataset, previously used in [26], to compare
the performance of P-QPBO, M-QPBO, and K-QPBO on a
large set of 2D (non-grid) segmentation problems of varying
sizes. Figure 5 shows the distributions of graph nodes and
edges for the images. With a median of 437,400 nodes and
1,598,060 edges, we consider most of these segmentation
tasks relatively small. A few of the tasks are significantly
larger, with the largest (shown in Figure 2b) having just
over six million nodes and 60 million edges. To examine
the overall performance of M-QPBO and P-QPBO for these
small to medium-sized tasks, we compute the relative speed-
up when using our implementations compared to K-QPBO.

6266

0 2 4 6
Nodes 1e6

0

50

100 Min = 16 K
Med = 0.4 M
Max = 6 M

0 2 4 6
Edges 1e7

0

100

200
Min = 48 K
Med = 2 M
Max = 60 M

Figure 5. Histograms of the distribution of nodes and edges
for the graphs used when segmenting the images in S1.

Figure 4 shows the relative speed-up for M-QPBO and P-
QPBO for each image in the dataset (Figure 4a) and for each
image with 16 or more nuclei (Figure 4b). Both M-QPBO
and P-QPBO show a significant improvement compared to
K-QPBO. When we include all images, there are cases where
the relative performance drops. In these few cases, the tasks
are very small (few nodes and terms), such that the overhead
of P-QPBO outweighs the benefits. If we look only at the
502 images with 16 or more nuclei (259,200 nodes or more),
M-QPBO and P-QPBO significantly outperform K-QPBO
for all images, except when using P-QPBO with a single
thread. For these smaller tasks, the overhead of merging
blocks is not outweighed by the shorter augmenting paths.
Thus, when using only a single thread, the best performance
is achieved without bottom-up merging.

For the images with 16 or more nuclei (Figure 4b), M-
QPBO gives a median speed-up of 1.8x, with a maximum
of 2.5x. P-QPBO(4) achieves the best overall performance,
with a median speed-up of 3.2x and a maximum of 5.3x.
While P-QPBO(6) and P-QPBO(8) show the best perfor-
mance in a few of the largest tasks, the overall performance
decreases slightly when compared to using four threads, due
to the majority of the tasks being relatively small.

4.3. Comparison with other solvers

We compare P-QPBO with other state-of-the-art
maxflow/mincut algorithms. To test the effect of the two-
stage QPBO strategy, we compare with our own implementa-
tion of the parallel maxflow/mincut algorithm by Liu and Sun
[36]. Furthermore, we compare with the serial EIBFS algo-
rithm [16], as it is currently the fastest serial maxflow/mincut
solver, and we compare with our own parallel version of
EIBFS (P-EIBFS) based on bottom-up merging. Finally, we
include a best case estimate for a QPBO implementation
using EIBFS as its maxflow/mincut solver (EIBFS-QPBO).

We compare the algorithms on the N1 and S1 tasks. The
maxflow/mincut algorithms are evaluated by first convert-
ing the QPBO problem to the full extended graph and then
running the algorithm on this graph. We do not include this
conversion time in the benchmark. Results are shown in
Table 3. We see that our algorithm significantly outperforms
the other methods.

Memory Best speed-up
N1 N1 S1

M-QPBO 60.1 GB 1.33 1.72±0.28
P-QPBO 70.0 GB 10.47 2.96±0.89

Liu-Sun [36] 70.0 GB 6.07 0.78±0.13
EIBFS [16] 175.1 GB 1.08 0.33±0.08
P-EIBFS 175.8 GB 0.63 0.68±0.14
EIBFS-QPBO* 175.1 GB 2.17 0.66±0.08
*Best case estimate (half of EIBFS solve time).

Table 3. Results of ablation experiment. We consider up
to 32 threads for N1 and up to 16 for S1. We report mem-
ory and best speed-up for N1 and best mean±std. speed-up
for the S1 data. Speed-ups are computed w.r.t. K-QPBO.
The maxflow/mincut solvers were run on the full extended
graph. We do not include the time used to convert the QPBO
problem to a graph.

5. Conclusion

Our P-QPBO algorithm is the first parallel QPBO algo-
rithm. It scales much better than the serial K-QPBO algo-
rithm on modern multi-core hardware, by partitioning the
task into sub-tasks and solving them in parallel. It uses a
bottom-up merging strategy to combine the solutions, also in
parallel. This allows P-QPBO to solve tasks, such as image
segmentation, significantly faster than current algorithms.

Our experiments show that P-QPBO solves large multi-
object segmentation tasks over 20 times faster than K-QPBO,
with lower memory usage. It does so while remaining fully
compatible with K-QPBO, making no constraining assump-
tions about the graph structure. Even for smaller tasks, with
just a few hundred thousand nodes, P-QPBO is 2-5 times
faster than K-QPBO, using only four threads. This indicates
that P-QPBO will significantly outperform K-QPBO, even
on consumer hardware.

The scalability of P-QPBO, when combined with modern
hardware, makes P-QPBO suitable for solving much larger
optimization tasks than previously possible. Furthermore,
because it is a parallel algorithm, we expect the relative
performance of P-QPBO to keep increasing in the future.
Finally, P-QPBO is a general algorithm, which is suitable for
many binary optimization tasks, not just image segmentation.
Thus, we are confident that P-QPBO can be used not just for
faster image segmentation, but also for a wide range of other
tasks, both in computer vision and other fields.

Acknowledgements

This work is supported by FORCE Technology and The
Center for Quantification of Imaging Data from MAX IV
(QIM).

6267

References
[1] Gene M Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, spring joint computer conference,
pages 483–485, 1967. 6, 7

[2] Richard Anderson and Joao C. Setubal. A parallel imple-
mentation of the push-relabel algorithm for the maximum
flow problem. Journal of Parallel and Distributed Computing
(JPDC), 29(1):17–26, 1995. 2

[3] Chetan Arora, Subhashis Banerjee, Prem Kalra, and SN Ma-
heshwari. An efficient graph cut algorithm for computer
vision problems. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 552–565, 2010. 1

[4] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A
linear-time algorithm for testing the truth of certain quantified
boolean formulas. Information Processing Letters, 8(3):121–
123, 1979. 4

[5] David A Bader and Vipin Sachdeva. A cache-aware parallel
implementation of the push-relabel network flow algorithm
and experimental evaluation of the gap relabeling heuristic.
Technical report, Georgia Institute of Technology, 2006. 2

[6] Niklas Baumstark, Guy Blelloch, and Julian Shun. Efficient
implementation of a synchronous parallel push-relabel al-
gorithm. In Proceedings of the European Symposium on
Algorithms (ESA), pages 106–117, 2015. 2

[7] Endre Boros, Peter L Hammer, and Xiaorong Sun. Net-
work flows and minimization of quadratic pseudo-boolean
functions. Technical report, Technical Report RRR 17-1991,
RUTCOR, 1991. 1

[8] Yuri Boykov and Gareth Funka-Lea. Graph Cuts and Efficient
N-D Image Segmentation. International Journal of Computer
Vision, 70(2):109–131, nov 2006. 1

[9] Yuri Boykov and Vladimir Kolmogorov. An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for Energy
Minimization in Vision. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (PAMI), 26(9):1124–1137, 2004.
1, 2

[10] Boris V Cherkassky and Andrew V Goldberg. On implement-
ing the push—relabel method for the maximum flow problem.
Algorithmica, 19(4):390–410, 1997. 1

[11] Andrew Delong and Yuri Boykov. A scalable graph-cut algo-
rithm for nd grids. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1–8, 2008. 1, 2

[12] Daniel Freedman and Petros Drineas. Energy minimization
via graph cuts: Settling what is possible. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 939–946, 2005. 2

[13] Andrew V Goldberg. Processor-efficient implementation of
a maximum flow algorithm. Information Processing Letters,
38(4):179–185, 1991. 2

[14] Andrew V Goldberg. The partial augment–relabel algorithm
for the maximum flow problem. In Proceedings of the Euro-
pean Symposium on Algorithms (ESA), pages 466–477, 2008.
1

[15] Andrew V Goldberg. Two-level push-relabel algorithm for
the maximum flow problem. In International Conference

on Algorithmic Applications in Management, pages 212–225,
2009. 1

[16] Andrew V Goldberg, Sagi Hed, Haim Kaplan, Pushmeet
Kohli, Robert E Tarjan, and Renato F Werneck. Faster and
More Dynamic Maximum Flow by Incremental Breadth-First
Search. In Proceedings of the European Symposium on Algo-
rithms (ESA), pages 619–630, 2015. 1, 2, 5, 7, 8

[17] Andrew V Goldberg, Sagi Hed, Haim Kaplan, Robert E Tar-
jan, and Renato F Werneck. Maximum Flows by Incremental
Breadth-First Search. In Proceedings of the European Sym-
posium on Algorithms (ESA), pages 457–468, 2011. 1

[18] Zhihui Guo, Ling Zhang, Le Lu, Mohammadhadi Bagheri,
Ronald M Summers, Milan Sonka, and Jianhua Yao. Deep
LOGISMOS: deep learning graph-based 3D segmentation of
pancreatic tumors on CT scans. pages 1230–1233, 2018. 1

[19] Peter L Hammer, Pierre Hansen, and Bruno Simeone. Roof
duality, complementation and persistency in quadratic 0–1
optimization. Mathematical Programming, 28(2):121–155,
1984. 1

[20] Dorit S. Hochbaum. The pseudoflow algorithm: A new algo-
rithm for the maximum-flow problem. Operations Research,
56(4):992–1009, 2008. 1

[21] Dorit S. Hochbaum and James B. Orlin. Simplifications and
speedups of the pseudoflow algorithm. Networks, 61(1):40–
57, 2013. 1

[22] Bo Hong and Zhengyu He. An asynchronous multithreaded
algorithm for the maximum network flow problem with non-
blocking global relabeling heuristic. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 22(6):1025–1033,
2010. 2

[23] Hossam Isack, Olga Veksler, Ipek Oguz, Milan Sonka,
and Yuri Boykov. Efficient optimization for hierarchically-
structured interacting segments (HINTS). In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1445–1453, 2017. 1, 2

[24] Ondřej Jamriška and Daniel Sỳkora. GridCut. Version 1.3.
https://gridcut.com, 2015. Accessed 2020-06-12. 2

[25] Ondřej Jamriška, Daniel Sỳkora, and Alexander Hornung.
Cache-efficient Graph Cuts on Structured Grids. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3673–3680, 2012. 2

[26] Niels Jeppesen, Anders N Christensen, Vedrana A Dahl, and
Anders B Dahl. Sparse layered graphs for multi-object seg-
mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 12777–
12785, 2020. 1, 2, 4, 5, 7

[27] Niels Jeppesen, Anders Nymark Christensen, Vedrana Ander-
sen Dahl, and Anders Bjorholm Dahl. Sparse Layered Graphs
for Multi-Object Segmentation (notebooks). 6 2020. 5

[28] Niels Jeppesen, Anders Nymark Christensen, Vedrana Ander-
sen Dahl, Anders Bjorholm Dahl, Hans Martin Kjer, Martin
Bech, and Lars Dahlin. Sparse Layered Graphs for Multi-
Object Segmentation (data). 11 2020. 5

[29] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias
Hein, and Bernt Schiele. Simple does it: Weakly supervised
instance and semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 876–885, 2017. 1

6268

[30] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bog-
dan Savchynskyy, and Carsten Rother. Instancecut: from
edges to instances with multicut. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5008–5017, 2017. 1

[31] Pushmeet Kohli and Philip H.S. Torr. Dynamic graph cuts for
efficient inference in Markov random fields. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
29(12):2079–2088, 2007. 2, 3

[32] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. In Proceedings of the In-
ternational Workshop on Artificial Intelligence and Statistics,
pages 182–189, 2005. 1

[33] Vladimir Kolmogorov and Carsten Rother. Minimizing non-
submodular functions with graph cuts-a review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI),
29(7):1274–1279, 2007. 1, 2, 4, 6

[34] Vladimir Kolmogorov and Ramin Zabin. What energy func-
tions can be minimized via graph cuts? IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 26(2):147–
159, 2004. 2

[35] Kang Li, Xiaodong Wu, Danny Z Chen, and Milan Sonka.
Optimal surface segmentation in volumetric images-a graph-
theoretic approach. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 28(1):119–134, 2005. 1

[36] Jiangyu Liu and Jian Sun. Parallel Graph-cuts by Adaptive
Bottom-up Merging. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2181–2188, 2010. 1, 2, 3, 4, 5, 7, 8

[37] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter. Annotated
high-throughput microscopy image sets for validation. Nature
Methods, 9(7):637–637, 2012. 5

[38] Yi Peng, Li Chen, Fang Xin Ou-Yang, Wei Chen, and Jun Hai
Yong. JF-Cut: A parallel graph cut approach for large-scale
image and video. IEEE Transactions on Image Processing,
24(2):655–666, 2015. 2

[39] Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and
Martin Szummer. Optimizing binary MRFs via extended roof
duality. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–8, 2007. 1

[40] Alexander Shekhovtsov and Václav Hlaváč. A distributed
mincut/maxflow algorithm combining path augmentation
and push-relabel. International Journal of Computer Vision
(IJCV), 104(3):315–342, 2013. 2, 3

[41] Petter Strandmark and Fredrik Kahl. Parallel and Distributed
Graph Cuts by Dual Decomposition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2085–2092, 2010. 1, 2, 3, 4

[42] Tanmay Verma and Dhruv Batra. MaxFlow Revisited: An
Empirical Comparison of Maxflow Algorithms for Dense
Vision Problems. In Proceedings of the British Machine
Vision Conference (BMVC), pages 1–12, 2012. 1

[43] Vibhav Vineet and P J Narayanan. CUDA cuts: Fast graph
cuts on the GPU. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1–8, 2008. 1, 2

[44] Miao Yu, Shuhan Shen, and Zhanyi Hu. Dynamic Parallel
and Distributed Graph Cuts. IEEE Transactions on Image
Processing, 25(12):5511–5525, 2015. 2, 3

[45] Miao Yu, Shuhan Shen, and Zhanyi Hu. Dynamic Graph Cuts
in Parallel. IEEE Transactions on Image Processing, 26(8),
2017. 2, 3

6269

