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Abstract

We present a “learning to learn” approach for discover-

ing white-box classification loss functions that are robust to

label noise in the training data. We parameterise a flexible

family of loss functions using Taylor polynomials, and apply

evolutionary strategies to search for noise-robust losses in

this space. To learn re-usable loss functions that can apply

to new tasks, our fitness function scores their performance

in aggregate across a range of training datasets and archi-

tectures. The resulting white-box loss provides a simple and

fast “plug-and-play” module that enables effective label-

noise-robust learning in diverse downstream tasks, without

requiring a special training procedure or network architec-

ture. The efficacy of our loss is demonstrated on a variety of

datasets with both synthetic and real label noise, where we

compare favourably to prior work.

1. Introduction
The success of modern deep learning is predicated on

large amounts of accurately labelled training data. However,
training with large quantities of gold-standard labelled data
is often not achievable. This is because professional anno-
tation is often too costly to achieve at scale and so machine
learning practitioners resort to less reliable crowd-sourcing,
web-crawled incidental annotations [6], or imperfect ma-
chine annotation [27]; while in other situations the data is
hard to classify reliably even by human experts, and thus
label-noise is inevitable. These considerations have led to
a large body of work focusing on developing noise-robust
learning approaches [38, 13]. Diverse solutions have been
studied including those that modify the training algorithm
through teacher-student [23, 13] learning, or identify and
down-weight noisy instances [38]. Much simpler, and there-
fore more widely applicable, are attempts to define noise-
robust loss functions that provide drop-in replacements for
standard losses such as cross-entropy [45, 54, 10]. These
studies hand engineer robust losses, motivated by different
considerations including risk minimisation [10] and informa-
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Figure 1. Schematic of our robust loss search framework. (1) We
train a robust loss function so as to optimise validation performance
of a CNN trained with synthetic label noise using this loss. (2)
Thanks to dataset and architecture randomisation, our AutoRobust-
Loss (ARL) is reusable and can be deployed to new tasks, including
those without clean validation set to drive robust learning.

tion theory [51]. In this paper we explore an alternative data-
driven AutoML [21] approach to loss design, and search for
a simple white-box function that provides a general-purpose
noise-robust drop-in loss. While AutoML approaches have
been widely [36, 9] and successfully [43] applied to general
purpose neural architecture search (NAS), their application
to discovery of reusable losses is much less widely studied.

We perform evolutionary search on a space of loss func-
tions parameterised as Taylor polynomials. Every function
in this space is smooth and differentiable, and thus provides a
valid loss that can be easily plugged into existing deep learn-
ing frameworks. Meanwhile, this search space provides a
good trade-off between the flexibility to represent non-trivial
losses, and a low-dimensional white-box parameterisation
that is efficient to search and reusable across tasks without
overfitting. To score a given loss during our search, we use it
to train neural networks on noisy data, and then evaluate the
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Figure 2. Existing hand-designed robust losses and our meta-learned robust loss. Top left: Conventional Cross-Entropy (CE); Top middle:
Generalised Cross Entropy (GCE) [54]; Top right: Mean Absolute Error (MAE) [10]; Bottom left: label-smoothing [34]. Bottom middle:
Symmetric Cross Entropy (SCE) [45]. Bottom right: Our learned ARL.

clean validation performance of the trained model. To learn
a general purpose loss, rather than one that is specific to a
given architecture or dataset, we explore domain randomisa-
tion [44] in the space of architectures and datasets. Scoring
losses according to their validation performance in diverse
conditions leads to reusable functions that can be applied to
new datasets and architectures, as illustrated in Figure 1.

We apply our learned ARL to train various MLP and
CNN architectures on several benchmarks including MNIST,
FashionMNIST, USPS, CIFAR-10, and CIFAR-100 with
different types of simulated label noise. We also test our loss
on a large real-world noisy label dataset, Clothing1M. The
results verify the re-usability of ARL and its efficacy com-
pared to state-of-the-art in a variety of settings. This means
that, analogously to CNNs discovered by NAS [36, 43], read-
ers are free to use our loss on new noisy problems with no
further complicated or expensive AutoML required. This
is an important distinction and major advantage of our ap-
proach compared to previous work that uses AutoML or
meta-learning techniques to perform noise-robust learning
[38, 39]. These methods often require (i) expensive meta-
learning on a per-problem basis, and (ii) a clean (i.e., noise-
less) validation dataset to use as a meta-supervision signal,
which may not be available in real applications. In contrast,
our ultimate contribution is a general-purpose loss (Figure 2,
bottom right) that provides a simple and fast drop-in re-
placement for conventional losses (such as cross-entropy)
in a standard learning pipeline; and furthermore no clean
validation set is required to use it.

2. Related Work

Learning with Label Noise Learning with label noise
is now a large research area due to its practical importance.
Song et al. [41] present a detailed survey explaining the

variety of existing approaches including designing noise
robust neural network architectures [6], regularisers such
as label-smoothing [42, 34], sample selection methods that
attempt to filter out noisy samples – often by co-teaching or
student teacher learning with multiple neural networks [23,
13, 46, 29], various meta-learning approaches that often aim
to down-weight noisy samples using meta-gradients from a
validation set [38, 39, 52], and robust loss design. Among
these families of approaches, we are motivated to focus on
robust loss design due to simplicity and general applicability
– we wish to provide a loss that can be widely used together
with standard architectures and standard learning algorithms.

Major existing robust losses include: mean absolute er-
ror (MAE), shown to be theoretically robust in [10], but
hard to train in [54]; generalised cross-entropy (GCE) which
attempts to be robust yet easy to train [54]; bi-temper [1],
two-temperature [2], and Huber [15] motivated by heavy
tailed outlier robustness; symmetric cross-entropy [45] moti-
vated by reducing overfitting; and active-passive loss (APL)
[31] which aims to balance over-and-underfitting for robust
losses. These losses are all hand-designed based on various
good motivations, but (as we will see in our evaluation) none
provide reliably high performance empirically. Instead we
take a data-driven AutoML approach and search for a loss
function that is empirically robust across various benchmark
and neural architectures. This draws upon meta-learning
techniques but, differently from existing meta-robustness
work, focuses on discovering a general white box loss that
can be re-used in any downstream problem (Figure 1), unlike
others [39, 38, 29, 52] that require expensive per-problem
meta-learning. Incidentally, we note that our final loss covers
all six desiderata for noise-robust learning outlined in [41].
Meta-learning, AutoML and Loss Learning Meta-
learning, aka learning to learn, and AutoML have been
applied for a wide variety of purposes as summarised



in [17, 21]. Of particular relevance is meta-learning of
loss functions, which has been studied for various pur-
poses including providing differentiable surrogates of non-
differentiable objectives [19], optimising efficiency and
asymptotic performance of learning [22, 4, 18, 48, 11, 12],
and improving robustness to train/test domain-shift [3, 30].
We are interested in learning white-box losses – i.e., those
that can be expressed a short human-readable parametric
equation – for efficiency and improved task-transferability
compared to neural network alternatives [4, 18, 3, 30], which
tend to be less interpretable and need to be learned task-
specifically. Meta-learning of white-box model components
has been demonstrated for optimisers [47], activation func-
tions [35], neural architectures [43] and losses for accel-
erating conventional supervised learning [11, 12]. We are
the first to demonstrate the value of automatic loss function
discovery for general purpose label-noise robust learning.

3. Method
We aim to learn a loss function for multi-class classifica-

tion that is robust to noisy labels in the training set.
Overview Our workflow has two phases (Figure 1). Meta-
train: Given a set of auxiliary dataset(s) and network archi-
tecture(s), we meta learn a label-noise robust loss L✓. The
auxiliary datasets are assumed to either be clean (in which
case we simulate label noise during meta-training), or noisy
but come with clean validation sets. The loss L✓ should pro-
duce models with high performance on the clean validation
set(s) after learning on noisy training sets. Meta-test: Given
the learned robust loss L✓ from the previous step, denoted
AutoRobustLoss (ARL), we can deploy it to learn any target
noisy-label learning problem without requiring a validation
set. The target dataset and neural architecture need not over-
lap with the source dataset/architecture from the meta-train
step. The loss provides a drop-in replacement for standard
cross-entropy in a conventional learning pipeline.

3.1. Meta-Training Procedure
We formalise loss function learning as a bilevel optimi-

sation with an upper/outer loop problem defined as optimis-
ing the parameters of an adaptive loss function L✓, and a
lower/inner loop problem of training neural networks f!
using the loss function L✓. The upper level optimisation
problem uses as a supervision signal the clean validation
performance of models trained with the prospective loss
function, averaged across a variety of domains. The lower
level optimisation problem consists of learning a collec-
tion of neural networks f! on noisy-label datasets using the
prospective loss function L✓. The prospective loss functions
are represented by their parameters, ✓, which correspond to
the coefficients of an n-th order polynomial. These polyno-
mials can be viewed as a Taylor expansion of the ideal loss
function. The bilevel optimisation problem is given by

Algorithm 1 Robust Loss Function Search
1: Input: D, F, µ(0),⌃(0)

2: Output: p(✓;µ⇤,⌃⇤)
3: t = 0
4: while not converged or reached max steps do
5: ⇥ = {✓1, ✓2, ..., ✓n} ⇠ p(✓;µ(t),⌃(t)) # Sample

losses for exploration
6: G = F ⇥D ⇥⇥ # Assign datasets and architectures

to losses
7: s = zeros 2 Rn

8: for all (f (k), Dj , ✓i) 2 G do
9: (Dtrain

j , Dval
j ) = split(Dj) # Train/val splits

10: !⇤ = argmin! L✓i(f
(k)
! , Dtrain

j ) # Train the net
11: si = si +

1
|F ||D|M(f (k)

!⇤ , Dval
j ) # Evaluate on

validation data
12: end for
13: (µ(t+1),⌃(t+1)) = CMA-ES(µ(t),⌃(t),⇥, s) #

Update µ and ⌃ according to CMA-ES
14: t = t+ 1
15: end while

max
✓

ED,f [M(f!⇤
D
, Dval)] (1)

s.t. !⇤
D = argmin

!
L✓(f!, D

train),

where M(·, ·) is a fitness function measuring network perfor-
mance, D is a random variable representing a domain, with
noisy training Dtrain and clean validation Dval splits, and f
is a neural network parameterised by !. The performance of
f!⇤

D
, as measured by M, reflects the quality of robust super-

vision provided by the candidate loss L✓ on dataset D. We
use the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [14] to solve the upper layer problem, and stan-
dard stochastic gradient-based optimisation approaches to
solve the lower level problems. Algorithm 1 summarises our
algorithm for solving the optimisation in Equation 1.

CMA-ES for Loss Function Learning We use CMA-ES
to solve the upper optimisation problem, and any variant of
stochastic gradient descent for the lower problem. CMA-ES
finds a Gaussian distribution defined over the search space
of ✓ that places most of its mass on high quality solutions
to the optimisation problem. A benefit of using CMA-ES
is that it does not require the performance measurement M
to be differentiable, which means the learned loss function
can be evaluated using informative metrics, such as accuracy.
Each generation consists of a set, ⇥, of loss functions ob-
tained by sampling multiple individuals from the parameter
distribution, p(✓;µ,⌃) = N (µ,⌃). Each of the individuals,



Figure 3. Left: A preliminary experiment on hyperparameter selection. The performance of a linear model trained by the ARL loss function
with different orders vs training with cross-entropy (CE). Middle/Right: Example learning curves of test accuracy vs iterations when using
different robust losses. Middle: USPS/VGG-11/80% symmetric noise. Right: USPS/ResNet-18/40% asymmetric noise.

✓i 2 ⇥, is evaluated according to

ED,f [M(f!⇤
D
, Dval)] ⇡ 1

N

NX

j=1

M(f (j)
!j

, Dval
j ) (2)

s.t. !j = argmin
!

L✓i(f
(j)
! , Dtrain

j ),

where f (j)
! and Dj are different network architectures and

datasets respectively, as discussed later. We apply a scale
normalisation, detailed in Appendix A.3, to the final loss
function.
Taylor Polynomial Representation The space of poten-
tial loss functions in which CMA-ES searches is a crucial
design parameter. For search efficiency, we should consider
a space parameterised by a small number of values. This
must be balanced with the ability to represent a wide enough
variety of functions such that a good solution can be found.
By selecting a low-dimensional space with well-understood
nonlinear form, it should be possible to re-use the learned
loss on diverse problems. The function space that we choose
is the Taylor series approximations of all �-times differen-
tiable functions [12], g : Rm ! R,

g(x) =
�X

n=0

1

n!
rng(x0)

T (x� x0)
n. (3)

where each rng(x0) is the n-th order gradient of g evaluated
at a fixed point, x0. We make the simplifying assumption
that the loss function should be class-wise separable. That is,
each potential class is considered in isolation, and we learn
a loss function that measures the divergence between a noisy
binary label and the probability predicted by the network.
To compute the loss on vectors we sum over the C possible
classes,

L✓(ŷ,y) =
1

C

CX

i=1

`✓(ŷi,yi), (4)

where ŷ and y are the vectors of predicted probabilities and
(possibly noisy) ground-truth labels, respectively. The result

of performing this simplification is that the loss function can
be used in a variety of settings with different numbers of
classes. We found that � = 4 is a good trade-off between
modelling capacity and meta-training efficiency. In a Taylor
expansion the polynomial coefficients are given by the fixed
point around which the Taylor expansion is being evaluated
and the gradients of the function at this fixed point. Hence,
for learning a bi-variate function we say that (✓0, ✓1) give
the location of the fixed point, and (✓2, ..., ✓11) encode the
values of the gradients of the optimal loss function when it
is evaluated at (✓0, ✓1). The resulting loss has the form

`✓(ŷi,yi) = ✓2(ŷi � ✓0) +
1

2
✓3(ŷi � ✓0)

2 (5)

+
1

6
✓4(ŷi � ✓0)

3 +
1

24
✓5(ŷi � ✓0)

4

+ ✓6(ŷi � ✓0)(yi � ✓1)

+
1

2
✓7(ŷi � ✓0)(yi � ✓1)

2 +
1

2
✓8(ŷi � ✓0)

2(yi � ✓1)

+
1

6
✓9(ŷi � ✓0)

3(yi � ✓1) +
1

6
✓10(ŷi � ✓0)(yi � ✓1)

3

+
1

4
✓11(ŷi � ✓0)

2(yi � ✓1)
2.

Note that we have omitted terms where ŷ does not appear, as
these do not impact the solution of the optimisation problem.
In total there are only 12 parameters to fit, which is consider-
ably smaller than the number of parameters found in a typical
neural network paramaterised loss function [30, 4, 25].
Generalisation Across Architectures To enable achieve
good generalisation to novel architectures in deployment
(meta-testing), we apply the domain randomisation [44] strat-
egy to evaluate the expected performance across a range of
architectures during meta-training. Specifically, we use a
set of architectures, F , containing a variety of common neu-
ral network designs. The total population for evolutionary
optimisation is then given by the Cartesian product F ⇥⇥.
The fitness function can then be computed as shown in Equa-
tion 2, where a mean is taken over all different architectures
trained with the same loss.



Generalisation Across Datasets The learned loss should
also generalise to novel datasets in deployment (meta-
testing). To this end we investigate exposing it to several
datasets during training, so as to ensure it is maximally ag-
nostic to specific training dataset. Sampled loss functions
are used to train several models with the same architecture
and initial weights, but on different datasets. Similarly to
architecture generalisation, we use a set of datasets, D, and
take the Cartesian product, D ⇥⇥, to generate a population
to be evaluated. The performance of the loss functions is
evaluated by the mean performance of all the networks on
their corresponding datasets. In principle, one can perform
dataset and architecture randomisation simultaneously. How-
ever, due to the implied three-way Cartesian product, we
found this computationally infeasible.

4. Experiments
In this section we evaluate ARL on various noisy label

learning tasks. In particular, we aim to answer three ques-
tions: (Q1) Does our AutoRobustLoss (ARL) generalise
across different datasets and architectures? (Q2) How well
does ARL generalise across different noise levels? (Q3) Can
ARL scale to larger real-world noisy-label tasks?
Datasets We experiment on seven datasets: MNIST [28],
CIFAR-10, CIFAR-100 [26], KMNIST [7], USPS [20], Fash-
ionMNIST [49] and Clothing1M [50]. Clothing1M is a
dataset containing 1 million clothing images in 14 classes
(T-shirt, Shirt, Knitwear, Chiffon, Sweater, Hoodie, Wind-
breaker, Jacket, Down Coat, Suit, Shawl, Dress, Vest, Under-
wear). The images are collected from shopping websites and
the labels are generated from the text surrounding images,
thus providing a realistic noisy label setting. MNIST, and
optionally KMNIST and CIFAR-10, are used for learning the
loss function (meta-training), and the others are completely
held out for experimental evaluation (meta-testing).
Noise types For loss learning, we simulate both symmet-
ric and asymmetric (pair-flip) noise types. Symmetric noisy
labels are generated by uniformly flipping from the positive
label to a negative one, while asymmetric noisy labels are
produced to simulate the more realistic scenario where partic-
ular pairs of categories are more easily confused than others
by annotators. For example, among digits label noise could
manifest in such a way that a 7 is more likely to mislabelled
as a 1 than as a 6; or a 3 mislabelled as an 8 rather than a 4.
Architectures We train and evaluate ARL with a range
of neural networks including shallow (2-layer MLP, 3-layer
MLP, and 4-layer CNN) and deep (VGG-11 [40] and ResNet-
18 [16]). We also use the medium-size architecture in [46],
which we term JoCoR-Net (see supplemental for details).
For a fair comparison, we train 2-layer MLP, 3-layer MLP,
and 4-layer CNN with SGD optimiser, learning rate 0.01 and
momentum 0.9. For JoCor-Net, we apply Adam [24] with
learning rate 0.001. For ResNet-18 and VGG-11, we follow

the training protocol in [53].
Taylor Polynomial Order Selection We perform a pre-
liminary experiment to select the order of ARL. We train a
linear classifier in the inner loop of the dataset randomisation
algorithm (on MNIST, KMNIST, and CIFAR-10), and evalu-
ate performance for polynomial orders 2, 3, 4 and 5. From
the results in Figure 3(left), we can see that the impact of the
specific polynomial order is small compared to the impact
of loss learning overall. Nevertheless, we pick order 4 for
the subsequent experiments, as this was the hyperparameter
that achieved the best performance.
Competitors We compare our ARL with the standard
cross-entropy (CE) baseline, as well as several strong al-
ternative losses hand-designed for label-noise robustness:
MAE: Mean Absolute Error was theoretically shown to be
robust in [10]. GCE: [54] analysed MAE as hard to train,
and proposed generalised cross-entropy to provide the best
of CE and MAE; FW: [33] iteratively estimates the label
noise transfer matrix, and trains the model corrected by the
label noise estimate; SCE: [45] argued that symmetrising
cross-entropy by adding reverse cross-entropy (RCE) im-
proves label-noise robustness; Bootstrap: A classic method
of replacing the noisy labels in training by the convex com-
bination of the prediction and the given labels [37]. LSR:
Label-smoothing is an effective general purpose regulariser
[34, 42, 32] whose properties in promoting noise robustness
have been studied [45]. Huber [15] and Bi-Temper [1]:
Classic and recent approaches based on robust heavy-tailed
loss functions. Active Passive: The best out of a selection
of normalised losses proposed in [31].
Early Stopping and Hyper-parameter Tuning While
conventional supervised learning can use early stopping, the
lack of a clean validation set during meta-testing makes this
impossible. Therefore our main experiments follow the ma-
jority of work [23, 46] in this area by reporting performance
at convergence. Similarly, lack of a clean validation set pre-
vents automated hyperparameter tuning, so we reuse a single
set of hyperparameters chosen on the meta-training sets.

4.1. Training a general-purpose robust loss function

Meta-Training Setup We consider two domain randomi-
sation strategies for training a general purpose loss function,
namely architecture (AR) and dataset (DR) randomisation.
In AR, we build a pool of training architectures including
2-layer MLP, 3-layer MLP, and 4-layer CNN and solely use
MNIST as the training set. In DR, we solely use the 4-layer
CNN as the architecture build a dataset pool of MNIST, KM-
NIST, and CIFAR-10. We train models for 80% symmetric,
and 40% asymmetric noise conditions. More details are
given in the Appendix.
Meta-Testing (Deployment) Setup Given our ARL
learned in meta-training, we evaluate it by deploying on a



Table 1. Accuracy (%) of robust losses, 80% symmetric noise condition. Our loss trained under architecture randomisation (AR) and dataset
randomisation (DR) conditions has the best average rank. Grey cols: datasets seen during DR training. White cols: totally novel datasets.

Architecture type VGG11 VGG11 VGG11 VGG11 ResNet18 ResNet18 ResNet18 ResNet18 Avg.Rank
dataset Cifar10 Cifar100 FashionMNIST USPS Cifar10 Cifar100 FashionMNIST USPS

CE 18.38 ± 0.21 4.25 ± 0.28 20.55 ± 0.93 51.42 ± 0.94 18.44 ± 0.34 8.86 ± 0.10 21.92 ± 0.74 57.05 ± 0.42 6.87
GCE [54] 16.56 ± 0.54 1.04 ± 0.47 25.10 ± 0.68 63.45 ± 0.86 31.69 ± 0.36 11.98 ± 0.18 42.62 ± 0.89 79.52 ± 0.63 5.63
SCE [45] 28.61 ± 0.64 2.31 ± 0.80 36.64 ± 0.59 63.68 ± 0.56 45.34 ± 0.40 8.16 ± 0.07 59.93 ± 0.75 58.35 ± 0.76 4.63
FW [33] 16.97 ± 0.44 1.41 ± 0.07 22.57 ± 0.76 53.66 ± 0.40 10.15 ± 0.68 1.16 ± 0.04 13.18 ± 0.35 42.80 ± 0.77 9.38
Bootstrap [37] 17.58 ± 0.82 4.18 ± 0.72 20.40 ± 0.31 64.58 ± 0.21 12.10 ± 0.32 8.67 ± 0.61 22.36 ± 1.76 72.17 ± 1.24 6.38
MAE [10] 14.20 ± 0.42 1.01 ± 0.11 63.40 ± 0.16 30.94 ± 0.35 22.95 ± 1.25 0.82 ± 0.17 68.20 ± 1.87 37.17 ± 0.93 8.13
Label-smooth [34] 17.74 ± 0.46 4.47 ± 0.12 21.19 ± 0.39 54.26 ± 0.19 17.67 ± 0.35 7.66 ± 1.52 20.99 ± 0.83 59.94 ± 0.54 6.86
Huber [15] 10.28 ± 0.68 1.30 ± 0.57 19.66 ± 0.67 23.92 ± 1.34 13.56 ± 0.75 1.14 ± 1.11 17.59 ± 0.91 24.61 ± 0.31 11.00
NCE+MAE [31] 40.47 ± 0.93 2.06 ± 0.44 48.40 ± 1.01 70.75 ± 0.71 33.57 ± 1.17 5.72 ± 0.92 48.65 ± 0.96 71.25 ± 1.24 4.50
NFL+MAE [31] 41.91 ± 0.98 2.54 ± 0.63 45.06 ± 1.06 69.36 ± 0.84 37.66 ± 0.64 6.03 ± 0.91 54.43 ± 1.15 72.25 ± 1.60 3.50
Bi-Temper [1] 10.44 ± 0.96 3.23 ± 0.11 15.00 ± 0.46 17.67 ± 0.56 40.41 ± 1.33 9.35 ± 0.52 30.06 ± 0.72 26.91 ± 0.64 7.75

ARL-AR 41.36 ± 0.47 5.63 ± 0.24 70.16 ± 0.87 78.71 ± 0.90 29.50 ± 0.30 14.94 ± 0.26 71.96 ± 0.89 68.80 ± 0.92 1.63
ARL-DR 31.12 ± 0.23 5.04 ± 0.14 67.29 ± 1.01 77.34 ± 1.34 35.23 ± 0.23 13.36 ± 0.63 71.97 ± 0.87 70.17 ± 0.64 1.75

Table 2. Accuracy (%) of robust losses. 40% asymmetric noise condition. Our loss trained under architecture (AR) and dataset (DR)
randomisation conditions has the best average rank. Grey cols: datasets seen during DR training. White cols: totally novel datasets.

Architecture type VGG11 VGG11 VGG11 VGG11 ResNet18 ResNet18 ResNet18 ResNet18 Avg.Rank
dataset Cifar10 Cifar100 FashionMNIST USPS Cifar10 Cifar100 FashionMNIST USPS

CE 56.43±0.12 30.20±0.18 50.34±1.23 77.74±0.74 58.69±0.43 44.14±0.15 58.68±0.63 73.84±0.85 6.25
GCE [54] 56.42±0.54 22.39±0.35 53.57±0.47 78.72±0.72 57.90±0.31 40.76±0.24 58.51±0.70 80.77±0.35 6.25
SCE [45] 78.23±0.55 25.33±0.73 64.47±0.97 85.50±0.43 63.22±0.22 40.90±0.37 59.63±0.96 81.57±0.17 3.63
FW [33] 54.42±0.79 5.21±0.39 45.18±0.84 76.41±0.81 48.40±0.08 3.83±0.23 49.46±0.73 46.04±0.18 10.13
Bootstrap [37] 57.69±0.11 31.07±1.09 53.23±1.53 77.81±0.61 57.69±0.76 45.78±0.15 54.60±0.85 75.67±0.56 5.75
MAE [10] 49.06±0.22 0.96±0.10 49.02±0.27 62.38±0.89 55.67±3.05 1.02±0.14 56.31±1.21 70.05±0.35 10.50
Label-smooth [34] 57.76±0.37 20.64±0.18 51.12±1.03 77.49±0.11 59.69±0.36 39.92±0.49 57.53±0.73 78.97±0.46 6.88
Huber [15] 38.28±0.80 5.18±0.72 75.57±0.93 73.44±2.70 56.11±0.41 4.14±0.37 77.50±1.64 79.37±1.55 7.38
NCE+MAE [31] 66.22±0.64 2.06±0.36 69.83±0.73 87.05±1.32 60.51±0.96 45.00±0.87 63.00±1.97 81.81±1.31 4.00
NFL+MAE [31] 65.55±1.76 2.59±0.17 69.51±1.59 89.24±1.92 62.51±0.83 44.84±1.76 58.55±1.04 82.96±2.82 4.25
Bi-Temper [1] 10.12±0.17 34.22±1.23 18.02±0.87 17.89±0.82 17.74±0.73 45.36±0.43 19.44±1.32 27.85±0.94 9.13

ARL-AR 74.30±0.20 22.50±0.33 87.23±1.22 90.67±1.21 86.70±0.12 44.47±0.48 89.24±0.25 91.17±0.25 1.25
ARL-DR 79.09±0.51 18.30±0.27 81.18±0.80 89.78±0.46 68.88±0.41 31.47±0.65 88.22±0.97 89.59±1.05 2.63

fresh suite of evaluation datasets and architectures including
those unseen during training. We report results in terms of ac-
curacy at convergence, and summarise via the average ranks
of each loss across different datasets and architectures [8].
Benchmark Results The results for symmetric and asym-
metric noise are shown in Table 1 and 2 respectively. From
the results, we can see that our ARL performs favourably
compared to hand-designed alternatives across a variety of
benchmarks, with a higher average rank than competitors in
both experiments. However, there is no clear winner between
architecture (AR) and dataset (DR) randomization for meta-
learning. We expect that best performance would be obtained
by performing these simultaneously during meta-training,
but as this experiment is computationally costly, we leave
this to future work. Note that during deployment, all meth-
ods have a similar computational cost, except for FW which
requires training the network twice for noise estimation.
Analysis of Learning Curves The plots in Figure 3(right)
compare the learning curves of test accuracy for USPS/VGG-
11 and USPS/ResNet-18 with 80% symmetric and 40%
asymmetric noise respectively. We can see that while some
alternative losses have early peaks, they all overfit after con-
tinued training. As discussed earlier, the asymptotic perfor-

mance is the relevant and standard [23, 46] metric in this area
due to lack of a clean validation set to cherry pick a good
iteration; and on this metric our losses are clear winners.
Real-world Clothing1M results The previous experi-
ment reported performance of the learned model after train-
ing on manually corrupted labels. In this section, we follow
the ResNet-18 setting described in [46] to apply our learned
loss to the real-world Clothing1M noisy-label benchmark.
Note that neither Clothing1M, nor ResNet-18 were seen
during loss discovery meta-learning, above. We train with
Adam using learning rate 8⇥ 10�4, 5⇥ 10�4, 5⇥ 10�5 for
5 epochs each. We report the mean accuracy of each model
after ten trials in Table 4. Among the competitors, JoCoR
is the state art method in the broader range of noise robust
learners. It uses a complex co-distillation scheme with mul-
tiple network branches, while the other listed competitors
are simple plug-in robust losses applied to vanilla ResNet
training. Nevertheless, ARL obtains the top performance.

4.2. Additional Analysis
Noisy Validation Very recently, the established protocol
for noisy-label experiments used in the previous section was
challenged in [5], who claim that the metric of validation



Figure 4. Generalisation of learned ARL loss to varying noise-levels. Left: VGG11-FashionMNIST (Symmetric noise), Middle:VGG11-
FashionMNIST (Asymmetric noise), Right: ResNet18-USPS (Asymmetric noise).

Table 3. Accuracy (%) and average rank of different robust losses using noisy-validation based early stopping and hyper-parameter tuning.
Architecture type VGG11 VGG11 VGG11 VGG11 ResNet18 ResNet18 ResNet18 ResNet18 Avg.Rank
dataset Cifar10 Cifar100 FashionMNIST USPS Cifar10 Cifar100 FashionMNIST USPS

Sy
m

m
et

ric
80

%

CE 41.94 12.12 76.03 75.19 39.80 18.18 72.18 75.88 2.88
GCE [54] 43.94 5.25 74.88 77.68 40.80 15.16 72.50 75.88 3.00
SCE [45] 48.48 7.33 72.17 71.95 45.81 16.99 75.36 77.91 2.38
NCE+MAE [31] 38.96 2.28 75.63 74.39 20.47 10.33 74.33 82.21 3.86
NFL+MAE [31] 43.35 2.61 73.08 73.44 42.92 2.69 70.45 76.83 4.00

ARL-AR 42.52 13.71 71.47 79.37 35.86 20.87 77.23 79.77 1.88
ARL-DR 42.76 7.17 77.58 77.58 34.77 17.75 73.28 74.93 3.00

A
sy

m
m

et
ric

40
%

CE 79.47 29.89 84.07 92.33 82.15 40.36 87.91 89.74 2.86
GCE [54] 77.13 24.30 85.16 88.09 78.02 43.73 87.57 91.63 3.86
SCE [45] 78.39 29.90 82.95 91.68 78.98 43.06 87.20 93.47 2.86
NCE+MAE [31] 74.87 7.49 86.81 90.87 80.05 40.89 82.23 90.63 4.38
NFL+MAE [31] 76.61 7.78 86.36 89.79 76.39 36.79 88.42 92.48 4.25

ARL-AR 76.13 25.37 88.81 94.27 87.03 45.41 89.44 94.57 1.25
ARL-DR 80.82 29.21 87.14 91.78 76.62 47.19 89.79 93.17 1.50

Table 4. Test accuracy (%) of robust learners on Clothing1M with ResNet18. ⇤JoCoR is a multi-network co-distillation training framework.
The others are simple plug-in robust losses.

Method CE Bootstrap [37] GCE [54] FW [33] SCE [45] Huber [15] JoCoR⇤ [46]
Accuracy 66.88 67.28 66.63 68.33 67.63 10.83 69.79

Method NCE+MAE [31] NFL+MAE [31] Bi-Temper [1] ARL (AR-A40) ARL (DR-A40) ARL (AR-S80) ARL (DR-S80)
Accuracy 66.15 65.97 9.46 69.14 70.09 68.85 69.34

set accuracy provides a valid model-selection criterion, even
when the validation set itself contains label noise. Therefore
we select the top performing losses from the previous exper-
iment and report their performance under a new deployment
condition using both early stopping and hyper-parameter
tuning according to this proxy metric.

From the results in Table 3, we can see that: (i) Early
stopping allows CE to reduce overfitting to noise and hence
improve in rank compared to the asymptotic results in Ta-
bles 1-2, but it is still not best; (ii) Most accuracies have
increased compared to the previous condition (e.g., Fashion-
MNIST), but our losses have increased less by comparison,
suggesting that AR and DR rely less on careful parame-
ter tuning and checkpoint selection compared to alternatives.
(iii) Overall both AR and DR learned losses perform strongly,
with AR performing best overall in both noise conditions.

Generalisation across noise-levels We trained our losses
on high levels of label noise (80%-symmetric, 40%-

asymmetric) as detailed previously, conjecturing that training
on a difficult task would be sufficient for generalisation to
other tasks with diverse noise conditions, as shown on Cloth-
ing1M. To evaluate this more systematically, we next apply
our losses on problems with a range of noise levels. From
the results in Figure 4 we can see that our loss does provide
strong performance across a range of operating points. No-
tably, the leftmost point on each plot corresponds to the clean
data (0% noise) condition. Here our ARL losses provides
comparable performance to the standard (i.e., cross-entropy)
approach, thus confirming that they are safe to use in cases
where it is unknown whether label noise is present or not.

Qualitative analysis of representations We visualise the
feature distributions learned by the losses when applied to
CIFAR-10 under 40% symmetric label noise in Figure 5. We
can see that conventional CE applied on noisy labels leads to
a very mixed distribution of instances, while our loss leads
to quite cleanly separable clusters despite the label noise.



Table 5. Accuracy (%) of different robust learners. JoCoR net CNN used throughout. ARL is trained for each target problem.
Noise Type CE (Reproduced) CE (JoCoR) GCE [54] SCE [45] FW [33] Bootstrap [37] JoCoR [46] Our ARL

M
N

IS
T Sym-20% 81.21±0.53 79.56±0.44 97.64±0.65 89.50±0.44 96.85±0.67 76.18±0.98 98.06±0.04 97.90±0.12

Sym-50% 59.51±0.70 52.66±0.43 94.14±1.32 67.38±0.53 94.25±0.43 51.53±1.56 96.64±0.12 96.71±0.21
Sym-80% 22.43±1.21 23.43±0.31 40.57±0.72 31.23±0.89 54.01±1.82 23.46±0.46 84.89±4.55 89.88±0.34

Asym-40% 78.73±1.16 79.00±0.28 81.94±1.22 79.87±0.78 90.14±0.67 78.31±2.34 95.24±0.10 97.38±0.17

C
IF

A
R

-1
00 Sym-20% 39.19±0.58 35.14±0.44 34.66±0.76 35.09±0.50 38.18±0.76 3.53±0.18 53.01±0.04 51.34±0.10

Sym-50% 19.50±0.43 16.97±0.40 10.29±0.53 18.54±0.29 3.25±0.15 18.36±0.63 43.49±0.46 42.18±0.27
Sym-80% 5.56±0.24 4.41±0.14 2.03±0.36 5.75±0.39 6.12±0.27 2.33±0.13 15.49±0.98 20.20±0.42

Asym-40% 30.16±0.44 27.29±0.25 1.32±0.23 27.07±0.42 4.23±0.51 31.72±0.74 32.70±0.35 36.01±0.39
Avg.Rank 5.25 6.13 5.62 5.00 4.38 6.63 1.63 1.38

Figure 5. t-SNE visualisation of penultimate layer ResNet-18 features after learning on CIFAR-10 with 40% symmetric label noise. Left:
CE training. Middle: Bootstrap training. Right: Our ARL training.

Dataset-specific loss learning Our main goal in this pa-
per has been to learn a general purpose robust loss. In this
section we examine an alternative use case of applying our
framework to train a dataset-specific robust loss, in which
case better performance could be achieved by customising
the loss for the target problem. To achieve this, we now addi-
tionally assume a clean subset of data for the target problem
is available (unlike the previous experiments, but similarly to
several alternative methods in this area [46]) in order to drive
loss learning. For this experiment we focus on comparison
with JoCoR [46], since this is the current state-of-the-art
model. We use the same medium sized CNN architecture as
JoCoR for fair comparison, and train our loss to optimise the
validation performance. From the results in Table 5, we can
see that our ARL provides comparable or better performance
than state of the art competitor JoCoR. However, this is now
at significantly greater cost since the cost of data-specific
loss training is not amortisable over multiple tasks as before.

Qualitative Analysis and Intuition of Learned Loss To
gain some intuition about our loss’ efficacy, we compare pop-
ular standard and robust losses in Figure 2. Comparing our
ARL loss against alternatives, we conjecture that there are
two properties that account for our label-noise robustness in
practice: Feedback in response to perceived major prediction
errors by the network, and the location of the minima where
network predictions maximally satisfy the loss. In the case of
a noisy labelled example that the network actually classifies
correctly, (e.g., ytrue = 1, ylabel = 0, ypred ⇡ 1), conven-
tional CE aggressively “corrects” the network by reporting
exponentially large loss. This aggressive feedback leads to

fast training on clean data, but overfitting in noisy data [54].
Existing robust alternatives MAE [10] and GCE [54] are
explicitly motivated by softening this aggressive “correc-
tion” compared to CE. Although not explicitly motivated by
this, SCE also softens the feedback as shown in the figure.
Meanwhile in terms of the minima that best satisfies the loss,
conventional CE, as well as SCE, GCE and MAE lead to
maximally confident predictions (minima at 0 or 1); which,
if applied to a noisy label, leads to overfitting. In contrast,
label smoothing [34, 45] improves robustness by inducing
softer minima at [0 + ✏, 1� ✏] compared to the others’ [0, 1].
However, LS issues the same aggressive correction of large
errors as CE, and thus suffers from this accordingly. Only
our ARL has learned to exploit both these strategies of less
aggressive “corrections” and softer targets.

5. Conclusion
In this work, we took an AutoML perspective on the

problem of noise robust loss function design. Our results
reveal a new loss function that combines low-penalty and
soft minima features to produce a noise-robust loss function.
ARL provides a simple re-usable loss that can be plugged
into diverse benchmarks and model architectures to learn
robust features and classifiers in the presence of label noise,
all without requiring a clean validation set or expensive meta-
learning or distillation procedures.
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