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Abstract

We propose a new generative model for layout generation.
We generate layouts in three steps. First, we generate the
layout elements as nodes in a layout graph. Second, we
compute constraints between layout elements as edges in
the layout graph. Third, we solve for the final layout using
constrained optimization. For the first two steps, we build
on recent transformer architectures. The layout optimiza-
tion implements the constraints efficiently. We show three
practical contributions compared to the state of the art: our
work requires no user input, produces higher quality layouts,
and enables many novel capabilities for conditional layout
generation.

1. Introduction
We study the problem of topologically and spatially con-

sistent layout generation. This problem arises in image lay-
out synthesis, floor plan synthesis, furniture layout genera-
tion, street layout planning, and part-based object creation,
to name a few. Generated content must meet stringent crite-
ria both globally, in terms of its overall topological structure,
as well as locally, in terms of its spatial detail. While our
work applies to layouts in general, we focus our discussion
on two types of layouts: floorplans and furniture layouts.

When assessing layouts, we must consider the global
structure which is largely topological in nature, such as con-
nectivity between individual elements or inter-element hop
distance. We are also concerned with spatial detail, such as
the geometric realization of the elements and their relative
positioning, both local and non-local. Realism of such gener-
ated content is often assessed by comparing distributions of
their properties, both topological and spatial, against those
from real-world statistics.

Techniques for synthesizing realistic content have made
rapid progress in recent years due to the emergence of gen-
erative adversarial networks (GANs) [14, 74, 26, 60], vari-
ational autoencoders (VAEs) [29, 56], flow models [50, 66,
56], and autoregressive models [9]. However, satisfying
both topological and spatial properties still remains an open

Figure 1. We present a method for layout generation. Our approach
can generate multiple types of layouts, such as the floor plans
in the top row, where rooms are colored by type, and furniture
layouts in the bottom row, where furniture pieces are colored by
type. Layouts are represented as graphs, where nodes correspond
to layout elements and edges to relationships between elements.
In the top row, nodes represent rooms (illustrated with room-type
icons), and edges relate rooms connected by doors (dotted lines).
Unlike previous methods, our method does not require any input
guidance and generates higher-quality layouts.

challenge.
Recently, three papers targeting this challenging problem

in the floor plan setting were published [64, 17, 40]. While
these papers often produce good looking floor plans, they
require several simplifications to to tackle this difficult prob-
lem: 1) RPLAN [64] and Graph2Plan [17] require the outline
of the floorplan to be given. 2) HouseGAN [40] does not
generate the connectivity between rooms that would be given
by doors, and RPLAN places doors using a manually defined
heuristic that is not learned from data. 3) HouseGAN and
Graph2Plan require the number of rooms, the room types
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and their topology to be given as input in the form of an
adjacency graph. 4) All three methods require a heuristic
post-process that is essential to make the floorplan look more
realistic, but that is not learned from data. In addition, there
is still a lot of room to improve the quality and realism of
the results.

In this paper, we would like to explore two ideas to im-
prove upon this exciting initial work. First, after extensive
experiments with many variations of graph-based GANs and
VAEs, we found that these architectures are not well suited
to tackle the problem. It is our conjecture that these methods
struggle with the discrete nature of graphs and layouts. We
therefore propose an auto-regressive model using attention
and self-attention layers. Such an architecture inherently
handles discrete data and gives superior performance to
current state of the art models. While transformer-based
auto-regressive models [58] just started to compete with
GANs built on CNNs in image generation [43, 8] on the Im-
ageNet [11] dataset, the gap between these two competing
approaches for layout generation is significant.

Second, we explore the idea of generative modeling using
constraint generation. We propose to model layouts with
autoregressive models that generate constraint graphs: indi-
vidual shapes are nodes and edges between nodes specify
constraints. Our auto-regressive model first generates initial
nodes, that are subsequently optimized to satisfy constraint
edges generated by a second auto-regressive model. These
models can be conditioned on additional constraints pro-
vided by the user. This enables various forms of conditional
generation and user interaction, from satisfying constraints
provided by the user, to a fully generative model that gener-
ates constraints from scratch without user interaction. For
example, a user can optionally specify a floorplan boundary,
or a set of rooms.

We demonstrate our approach in the context of floor plan
generation by creating apartment-level room layouts and fur-
niture layouts for each of the generated rooms (see Figure 1).
Our evaluation will show that our generative model allows
layout creation that matches both global and local statistics
of real-world data much better than competing work.

In summary, we introduce two main contributions: 1) A
transformer-based architecture for generative modeling of
layouts that produces higher quality layouts than previous
work. 2) The idea of a generative model that generates
constraint graphs and solves for the spatial shape attributes
via optimization, rather than outputting shapes directly.

2. Related Work

We will discuss image-based generative models, graph-
based generative models, and finally models specialized to
layout generation.

2.1. Image-based Generation

A straight-forward approach to generate a layout is to rep-
resent it as an image and use traditional generative models
for image synthesis. The most promising approach are gener-
ative adversarial networks (GANs) [14, 23, 73, 5, 25, 27, 24].
Image-to-image translation GANs [19, 74, 75, 18, 76, 51]
could also be useful for layout generation, e.g., as demon-
strated in this project [6]. Alternatively, modern varitional
autoencoder, such as NVAE [56] or VQ-VAE2 [49] are also
viable options. Autoregressive models, e.g. [9], also showed
great results on larger datasets recently. When experiment-
ing with image-based GANs, we noticed that they fail to
respect the relationships between elements and that they
cannot preserve certain shapes (e.g. axis-aligned polygons,
sharp corners).

2.2. Graph-based Generation

In order to capture relationships between elements, vari-
ous graph-based generative models have been proposed [60,
30, 53, 70, 33, 31, 42]. However, purely graph-based ap-
proaches only generate the graph topology, but are missing
the spatial embedding. The specialized layout generation
algorithms described next often try to combine graph-based
and spatial approaches.

2.3. Specialized Layout Generation

Before the rise of deep learning, specialized layout gen-
eration approaches have been investigated in numerous do-
mains, including street networks [67, 45], parcels [3, 57],
floor plans [63], game levels [69], furniture placements [71],
furniture and object arrangements [13], and shelves [34].
Different approaches have been proposed for layout gen-
eration, such as rule-based modeling [47, 38], stochastic
search [37, 72, 69], or integer programming [46, 45, 63], or
graphical models [36, 12, 7, 22, 13, 68].

In recent years, most of the focus has shifted to applying
deep learning to layout generation. A popular and effective
technique places elements one-by-one, [62, 21, 10], while
a different approach first generates a layout graph and then
instantiates elements according to the graph [20, 61, 1]. Both
of these approaches are problematic in layouts such as floor
plans, that have many constraints between elements, such
as zero-gap adjacency and door connectivity. In such a
settings it is non-trivial to a) train a network to generate
constraints that admit a solution, and b) find elements that
satisfy the constraints in a single forward pass. Recently
proposed methods [64, 17, 40] circumvent these problems by
requiring manual guidance as input, or by requiring manual
post-processing. Due to these requirements, these methods
are not fully generative. Recently, Xu et al. introduced
PolyGen [39], a method to generate graphs of vertices that
form meshes with impressive detail and accuracy. We base
our method on a similar architecture, but generate layout
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1) Element Constraint Generation 2) Edge Generation 3) Optimization
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Figure 2. Overview of our layout generation approach. We generate constraints on the parameters of layout elements with a Transformer [58],
and constraints on multiple types of relationships between elements using Pointer Networks [59]. Both element and relationship constraints
are used in an optimization to create the final layout.

constraints instead of directly generating the final layout.
Layout elements are then found in an optimization step based
on the generated constraints. This gives us layouts where
elements accurately satisfy the constraints.

3. Method
We present a generative model for layouts that can option-

ally be conditioned on constraints given by the user. Figure 2
illustrates our approach. Layouts are represented as graphs,
where nodes correspond to discrete elements of the layout,
and edges represent relationships between the elements. We
distinguish two types of edges: Constraining edges describe
desirable relationships between element parameters, such as
an adjacency between a bedroom and a bathroom in a floor
plan, and can be used to constrain these parameters. Descrip-
tive edges represent additional properties of the layout that
are not given by the elements, but can be useful for down-
stream tasks, such as the presence of a door between two
rooms of a floor plan where the elements consist of rooms.
Section 3.1 describes this layout representation.

A generative model can be trained to generate both layout
elements and edges. However, generated elements and gen-
erated constraining edges are not guaranteed to match. For
example, two elements that are connected by an adjacency
edge can often be separated by a gap, or can have overlaps.
As the number of constraining edges increases, the prob-
lem of generating a compatible set of edges and elements
becomes increasingly difficult to solve in a forward pass of
the generative model. This has been a major limitation in
previous work.

We introduce two contributions over previous layout gen-
eration methods. First, we show that a two-step autoregres-
sive approach inspired by PolyGen [39] that first generates
elements and then edges is particularly suitable for layout
generation and performs significantly better than current
methods. We describe this approach in Sections 3.2 and 3.3.

Second, we treat element parameters and constraining
edges that were generated in the first two steps as constraints
and optimize element parameters to satisfy the generated
constraints in a subsequent optimization step. In floor plans,
for example, we generate constraints on the maximum and

minimum widths and heights of room areas and on their adja-
cency, and then solve for their locations, widths and heights
in the optimization step. This minimizes any discrepancies
between constraining edges and element parameters. We
describe the optimization in Section 3.4. In Section 3.5, we
describe how to condition on user-provided constraints.

3.1. Layout Representation

We represent layouts as a graph L = (N,R), where
nodes correspond to layout elements N and edges to their re-
lationships R. Each layout elementN ∈ N has a fixed set of
domain-specific parameters. Relationship edges R ∈ R are
chosen from a fixed set of edge types ρ and describe the pres-
ence of that edge between two elements R = (Ni, Nj , ρ).
Edges come in two groups, based on their types: constraining
edges RC that provide constraints for the optimization step,
and descriptive edges RD that provide additional informa-
tion about the layout. We consider two main layout domains
in our experiments: floor plans and furniture layouts, but
will only focus on floor plans here. Furniture layouts are
described in the supplementary material.

In floor plans, each layout element is a rectangular region
of a room N = (τ, x, y, w, h), parameterized by the type of
room τ , the lower-left corner of the rectangular region (x, y),
and the width and height (w, h) of the region. Two types of
edges in RC define horizontal and vertical adjacency con-
straints between elements, while two types of edges in RD,
define the presence of a wall between two adjacent elements,
and the presence of a door between two adjacent elements.
Multiple elements of the same type that are adjacent and not
separated by a wall form a room. The set of all elements fully
cover the floor plan. An example is shown in Figure 3, left.
More details on both representations, including a full list of
all element types, are given in the supplementary material.

3.2. Element Constraint Model

An element constraint NC is defined as a tuple of target
values for one or more of the parameters of element N . In
the optimization, we will use these values as soft constraints
for the corresponding parameters. We create one set of
constraints for each element N of the layout. In floor plans,
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Figure 3. Example floor plan layout and its sequence encoding.
Rooms are represented by rectangles, which are numbered and
colored by room type for illustration (white for the exterior). Edges
either constrain rectangles, like the red adjacency edges, or add
information to the layout, like the blue door edges. Both are en-
coded into sequences that can be ingested by our autoregressive
sequence-to-sequence models.

for example, we create constraints NC = (τ, w, h) for the
type, width, and height of each element. All continuous
values are treated as range constraints, i.e. the actual values
may be within the range ±εvC of the constraint value vC

(we set ε = 0.1 in our experiments). We use a transformer-
based [58] autoregressive sequence-to-sequence model to
generate these element constraints.

Sequence encoding The goal of our element constraint
model is to learn a distribution over constraint sequences. To
flatten our list of element constraints, we order them from
left to right first (small to large x) and top to bottom (small
to large y) for elements with the same x coordinate. The
ordered constraint tuples are concatenated to get a sequence
of constraint values SE = (vi)

kMN
i=1 , where MN is the num-

ber of elements in the layout and k the number of properties
per element. Following PolyGen [39] we use two additional
inputs per token in the sequence: the sequence index i and
the type ti of each value. Type ti is the index of a constraint
value inside its constraint tuple and indicates the type of
the value (x-location, height, angle, etc.). Finally, we add a
special stopping token s as last element of the sequence to
indicate the end of the sequence.

Autoregressive Model Our element constraint model fNθ
models the probability of a sequence by its factorization into
step-wise conditional probabilities:

p(SN ; θ) =

kMN∏
i=1

p(vi|v<i; θ), (1)

where θ are the parameters of the model. Given a par-
tial sequence v<i, the model predicts a distribution over
values for the next token in the sequence p(vi|v<i; θ) =
fNθ (v<i, (1 . . . i− 1), t<i), that we can sample to obtain vi.

We implement fθ with a small version of GPT-2 [48] that
has roughly 10 million parameters. For architecture details,
please refer to Section 3.6 and the supplementary material.

Coordinate Quantization We apply 6-bit quantization for
all coordinate values except α, which we quantize to 5 bits.
We learn a categorical distribution over the discrete con-
straint values in each step of the model. Nash et al. [39]
have shown that this improves model performance, since it
facilitates learning distributions with complex shapes over
the constraint values.

3.3. Edge Model

We generate relationship edges R between elements that
either constrain element parameters or add additional infor-
mation to the layout. The constraining edges RC will be
used as constraints during the optimization step, while de-
scriptive edges RD add information to the layout and may
be needed in down-stream tasks. In floor plans, for exam-
ple, door and wall edges define walls and doors. We use an
autoregressive sequence-to-sequence architecture based on
PointerNetworks [59] to generate edges. We train one model
for each of the edge types described in Section 3.1, each
models the distribution for one type of edge. All models
have the same architecture, but do not share weights.

Sequence Encoding To flatten the list of edges R =
(Ni, Nj , ρ) of any given type ρ, we first sort them by the
index of the first element i, then by the index of the second
element j. We then concatenate the constraints NC

i , NC
j

corresponding to the elements Ni, Nj in each edge to get
a sequence of element constraints. We use a learned em-
bedding nρj = gφρ(N

C
j ), giving us a sequence of element

embeddings Sρ = (nρji)
2Mρ

i=1 , where Mρ is the number of
edges of a given type ρ. Two additional inputs are added for
each token: the index i and the type ti, indicating if a token
corresponds to the source or target element of the edge. The
last token in the sequence is the stopping token s.

Due to our ordering, groups of edges that share the same
source element Ni, are adjacent in the list. For types of
edges where these groups are large, that is, where many
edges share the same source element, we can shorten the
sequence by including the constraint of a source element
only once at the start of the group, and then listing only the
constraints of the target elements Nj that are connected to
this source element. The end of a group is indicated by a
special token e. We use this shortened sequence style for the
adjacency edges of floor plans.

Autoregressive Model Similar to the element constraint
model, the probability of an edge sequence Sρ is modeled
by a factorization into step-wise conditional probabilities.
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Unlike the element constraint model, however, the edge
model fRφρ outputs a pointer embedding [59]:

qρi = fRφρ(n
ρ
j<i
, (1 . . . i− 1), t<i). (2)

We compare this pointer embedding to all element embed-
dings using a dot-product to get a probability distribution
over elements:

p(nρji=n
ρ
k|n

ρ
j<i

;φρ) = softmaxk
(
(qρi )

Tnk
)

(3)

that we can sample to get the index of the next element
constraint in the sequence.

3.4. Optimizing Layouts

We formulate a Linear Programming problem [4] that reg-
ularizes the layout while satisfying all generated constraints:

min
N

o(N)

s.t. NC are satisfied and

RC are satisfied,

(4)

where o(N) is a regularization term. In floor plans, for
example, we minimize the perimeter of the floor plan
o(N) =W +H , where W and H are the width and height
of the floor plan’s bounding box. This effectively minimizes
the size of the layout, while keeping the optimization prob-
lem linear. This regularization encourages compactness and
a bounded layout size, resulting in layouts without unneces-
sary gaps and holes. The definition of the constraints depend
on the type of layout.

In floor plans, the x, y, w, h parameters of each element
are bounded between their maximum and minimum values;
we use [0, 64] as bounds in our experiments. Each element
constraint NC adds constraints of the form vC(1 − ε) ≤
v ≤ vC(1 + ε), for each value vC in the element constraint
NC and corresponding value v in the element N . In our
experiments, we set ε = 0.1. Horizontal adjacency edges
R = (Ni, Nj , ρ) add constraints of the form xi + wi = xj ,
and analogously for vertical adjacency edges.

The layout width W is computed by first topologically
sorting the elements in the subgraphs formed by horizontal
adjacency edges, and then defining W := xm + wm for the
last (right-most) element Nm in the topological sort. H is
computed analogously. Note that we do not define W :=
maxi xi + wi to avoid the additional constraints needed
to optimize over the maximum of a set. A detailed list of
constraints for furniture layouts is given in the supplementary
material. The challenge of designing the optimization is to
keep the optimization fast and simple and to make it work in
conjunction with the neural networks.
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Figure 4. The constrained element generation model. Having an
unmasked encoder allows our network to attend to all elements of
the constraint sequence.

3.5. User-provided Constraints

We can condition our models on any user-provided ele-
ment constraints. We add an encoder to both the element
constraint model and the edge model, following the en-
coder/decoder architecture described in [58]. The encoder
takes as input a flattened sequence of user-provided con-
straints, enabling cross-attention from the sequence that is
currently being generated to the list of user constraints. Note
that the user-provided constraints do not have to represent
the same quantities as the output sequence. In floor plans,
for example, we can condition both the element constraint
model and the edge model on a list of room types, room
areas and/or a floor plan boundary.

3.6. Network Architecture

Our models use the Transformer [58] as a building block.
Our Element Constraint Model and the Edge model are very
similar to the Vertex and Face models from PolyGen [39] in
organization. The building block for the Transformers them-
selves is based on the GPT-2 model, specifically, we use the
GELU activation [15], Layer Norm [65] and Dropout. For a
complete description, please refer to the supplementary.

The model for element constraint generation consists of
12 Transformers blocks. Our sequence lengths depend on
the particular dataset used, and are listed in the supplemen-
tary. The edge generation model is a Pointer Network with
two-parts: 1. An encoder which generates embeddings, and
can attend to all elements in the sequence of element con-
straints and 2. A decoder which generates pointers, and can
attend to elements in an autoregressive fashion. In our ex-
periments, we use an encoder with 16 layers and a decoder
with 12 layers. We use 384 dimensional embeddings in all
our models.

Constrained generation is performed by a variant of the
unconstrained models. Concretely, we add a constraint en-
coder to both the element constraint model and the edge
models resulting in an encoder-decoder architecture. In
the edge models, we concretely change the encoder of the
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Pointer Network to an encoder-decoder architecture. (Figure
4). The constraint encoder is a stack of Transformer blocks
allowed to attend all elements of the constraint sequence.
The decoder is another stack of blocks allowed to attend to
all tokens in the constraint sequence. We use 8 layers for
constraint encoder in the element model and 3 layers in the
edge-model.

Training Setup We implemented our models in
Pytorch[44]. Our models and sequences are small enough
so we train on a single NVIDIA-V100 GPU with 32 GB
memory. We use the Adam [28] optimizer, with a constant
learning-rate of 10−4, and linear warmup for 500 iterations.
The element generation model is trained for 40 epochs,
while the other models are trained for 80 epochs. It takes
approximately 6 hours to train for our largest model for
constrained generation.

Inference The inference time depends on the type of se-
quence being sampled. Our large sequences have about 250
tokens. For this sequence length, generating a batch of 100
element constraint sequences takes about 10s. Given the ele-
ment constraint sequence, all types of edges can be sampled
in parallel. Edge models are larger and need about 60s for a
batch of 100 sequences.

4. Results
We evaluate free generation of layouts, generation con-

strained by a given boundary, and generation constrained by
additional user-provided constraints. We will focus on floor
plans in this section. Furniture layouts are evaluated in the
supplementary material.

Datasets We train and evaluate on two floor plan datasets.
The RPLAN dataset [64] contains 80k floor plans of apart-
ments or residential buildings in an Asian real estate market
between 60m2 to 120m2. The LIFULL dataset [41] contains
61k floor plans of apartments from the Japanese housing
market. The apartments in this dataset tend to be more com-
pact. The original dataset is given as heterogeneous images,
but a subset was parsed by Liu et al. [32] into a vector format.
In both datasets we use 1k layouts for each of testing and
validation, and the remainder for training.

Baselines StyleGAN [26] generates a purely image-based
representation of a layout. We render the layout into an
image to obtain a training set, including doors and walls (see
the supplementary material), and parse the generated images
to obtain layouts. Graph2Plan [17] generates a floor plan
given its boundary and a layout graph that describes rough
room locations, types, and adjacencies. Door connectivity
is generated heuristically. RPLAN [64] generates a floor

Table 1. Free generation of layouts. We compare the FID and
layout statistics on two datasets to the state-of-the-art. Note that
Graph2Plan uses a ground-truth layout graph as input, and both
RPLAN and Graph2Plan use the ground truth boundary as input.
We evaluate both free generation with our method and conditional
generation. Our method improves upon the baselines with less
input guidance.
dataset method FID ŝt ŝr ŝa ŝavg

RPLAN

StyleGAN. 25.29 46.74 4.41 7.85 19.67
Graph2Plan 29.26 0.83 5.63 18.93 8.46
RPLAN 21.29 5.38 1.53 4.38 3.76
ours free 21.47 1.00 1.00 1.00 1.00
ours cond. 27.27 0.81 0.94 1.34 1.03

LIFULL

StyleGAN 28.06 44.54 2.32 1.96 16.27
Graph2Plan 29.50 9.21 0.94 1.37 3.84
RPLAN 32.98 40.54 2.02 4.10 15.55
ours free 26.15 1.00 1.00 1.00 1.00
ours cond. 31.94 5.70 0.71 0.50 2.30

plan given its boundary, with a heuristically-generated door
connectivity. All baselines are re-trained on each dataset.

Metrics We compare generated layouts to ground truth
layouts using two metrics: The Fréchet Inception Distance
(FID) [16] computed on rendered layouts, and a metric based
on a set of layout statistics that measure layout properties
that the image-based FID is less suitable for. Layout statis-
tics are grouped into topological statistics St such as the
average graph distance in the layout graph between any two
element types, element shape statistics Sr such as the as-
pect ratio or area, and alignment statistics Sa such as the
gap between adjacent elements, or their boundary alignment.
We believe that our proposed statistics are more useful to
evaluate layouts than FID. FID is more suitable to evaluate
generative models trained on natural images, but we show
the FID metric for completeness as it is more widely used.

Topological statistics St are specialized to measure the
topology of a layout graph [35, 55]:

srt : the average number of elements of a given type in a layout.
sht : a histogram over the number of elements of a given type in a

layout.
stt: the number of connections between elements of type a and

elements of type b in a layout.
sdt : the average graph distance between elements of type a and

elements of type b in a layout.
set : a histogram of the graph distance from an element of type a

to the exterior.
sct : a histogram of the degree of an element of type a, i.e. how

many connections the element has to other elements.
sut : The number of inaccessible elements of type a in a layout.

Element shape statistics Sr measure simple properties of the
element bounding boxes:

scr: a histogram of location distributions for each element type.
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sar : a histogram of area distributions for each element type.
ssr: a histogram of aspect ratio distributions for each element type.

Alignment statistics Sa measure alignment between all pairs
of elements:

sca: a histogram of the distances between element centers, sepa-
rately in x and y direction.

sga: a histogram of the gap size distribution between element
bounding boxes (negatives values for overlaps).

saa: a histogram of the distances between element centers along
the best-aligned (x or y) axis.

ssa: a histogram of the distances between the best-aligned sides
of the element bounding boxes.

The same alignment statistics are also computed between
pairs of elements that are connected by descriptive edges.

We average each statistic over all layouts in a dataset and
compare the resulting averages s to the statistics of the test
set. We use the Earth Mover’s distance [52] to compare
histograms:

ŝ∗ =
1

|S∗|
∑
s∈S∗

EMD(s, sgt)

EMD(sours, sgt)
, (5)

where sours and sgt are the average statistics of our and
ground truth distributions, and ∗ can be t, r or a. The aver-
age over all ŝ∗ is denoted ŝavg. Non-histogram statistics use
the L2 distance instead of the EMD.

Free Generation In a first experiment, we generate floor
plans fully automatically, without any user input, by sam-
pling the distribution learned by our constraint model. A
comparison to all baselines is shown in Table 1 and Figure 5.
Note that among the baselines, only StyleGAN can gener-
ate floor plans without user input, while Graph2Plan and

RPLAN need important parts of the ground truth as input.
For example, we sample topologies and boundaries from
the ground truth and give them to the other methods as in-
put. This gives other methods a significant advantage in this
comparison. The FID score correlates most strongly with
the adjacency statistics, since adjacencies can be captured
by only considering small spatial neighborhoods around cor-
ners and walls of a floor plan, but does not capture topology
or room shape statics accurately that require considering
larger-scale features. Unsurprisingly, StyleGAN performs
reasonably well on the FID score and adjacency statistics,
but shows a poor performance on topological statistics which
are mainly based on larger-scale combinatorial features of
the floor plans. Graph2Plan receives the topology as input
giving it a good performance in topological statistics, but
it struggles with room alignment. The RPLAN baseline is
specialized to the RPLAN dataset, as shown in the large per-
formance gap between RPLAN and LIFULL. In summary,
our proposed framework improves significantly on the state-
of-the art, in terms of layout topology, element shape, and
element alignment, even though RPLAN and Graph2Plan
received significant help from ground truth data.

Boundary-constrained Generation As described in Sec-
tion 3.5, we can condition both our element constraint model
and our edge model on input constraints provided by the
user. Here, we show floor plan generation constrained by an
exterior floor plan boundary given by the user. We parse the
exterior of the given boundary into a sequence of rectangular
elements that we use as input sequence for the encoders of
our models. At training time, we use the exterior of ground
truth floor plans as input. This trains the models to output
sequences of element constraints and edges that are roughly
compatible with the given boundary. In the optimization
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Figure 6. Boundary-constrained generation. Left: input boundary constraint; right: floorplans generated with this constraint.

room      , w, h
constraints

generated constrained layouts

Figure 7. Element-constrained generation. Left: The type, width,
and height of the these rooms are used as input constraints. Right:
example layouts generated with these constraints. Note that the
elements form regions of the same types and approximately the
same width and height as the room constraints.

step, we add non-overlap constraints between the generated
boxes and the given boundary. Additionally, since the inte-
rior boxes are generated in sequence from left to right, we
can initialize the first generated box to match the left-most
part of the interior area. Figure 6 show multiple examples
of floor plans that were generated for the boundary given
on the left. Quantitative results obtained by conditioning
on all boundaries in the test set are provided in the last row
for each dataset in Table 1. The boundary-constrained floor
plans show slightly lower performance in the average layout
statistics and FID scores, but still perform much better than
RPLAN, which also receives the boundary as input. We can
see that our approach gives realistic floor plans that satisfy
the given boundary constraint.

Element-constrained Generation Our approach can also
handle constraints that are given in a different format than

the output. We constrain our model to produce a given set
of room types, widths, and heights. Results are shown in
Figure 7. Even though these constraints are quite limiting,
our model produces a large variety of results, while still
approximately satisfying the given constraints.

Discussion Our work also has some limitations. For exam-
ple, the constraint generation network can generate invalid
constraints between elements, e.g. doors between rooms that
do not share a wall. We can easily identify and remove these
constraints. In addition, some constraints result in optimiza-
tion problems that are infeasible. We simply ignore such
samples. Further, like other methods, our work generates a
small percentage of low quality results, however, not nearly
as many as other methods, which is reflected in the statistics.

5. Conclusion

We proposed a new generative model for layout genera-
tion. Our model first generates a layout graph with layout
elements as nodes and constraints between layout elements
as edges. The final layout is computed by optimization.
Our model overcomes many limitations of previous mod-
els, mainly the need for significant user input and ad-hoc
post-processing steps. Further, our model leads to signifi-
cantly higher generation quality as evidences by multiple
statistics and enables multiple possibilities of conditional
layout generation. In future work, we would like to explore
the application of our model to other layout problems, such
as image layouts, 3D scene layouts, and component-based
object modeling. We also would like to explore if our model
can be used to post-process 3D scans of indoor environ-
ments.
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A. Furniture Layout Implementation Details
In this Section, we describe the implementation details for

furniture layouts that differ from floor plans. Since furniture

Table 2. Free generation of furniture layouts. We compare the
layout statistics of furniture layouts generated by our method to
purely image-based generation with StyleGAN [26]. Our method
shows a clear improvement over image-based generation.

method ŝt ŝr ŝa ŝavg

StyleGAN 16.50 6.24 7.09 9.94
ours free 1.00 1.00 1.00 1.00

layouts are less constrained than floor plans (furniture pieces
do not need to cover all of the layout without gaps, for
example), we do not add constraining edges and omit the
optimization step, directly using the element constraints as
elements instead: N = NC .

Layout representation In furniture layouts, each element
represents a piece of furniture with an oriented bounding box
N = (τ, x, y, w, h, α) that is parameterized by the type of
furniture τ , the lower-left corner of the bounding box (x, y),
the width and height of the bounding box (w, h), and its
orientation α.

Element constraints The element constraint model de-
scribed in Section 3.2 of the main paper generates constraints
NC = (τ, x, y, w, h, α) for all parameters of a furniture
piece that are directly used as furniture pieces N .

B. Additional Furniture Layout Results
In this section, we present additional furniture layout re-

sults. We generated approximately 10k furniture layouts for
all room types in our floor plans. We evaluate these furni-
ture layouts using the layout statistics described in Section
4 of the main paper. To compute topological statistics ŝt,
we create an r-NN graph of the furniture pieces as layout
graph, with r = 15% of the layout diagonal. Thus, topolog-
ical statistics capture relationships in local neighborhoods
of furniture pieces, for example which types of furniture
are typically placed next to each other. Since elements in
furniture layouts have additional parameters, we extend the
list of layout statistics. We add one statistic to the shape
statistics Sr:

sor: a histogram of orientation distributions for each element type.

And the alignment statistics Sa are extended with:

sos: a histogram of the differences between orientations.
sws : a histogram of the differences between widths.
shs : a histogram of the differences between heights.

We compare to furniture layouts generated with Style-
GAN. Similar to floor plans, we render our furniture layout
dataset, train StyleGAN, and parse the generated images
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Figure 8. Additional furniture layout results compared to StyleGAN. Left: our furniture layouts (yellow: living-room; blue: bedroom); right:
StyleGAN does not generate correct furniture proportions and has a lot of noise in its layouts.
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back into furniture layouts. Table 2 and Figure 8 show the re-
sults of this comparison. Similar to floor plans, Our method
shows a clear advantage over the purely image-based Style-
GAN.

C. Architecture Details
In this section, we describe the units we use as the build-

ing blocks for our model.

C.1. Embedding

Element Constraint Model The input sequence to the el-
ement constraint model has three components - the value se-
quence SE = {vi}kMN

i=1 , the position sequence I = {i}kMN
i=1

and the type sequence T = {imod k}kMN
i=1 , where MN is

the number of elements and k is the number of properties
per element. We use three separate learned embeddings, one
for each sequence. The final embedding is the sum of these
three embeddings.

Edge Model The edge model operates on sequences of
learned element embeddings gθρ , as described in Section 3.3
of the paper. The embedding function is modeled by a trans-
former with the same architecture as the element constraint
model, that takes as input the element constraint sequence
and outputs a sequence of element embeddings. Similar to
the element constraint model, the embedding function can
be conditioned on a sequence of constraints by adding an
encoder, as shown in the top left of Figure 9.

The sequence of element embeddings is then arranged
according to the edge sequence (concatenating the element
embeddings corresponding to the two elements of each edge)
and processed by the edge model (Figure 9, right) as de-
scribed in Section 3.3 of the paper.

C.2. GPT2- Blocks

For completeness, we describe the details of the archi-
tecture given in Figure 4 of the main paper. The yellow
embedding block denotes the embedding of the element con-
straint model, as described above. We use Dropout [54] with
a drop probability of 0.2 immediately after performing the
sum of embeddings. The attention layers in all our experi-
ments use Multiheaded Attention with 12 heads. We set our
embedding dimension d = 384.

Encoder We use a stack of standard GPT-2 [48] encoder
blocks. The MLP block inside the encoder (and the decoder)
performs the following operation on an input tensor x

x = Linear(GELU(Linear(x))) (6)

The activation function we use between the linear layers
is the GELU [15] function. The first linear layer changes the

embedding dimensions internally from d to 4d. The second
then goes back from 4d to d

Decoder The activation h(L) obtained at the last layer of
the encoder is used for performing cross-attention in the
Decoder. We can write the operations of a Decoder block as:

n(i) = LN(h
(i)
D ) (7)

a(i) = LN
(
n(i) + SelfAttention(n(i), n(i))

)
(8)

b(i) = LN
(
a(i) + CrossAttention(a(i), h(L))

)
(9)

hD
(i+1) = b(i) + MLP(b(i)), (10)

where LN denotes Layer Normalization [2]. We a add a
single linear layer after both the Encoder and the Decoder to
produce logits. The encoders are only used for constrained
generation, such as floor plan generation constrained on a
given floor plan boundary. In free generation, we do not
have any constraints, so we do not add encoders to any of
the models.
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