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Abstract

Data augmentation is vital for deep learning neural net-
works. By providing massive training samples, it helps to
improve the generalization ability of the model. Weakly
supervised semantic segmentation (WSSS) is a challeng-
ing problem that has been deeply studied in recent years,
conventional data augmentation approaches for WSSS usu-
ally employ geometrical transformations, random crop-
ping and color jittering. However, merely increasing the
same contextual semantic data does not bring much gain
to the networks to distinguish the objects, e.g., the correct
image-level classification of “aeroplane” may be not only
due to the recognition of the object itself, but also its co-
occurrence context like “sky”, which will cause the model
to focus less on the object features. To this end, we present
a Context Decoupling Augmentation (CDA) method, to
change the inherent context in which the objects appear
and thus drive the network to remove the dependence be-
tween object instances and contextual information. To vali-
date the effectiveness of the proposed method, extensive ex-
periments on PASCAL VOC 2012 and COCO datasets with
several alternative network architectures demonstrate that
CDA can boost various popular WSSS methods to the new
state-of-the-art by a large margin. Code is available at
https://github.com/suyukun666/CDA

1. Introduction
Semantic segmentation is a foundation in the computer

vision field, which aims to predict the pixel-wise classi-
fication of the images and it enjoys a wide range of ap-
plications. Recently, benefiting from the deep neural net-
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Figure 1. Illustration of the difference between conventional aug-
mentation approaches and our method. Classical data augmenta-
tion consists of generating images obtained by basic geometrical
transformations or color changes of original training images. Con-
text Decoupling Augmentation (CDA) aims to randomly paste the
given object instances into the scenes, so as to decouple the inher-
ent context position of the original objects in the image.

works, modern semantic segmentation models [7, 8, 31, 33]
have achieved remarkable progress with massive human-
annotated labeled data. However, collecting pixel-level
labels is very time-consuming and labor-intensive, which
shifts much research attention to weakly supervised seman-
tic segmentation (WSSS). There exist various types of weak
supervision for semantic segmentation like using bounding
boxes [10, 24], scribbles [30, 40], points [4], and image-
level labels [21, 2, 1, 43, 50]. Among them, image-level
class labels have been widely used since they demand the
least annotation efforts and are already provided in existing
large-scale image datasets.

In this paper, we focus on augmentation for WSSS with
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image-level labels, which is crucial for deep learning net-
works. As shown in Figure 1 upper part, given a training
image, traditional data augmentation methods utilize some
geometrical transformations, such as rotation, scaling, flip-
ping, and even some color conversions to increase the di-
versity of images to avoid overfitting. However, for weakly
supervised semantic segmentation, adjusting the image as a
whole and maintain the same contextual semantic relation
will not significantly help the networks to mine the object
areas. For example, “sofa” always appears in the room in
the datasets, therefore, the trained network may not only
recognize the objects depending on the instance features but
also their co-occurrence context information [29]. Specifi-
cally, when object instances often appear at the same time
with some accompanying backgrounds, it will cause the net-
works to yield confounding bias. Namely, the networks can
perform classification task well is not due to successfully
distinguishing the characteristics of objects, but to being
aware of the appearance of certain contextual semantic in-
formation, which is harmful to mine the object regions.

Based on this observation, we propose a Context Decou-
pling Augmentation (CDA) method, designing for disas-
sembling the inherent contextual information of the original
image. As shown in Figure 1 bottom half, the “cat” shows
in the “sky”, and the “sofa” falls on the “road”. Although
some of these scene collocations rarely appear in life, the
models can pay more attention to the objects correspond-
ing to the classification labels. Unlike the fully-supervised
data augmentation approaches [13], we cannot access the
object instance labels to extract the objects under the weakly
supervised setting. Therefore, we first adopt off-the-shelf
WSSS approaches to obtain the object instances that have
been well-segmented. Secondly, we randomly paste the se-
lected foreground instances into the input images to get the
new enhanced images and put them into the model for train-
ing together with the original ones without augmentation.
In this way, we can break the dependency between objects
and contextual background, and the models will focus on
the internal information of the foreground instances rather
than the context information to predict the categories they
belong to. Besides, we use an online training technique to
conduct data augmentation, which means that the combina-
tion of the raw input images and the object instances to be
pasted are different each time. This greatly increases the
diversity of combinations of various scenes and object in-
stances, and thus enhance the decoupling capability of the
networks.

In the proposed context decoupling augmentation frame-
work, we utilize different WSSS networks as our baselines.
To verify the effectiveness of our proposed method, ex-
tensive experiments show that CDA can improve pseudo-
masks more than 2.8% mIoU on average. We achieve
new state-of-the-art performance by 66.1% mIoU on the

val set and 66.8% mIoU on the test set of PASCAL VOC
2012 [15], and 33.7% mIoU on the val set of COCO [32].
The main contributions of our paper can be summarized as
follows:

• We present a generally applicable data augmentation
approach for weakly supervised semantic segmenta-
tion, which, to the best of our knowledge, has not been
well explored.

• The proposed context decoupling augmentation
(CDA) method does not require additional data and it
can remove the correlation between foreground object
instances and background context information, which
can drive the network focus on object regions rather
than the background.

• Experiments on PASCAL VOC 2012 and COCO show
the effectiveness of our proposed method and CDA can
boost the performance of different WSSS methods to
the new state-of-the-art by a large margin.

2. Related Work
2.1. WSSS

Image labels as the weak supervision for segmentation
have been widely studied in the past few years. Many ap-
proaches [44, 2, 1] use CAM [51] to mine the object seed
regions by predicting image labels. To solve the problem
that only the discriminative regions can be highlighted, re-
searchers designed to expand the object seed regions in var-
ious ways. For example, in [47], the target regions are ex-
panded by fusing different discriminative regions generated
by convolutional layers with different expansion rates. [44]
drives the network to learn the rest parts of the objects by
iteratively erasing the target areas. In addition, some previ-
ous works [21, 22] use additional data, such as videos and
saliency maps, to explore the objects areas.

Although object expansion technologies emerge end-
lessly, they all use CAM [51] as the cornerstone. The ef-
fect of subsequent diffusion depends on the first step of
the CAM learning features. As only image-level labels are
provided, when objects are closely coupled with contextual
backgrounds, such as “boat” and “water”, “aeroplane” and
“sky”, “train” and “track”, CAM will mistakenly recognize
the background together with foreground objects. As men-
tioned in [29], the training networks have no incentive to
focus attention only on the foreground class as there may
be bias towards other contextual factors as a distractor with
high correlation. Thus, this is an issue that’s worth thinking
about and that needs to be solved.

2.2. Data Augmentation

Data augmentation is a major trick to train deep neural
networks, which aims to increase the diversity of the data
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Figure 2. Overview of the proposed augmentation scheme. Stage-I: use the off-the-shelf weakly supervised semantic segmentation methods
to obtain some simple object instances with good segmentation. Stage-II: paste the object instances randomly into the raw images to form
the new input images, and perform online data augmentation training in a pairwise way with the original input images.

by increasing the training samples and avoid overfitting to a
certain extent. Conventional data augmentation approaches
perform a series of operations on the basic data, such as ro-
tation, flipping, adding Gaussian noise, etc. Some works
have explored synthesizing training data [17, 35] for further
generalizability. Generating new training samples by Styl-
izing ImageNet [18] can lead to better classification perfor-
mances. Recently, GAN [52] has been employed to transfer
the style of the images and to make the content of the images
from one domain to another, which can enrich the seman-
tic information of the images to train the deep neural net-
works. Furthermore, [49] introduced a method to mix two
random samples and divide the classification results propor-
tionally to enhance images. [12] conducted augmentation
by randomly cutting out some areas in the sample and filled
it with 0 pixel value, and keep the result of classification
unchanged.

For object detection and segmentation, a popular data
augmentation way is “copy-and-paste” [13, 14]. These
works pasted real segmented objects into natural images,
which is beneficial to increase the object complexity of
the internal images and can help to solve the problem of
small target detection. However, obtaining these segmented
objects requires pixel-wise instance labels. [36] used box-
supervision and the off-the-shelf faster-RCNN [37] method
to segment and generate masks via cut-and-paste. [3]
adopted the unsupervised cut-and-paste learning method to

generate new combined images, but this kind of method is
only applicable to the image of single object. It is the first
time that we employ copy-and-paste in the WSSS field and
it does not require the help of pixel-wise labels and other
auxiliary approaches. Thus, for WSSS, such a data augmen-
tation scheme is significant and has not been well explored.

3. Framework

Our approach mainly consists of two stages : (1) we first
collect the easy examples of well-segmented objects by us-
ing off-the-shelf WSSS methods; (2) then we train the net-
work in a pairwise manner with online augmentation. In
this section, we will describe these two stages in details.

3.1. Object Instances Collecting

We aim to apply data augmentation on one of the WSSS
models (i.e., IRNet [1]). To some extent, the WSSS method
can successfully predict good masks for some easy objects
with class labels. Therefore, as shown in Figure 2, in the
first stage, we train the original network and we are able to
select qualified object instances through the scene complex-
ity of the image, the scope of the object and the semantic
relevance by setting some criteria.

Specifically, for the inferring phase after training the net-
work, we follow two main criteria for collecting object in-
stances: (i) the current image should only have a single
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Figure 3. Different kinds of pasting methods used in experiments.
(a) Raw input, (b) Random rescale pasting, (c) Random rescale
+ rotation pasting, (d) Random rescale + rotation + Gaussian
smoothing pasting.

class. The intuition behind this is that in the case of only
a single class, the image information should be simple and
without a complex semantic environment, the segmentation
results of the model should be more accurate; (ii) the seg-
mentation result of the current image should meet the con-
dition, ϵ1 < m

n < ϵ2, where ϵ1 and ϵ2 are two threshold
factors, respectively. m is the number of pixels belonging
to the foreground object, n is the number of pixels of the
entire image. The reason lies that if the scale value of m

n
is too large, it should be that the background is incorrectly
identified as the foreground. In contrast, if the scale value
is too small, it should be that the model has not been able
to recognize enough foreground object pixel information.
Different from existing synthesis approaches [13, 14] , our
method is based on self-provided masks to obtain qualified
object instances images.

3.2. Online Augmentation Training

Blending. Before we take a step to train the network in
the second stage, we first introduce how to blend the object
instances into the natural images. As shown in Figure 3, we
show different types of pasting skills in our experiments.
It’s worth mentioning that we only paste objects that have
not appeared in the original images. The significance of
this is that we can increase the diversity of objects of the
images, while also reducing the dependence of the same
objects in the inherent scene. By randomly rescaling the
objects, we can paste them into the images appropriately to
prevent them from being too large or too small. The addi-
tion of random rotation can change the inherent orientation
properties of the objects. Adding Gaussian smoothing can
help the added objects boundary blend more naturally.

In some cases, the blending may not be ideal, we elabo-
rate on several possibilities for random pasting. As shown
in Figure 4, we have listed several augmented images of ran-
dom pasting and we call them “perfect”, “good” and “noise”
examples. As for the “good” example, the new object “bird”
covers part of the “dog” in the original image, however, we
argue that this could help to erase the discriminative regions
and force the network to discover more object regions like
the function in [44]. The noise example shows that the

(a) perfect (b) good

(c) noise

Figure 4. Examples of the input augmented images with varying
degrees of occlusion.

“sofa” completely covers the “aeroplane” in the original im-
age, which will cause confusion to network classification.
However, we consider that such hard examples do not ac-
count for the majority. Most objects occupy in the middle
or prominent location of the natural images. The random
blending method we employ tends to paste the new objects
into the off-center position of the images. Thus, this case
does not affect learning. Hence, our framework is robust
to the quality of augmentation. According to our experi-
ments, this simple random blending method performs well
in boosting the performance.

Online Training. The augmentation scheme is con-
ducted online to enhance the network trained in stage-I to
improve the ability to distinguish object features. Formally,
in each batch, we sample N/2 images from the training
dataset and the same number object instances images from
the subset which is provided from stage-I. Then we ran-
domly paste the segmented objects into the input images,
which creates a N/2 batch new images. Thus, a batch of
size N is generated online for each augmentation iteration.
The construction process of the online augmentation learn-
ing is summarized in Algorithm 1.

Note that we train the online augmentation method in
a pairwise manner as shown in Figure 2 stage-II left. We
consider this can further help the networks to recognize the
objects for the reason that some images have new blended
objects, while some do not, which can help the classifier
find more discriminative features. The motivation behind
this is similar to “finding the differences” with the human
visual system. When the two images have a different object
but with a duplicated background, which can often leave
a deep impression. For the same reason, this can make the
network classifier learn better features of this kind of object.



Algorithm 1 Stage-II: Online Augmentation.
Input:

The training dataset images I and the corresponding
labels L;
The object instancesO and the corresponding labels T .

1: while not done do
2: (Ii, Li)← Draw one sample from training dataset;
3: (Oj , Tj)← Draw one sample from object instances

subset;
4: while Tj in Li do
5: (Oj , Tj)← Resample;
6: end while
7: I ′

i ← Blend Oj into Ii;
8: L′

i ← Append Tj in Li;
9: Train CAM← Loss(C(Ii), Li) + Loss(C(I ′

i ), L
′

i);
10: end while
11: Expansion.

3.3. Discussion

The proposed CDA framework contributes a new data
augmentation learning strategy. Unlike the previous “copy-
and-paste” works, we do not use additional pixel-wise la-
bels. Specifically, by using the self-provided initial seg-
mentation masks of the models, we can obtain the object
instances for the next phase augmentation training. Fur-
thermore, since our goal is to decouple the high correla-
tion between objects and their contextual background, we
don’t need to consider much about visual context [13, 9],
which can greatly improve the efficiency of pasting objects
into the images. Besides, we adopt online augmentation
training skills. Compared with static offline data augmenta-
tion, which merely enlarges the scale of the training dataset
in linear-level. Namely, once a new dataset is formed, the
number of images will remain unchanged. However, our
method is able to obtain exponential-level augmentation,
because the combination of object instances and natural im-
ages can be ever-changing in each round of training.

4. Experiments
To demonstrate the contributions of the proposed

method, we conduct several ablation studies to show the
effectiveness of CDA and compare different baselines mod-
els to the state-of-the-arts. We will give the details of the
datasets, evaluation metric, and baseline models in the fol-
lowing.

4.1. Dataset

All the networks in our framework are trained and eval-
uated on the PASCAL VOC 2012 [15] and COCO [32]
segmentation benchmark for a fair comparison to previous

approaches. As for PASCAL VOC, the official dataset sep-
aration has 1464 images for training, 1449 for validation
and 1456 for testing. Following the common practice, we
take additional annotations to build an augmented training
set with 10582 images presented in [19]. COCO is a more
challenging benchmark with 81 semantic classes (one back-
ground class), 80k, and 40k images for training and vali-
dation. We use the standard mean Intersection-over-Union
(mIoU) as the evaluation metric for all experiments.

4.2. Implementation Details

To validate the applicability of CDA, we deploy it on
three popular WSSS models including IRNet [1], Affini-
tyNet [2] and SEAM [43]. The general training architec-
ture components include a multi-label image classification
step, a pseudo-mask generation step, and the final segmen-
tation model (DeepLab-v2 [7]). We strictly follow the same
settings as reported in the official codes. Specially, for
SEAM [43] and AffinityNet [2] baselines, ResNet38 [20]
that pre-trained on ImageNet [11] is adopted as backbone
with batch size as 8 and 16, respectively. When training
the networks, multi-scale and data augmentation techniques
like horizontal flip, random cropping, and color jittering are
deployed in both architectures. Following the poly policy
lrinit = lrinit(1−itr/max itr)ρ with ρ = 0.9 for decay, the
models are trained with a fix input size as 448 × 448 using
Adam optimizer [25]. Besides, online hard example min-
ing [39] is employed on the training loss in SEAM. As for
IRNet [1], ResNet50 [20] is used as the backbone network
(pretrained on ImageNet). The batch size is set to 16 for the
image classification model and 32 for the inter-pixel relation
model. The input image is cropped into a fix size of 512 ×
512 using zero padding if needed. The model is trained with
the same polynomial decay strategy as in AffinityNet [2] us-
ing stochastic gradient descent (SGD) for optimization with
8, 000 iterations. The fully-connected CRF [27] is used in
three baselines to refine CAM, pseudo-mask, and segmen-
tation mask with the default parameters in the public code.
We set the threshold ϵ1 = 0.1 and ϵ2 = 0.7 by experience.

4.3. Ablation Studies

To verify the effectiveness of our CDA, we evalu-
ate CAM seed regions, pseudo-masks, and segmentation
masks, respectively. In our experiments, the standard mean
Intersection over Union (mIoU) is used on the training set
for evaluating CAM seed area masks and pseudo-masks,
and on the PASCAL VOC 2012 val and test sets for evalu-
ating segmentation masks. For the sake of simplicity, since
the three WSSS models are all based on CAM [51], we use
one of the representative models (IRNet [1]) as a baseline
to conduct several ablation studies on CAM in mIoU to il-
lustrate the role of each component of our approach.

Random pasting vs. Other sophisticated augmenta-



Method operation mIoU (%)

Conventional Augmentation Rotation 48.5
Translation 48.4

Mixup [49]
α = 0.3 48.7
α = 0.5 48.5
α = 0.8 49.0

CutOut [12] Random 48.9

CutMix [48] Random 49.2

Random pasting (ours) Rescale 49.8

Table 1. Experiments of different augmentation methods. Here α
is the intensity of the interpolation between the eigenvector and
the target vector.

Baseline Rescale Rotation Gaussian mIoU (%)

✓ 48.3
✓ ✓ 49.8
✓ ✓ ✓ 50.8
✓ ✓ ✓ 49.6
✓ ✓ ✓ ✓ 50.4

Table 2. The ablation study of the effect on different pasting meth-
ods. Baseline indicates the original CAM method without pasting
new objects for augmentation.

Training manner mIoU (%)

Pairwise 50.8
None-pairwise 50.1

Table 3. Experiments of augmentation training manner.

tion methods: As for the traditional augmentation meth-
ods, we adopt the random rotation and translation to ex-
pand the dataset to three times the original size, however,
they can not bring significant boost for the performance.
We also compare Mixup [49], CutOut [12] and CutMix [48]
methods to generate new augmented images. As shown in
Table 1, random rescale pasting outperforms the other three
methods achieving 49.8% mIoU. These results demonstrate
that random pasting is suitable for our CDA framework. We
consider that proper occlusion helps the network to better
mine the features of other areas of the objects, and the situ-
ation of complete occlusion is relatively rare which will not
affect our learning process.

Comparison with baseline: We further explore the im-
pact of different pasting methods on data augmentation.
Table 2 shows that using random rescale pasting has a
1.5% improvement compared to baseline. After combin-
ing rescale and rotation, we can get the best performance
to 50.8% mIoU on PASCAL VOC training set. The results
show that applying Gaussian smoothing can not help to im-

Input CAM+Aug CAM

Figure 5. Qualitative visualization of CAMs. Our CDA frame-
work not only suppresses over-activation (1st, 2nd, 3rd row) of
the high correlation contextual backgrounds of the objects and ex-
pands CAMs to cover the whole object regions (4th row).

prove the performance. Therefore, in subsequent experi-
ments, unless otherwise specified, we will use the random
rescale combining with the rotation method.

Figure 5 shows the qualitative comparison between our
CAM+Aug by CDA method and the original CAM. As
shown in the first and second rows in the figure and the la-
bels of objects are “table”. The original CAM will activate
background semantic information that is strongly related to
the “table”, such as “chair”. However, by employing the
decoupling augmentation training strategy, our method can
focus on the target areas. For the image with the label of
“train”, CAM even pays attention not to the object itself,
but the “track”, which will be detrimental to the subsequent
segmentation task. Moreover, CDA can also help the net-
work expand and discover more comprehensive object fea-
tures but not only the most discriminative regions like the
“cat” shown in the last row.

The effect on pairwise training: Compared to merely
using the augmented images to train the networks, we use
the none-augmented images with the augmented images as
pair images to jointly train the models as shown in Figure 2
stage-II. The results shown in Table 3 show that applying
pairwise training strategy outperforms the one in single aug-
mented images, which illustrates that this helps the network
classifier to learn more discriminative features.



Network Backbone CAM Pseudo-Masks Seg. Masks (val-set) Seg. Masks (test-set)

AffinityNet [2] ResNet-38 48.0 59.7 61.7 63.7
+ CDA ResNet-38 48.9+0.9 63.3+3.6 64.2+2.5 65.8+2.1

IRNet∗ [1] ResNet-50 48.3 65.9 63.5 64.8
+ CDA ResNet-50 50.8+2.5 67.7+1.8 65.8+2.3 66.4+1.6

SEAM [43] ResNet-38 55.4 63.4 64.5 65.7
+ CDA ResNet-38 58.4+3.0 66.4+3.0 66.1+1.6 66.8+1.1

Table 4. Different baselines with our CDA framework performance in mIoU on PASCAL VOC. ∗denotes our reimplemented results since
the original code does not provided pre-trained weights.

Number of pasted objects Same category objects mIoU (%)

1 × 50.8
2 × 48.9
3 × 47.8
1 ✓ 50.2
2 ✓ 48.6
3 ✓ 47.4

Table 5. Experiments of different number of pasted objects for
augmentation.

The effect on objects numbers: Under the default set-
tings of our experiment, we only paste one new instance
that does not exist in the original images. We further ex-
plore the effect of pasting multiple objects into the images
to conduct augmentation. As shown in Table 5 above the
solid line, when the number of object to be pasted increases
from one to two, the mIoU performance will decrease. As
the number of pasted objects changes to three, it will even
worse than the baseline. The results show that over-pasted
objects may cover the objects in the original image, making
the noise sample dominant. This will confuse the classifier,
which will bring negative effects. In addition, as depicted
below the solid line in Table 5, when we allow the pasted
object to be consistent with the object category in the orig-
inal image, their general performance is worse than the for-
mer. This shows that forcing objects of different categories
to be pasted into images can decouple the strong contextual
dependence of objects in the original semantic environment.

Analysis of pseudo labels and Segmentation masks:
The overall results are shown in Table 4. We can ob-
serve that deploying CDA on different weakly supervised
semantic segmentation models can improve all their perfor-
mances. Specifically, SEAM [43] can achieve the best per-
formance in Segmentation Masks on both validation set and
testing set. Figure 6 shows that we can obtain more accurate
and complete masks covering the object areas.

4.4. Comparison with State-of-the-arts

Finally, we compare our framework with state-of-the-art
methods on the PASCAL VOC 2012 and COCO dataset in-

(a) (b) (c) (d)

Figure 6. Visualization of pseudo-masks (baseline: IRNet [1]). (a)
Input images. (b) Ground-Truth labels. (c) Our CAM+Aug. (d)
Original CAM.

cluding both the validation set and the testing set. For a fair
comparison, we adopt the same DeepLab [6, 7] architec-
tures as reported in the original papers. On PASCAL VOC
2012, as is shown in Table 6, although different baselines
already boosts performance compared to previous meth-
ods, when CDA is deployed in the models, SEAM [43] can
achieve the best performance and outperform other state-
of-the-arts by a large margin. IRNet [1] yield the second
best performance and can beat its later published works.
On COCO, CDA deployed on IRNet achieves 33.7% mIoU
on the val set, which surpasses the previous best model
by 1.1% mIoU. Figure 7 presents qualitative results of our
CDA approach applying on IRNet baseline and compares
them to itself. We can observe that CDA can make more
accurate predictions on objects, which shows better demar-
cations in some coherent areas. Meanwhile, CDA can help
to expand and discover more comprehensive object regions.
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Figure 7. Qualitative results on the PASCAL VOC 2012 val set. (a) Input images. (b) Ground-truth labels. (c) Results obtained by IRNet [1]
baseline. (d) Results of our IRNet + CDA. More results can be found in the supplementary material.

Methods Backbone Saliency val test

CCNN [34]ICCV’15 VGG16 - 35.3 35.6
SEC [26]ECCV’16 VGG16 - 50.7 51.1
STC [45]TPAMI’17 VGG16 ✓ 49.8 51.2

AdvEra [44]CVPR’17 VGG16 ✓ 55.0 55.7
DCSP [5]BMVC’17 ResNet101 ✓ 60.8 61.9
MDC [46]CVPR’18 VGG16 ✓ 60.4 60.8

MCOF [42]CVPR’18 ResNet101 ✓ 60.3 61.2
DSRG [23]CVPR’18 ResNet101 ✓ 61.4 63.2

AffinityNet [2]CVPR’18 ResNet-38 - 61.7 63.7
IRNet [1]CVPR’19 ResNet50 - 63.5 64.8

FickleNet [28]CVPR’19 ResNet101 ✓ 64.9 65.3
SEAM [43]CVPR’20 ResNet38 - 64.5 65.7

ICD [16]CVPR’20 ResNet101 - 64.1 64.3

IRNet + CDA (ours) ResNet50 - 65.8 66.4
SEAM + CDA (ours) ResNet38 - 66.1 66.8

Table 6. Performance comparisons with other state-of-the-art
WSSS methods on PASCAL VOC 2012 dataset. The best and
second best performance under each set are marked with corre-
sponding formats.

5. Conclusion

In this paper, we propose a Context Decoupling Aug-
mentation (CDA) method for WSSS and to narrow the gap
with fully supervision. Specifically, through a two-stage
training, the object instances provided by the network it-
self are copied and pasted into the input images to conduct
augmentation. To further improve the ability of network for

Methods Backbone val

BFBP [38]ECCV’16 VGG16 20.4
SEC [26]ECCV’16 VGG16 22.4
IRNet [1]CVPR’19 ResNet50 32.6

SEAM [43]CVPR’20 ResNet38 31.9
IAL [41]IJCV’20 VGG16 27.7

IRNet + CDA (ours) ResNet50 33.7
SEAM + CDA (ours) ResNet38 33.2

Table 7. Performance comparisons with other state-of-the-art
WSSS methods on COCO val in terms of mIoU.

learning object features, we adopt pairwise training manner
to help the classifier to distinguish more discriminative fea-
tures. Experimental results show that CDA can help boost
various WSSS methods to the new state-of-the-arts.
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