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Abstract

This paper addresses weakly supervised amodal instance
segmentation, where the goal is to segment both visible
and occluded (amodal) object parts, while training pro-
vides only ground-truth visible (modal) segmentations. Fol-
lowing prior work, we use data manipulation to generate
occlusions in training images and thus train a segmenter
to predict amodal segmentations of the manipulated data.
The resulting predictions on training images are taken as
the pseudo-ground truth for the standard training of Mask-
RCNN, which we use for amodal instance segmentation
of test images. For generating the pseudo-ground truth,
we specify a new Amodal Segmenter based on Boundary
Uncertainty estimation (ASBU) and make two contribu-
tions. First, while prior work uses the occluder’s mask,
our ASBU uses the occlusion boundary as input. Second,
ASBU estimates an uncertainty map of the prediction. The
estimated uncertainty regularizes learning such that lower
segmentation loss is incurred on regions with high uncer-
tainty. ASBU achieves significant performance improve-
ment relative to the state of the art on the COCOA and
KINS datasets in three tasks: amodal instance segmenta-
tion, amodal completion, and ordering recovery.

1. Introduction

In this paper, we seek to address the problem of weakly
supervised amodal instance segmentation (WAIS). Our goal
is to segment both visible and occluded (amodal) parts of
object instances in images. The weak supervision in train-
ing provides only ground-truth visible (modal) instance seg-
mentations. Important applications of amodal segmentation
include autonomous driving and robot path planning, where
identifying the whole spatial extents of partially occluded
objects is critical. Considering this problem under weak su-
pervision is also important because human annotators often
cannot provide reliable ground truth. For example, different
annotators are likely to have very different and sometimes
poor guesses of occluded object parts.

There is scant prior work on WAIS. Following recent
PCNet [37], our training consists of two stages. First, we
use data augmentation to train a common image segmenter
— UNet [33] — on manipulated training images to predict
their amodal segmentations. As input to UNet, we use the
available ground-truth modal segmentation and information
about where the data augmentation generated the occlusion
in the training image. In the second training stage, UNet’s
amodal segmentations are taken as a pseudo-ground truth
for learning a standard instance segmenter — Mask-RCNN
[13], as in [37]. On test images with occlusions, Mask-
RCNN trained on the pseudo-ground truth is expected to
output correct amodal instance segmentation.

Our contributions are aimed at advancing the first train-
ing stage, and include: (1) a new way to exploit the weak
supervision for training of UNet; and (2) enabling UNet to
estimate uncertainty of the predicted amodal segmentation,
and enforcing the training of UNet to explicitly minimize
this uncertainty.

Our first contribution is motivated by the following lim-
itation of PCNet [37]. For manipulating training images,
as illustrated in Fig. 1, PCNet randomly places an occluder
object onto an occludee object based on their ground-truth
modal segmentation masks, and in this way artificially gen-
erates the occluded mask of the occludee. Then, as three
inputs to UNet, PCNet uses the manipulated training im-
age, the occluded mask of the occludee, and the occluder’s
mask. However, using the occluder’s mask as input to UNet
puts the restrictive constraint that the occluder itself cannot
be occluded by another object. To address this limitation,
PCNet estimates an object ordering graph in the image, and
for the occluder selects a union of all objects estimated as
closer to the camera than the occludee (i.e., a union of mul-
tiple occluders). Our novelty is in replacing the occluder’s
mask with the occlusion boundary in the input to UNet, as
depicted in Fig. 1. Thus, our occluders are allowed to be
themselves partially occluded by some other objects. This
reduces complexity of estimating the pseudo-ground-truth
amodal segmentation, as we do not need to estimate the ob-
ject ordering graph.
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Figure 1. (Top) A recent approach to WAIS [37] where UNet [33] is trained with binary cross-entropy loss to predict amodal segmentation
from the manipulated training image, the occluder’s mask, and the occluded mask of the occludee. (Bottom) Our approach, called ASBU,
differs [37] in terms of input, output, and loss. For input, instead of the occluder’s mask, we use the occlusion boundary, and instead of
“zeros” we use matting to superimpose the occluder onto the image. This means that we remove the information about the occluder’s
spatial extent from the input to UNet. For output, along with amodal segmentation, we additionally estimate uncertainty of prediction. For
loss, we use uncertainty to appropriately weight loss. GT stands for ground truth.

Our second contribution is aimed at accounting for shape
priors. As shown in Fig. 4, we implicitly capture a “shape
prior” through learning to estimate an uncertainty map for
the predicted amodal segmentation. In our experiments, we
observe that the estimated uncertainty typically takes low
(high) values over regions far away (close) to the occlusion
boundary. This suggests that our uncertainty map is capable
of representing a spatial distribution of object shapes, and
hence can be used for regularizing our learning. Our reg-
ularization uses the estimated uncertainty map to appropri-
ately modulate a difference between the predicted amodal
segmentation and the original ground-truth mask of the oc-
cludee (before the occlusion), such that lower loss is in-
curred on regions with high uncertainty.

Our two contributions are incorporated in the new
Amodal Segmenter with Boundary Uncertainty estimation
(ASBU). ASBU is evaluated on the COCOA [38] and KINS
[32] datasets on three tasks: amodal instance segmentation,
amodal completion, and ordering recovery. ASBU signifi-
cantly outperforms the state of the art in all three tasks.

In the following, Sec. 2 reviews previous work; Sec. 3
specifies ASBU; Sec. 4 formalizes our uncertainty estima-
tion and uncertainty weighted loss; Sec. 5 presents our im-
plementation details and experimental results; and Sec. 6
concludes the paper.

2. Related Work

This section reviews closely related work.

Instance Segmentation is aimed at labeling pixels with
object instance labels, and can be addressed with bounding-
box-based and bounding-box-free methods. In the former
[13, 25, 5, 30, 2], for every detected bounding box, a fore-
ground object is segmented. In the latter [21, 23, 3, 10],
first, a semantic segmentation is obtained, and then pixels
of the same semantic class are clustered into instances based
on visual cues such as object center or inner sign distance
function. All of these approaches segment only visible ob-
ject parts and thus are not suitable for our problem.

Amodal Instance Segmentation infers visible and oc-
cluded object parts, under full supervision in training. For
the ground truth, prior work uses amodal segmentation of
either real images [24, 38, 32, 11, 16] or synthetic data
[9, 15, 19]. However, the existing quality of synthetic data
introduces a domain gap between training on synthetic im-
ages and testing on real images, resulting in a considerable
performance difference between the two domains.

Amodal Instance Completion differs from amodal in-
stance segmentation since the goal is to complete occluded
parts of an object given its modal mask, whereas in amodal
instance segmentation the modal mask is not provided.
Prior work typically uses the Gestalt principles and makes



certain assumptions about shape convexity and length. For
example, amodal instance completion has been addressed
by using Euler spiral, cubic Bezier curves, shape primitives,
and variational auto-encoder in [20, 26, 35, 29]. Our first
stage of training for generating the amodal pseudo-ground
truth is based on amodal instance completion. We evaluate
ASBU on the task of amodal instance completion.

WALIS provides access only to modal-mask annotations
in training. Recent work [37] begins by converting modal-
mask annotations of training images into pseudo amodal
masks in a self-supervised manner, as illustrated in Fig. 1.
However, in a complex scene, the occluder can also be oc-
cluded by another object, as shown in Fig. 2, which requires
[37] to construct an object ordering graph. This increases
complexity of their first stage of training of UNet, and is not
even suitable for addressing cases of entangled partial oc-
clusions when the occluder-occludee relationship of a pair
of objects is not unique, as illustrated in Fig. 3. We over-
come this limitation by replacing the occluder’s mask with
the occlusion boundary for our input. Unlike [37], we ef-
fectively remove from our input any information about the
occluder’s spatial extent. Consequently, we do not need to
estimate the object ordering graph as in [37].

Figure 2. An example of a occluder partially occluded by other
objects. A is occluded by B and C, B is occluded by C, and C is
occluded by D. For input in the first stage of our training, we use
only the occlusion boundary (green), whereas [37] first estimates
the ordering graph of A, B, C, and D (on the right), and then takes
a union mask of B, C, and D as input.

Figure 3. Examples of entangled objects occluding each other,
where the occlusion relationships cannot be uniquely represented
by an ordering graph, and thus are very challenging for PCNet
[37]. As shown in Fig. 5, we successfully address these cases.

Recently, [36] proposes to learn shape priors for each
category by using modal object bounding boxes. Then the
amodal object bounding box is obtained by aligning modal
box with learned shape priors. This approach only works

well with low-deformation object categories such as car and
motorbike of KINS [32] so that we can robustly learn object
shape priors. In contrast, ASBU can handle many types of
object category as in COCOA [38].

Uncertainty Estimation in Segmentation has a long
track record in the literature. Prior work typically estimates
aleatoric uncertainty (data uncertainty) [22] and epistemic
uncertainty (weight uncertainty) [17], where the former es-
timates noise in observations and the latter accounts for a
distribution of model parameters. For example, in [22],
UNet [34] is extended with a variational auto-encoder for
aleatoric uncertainty estimation. In [17], estimation of a dis-
tribution of the SegNet parameters [1] replaces the common
fixed-point parameter estimation. Shape priors have also
been studied in the following related work [19, 20, 26, 35].

3. Our Approach

The section specifies our ASBU. Fig. 4 shows that
ASBU uses two distinct sets of inputs for training of UNet
to jointly predict the amodal segmentation mask and the
associated uncertainty map. These predictions incur an
uncertainty-weighted loss function, specified such that our
training minimizes both uncertainty and errors in the pre-
dicted amodal segmentation.

Our data manipulation of training images, first, ran-
domly samples two objects as occludee and occluder, then,
randomly samples a relative position between their modal
masks such that the occluder’s mask partially occludes the
occludee’s mask, and finally prepares the following two sets
of input data:

1. (set 1 and set 2) Manipulated training image, where the
occluder’s image is superimposed onto the occludee’s
image with matting for realistic appearance;

2. (set 1 and set 2) Occlusion boundary mask, estimated
as an intersection of the morphologically enlarged
masks of the occludee and occluder;

3. (set 1) Occluded mask of the occludee, where pixels
of the ground-truth modal mask of the occludee
covered by the occluder are zero.

(set 2) Ground-truth modal mask of the occluder.

Importantly, while both input sets are used in training,
ASBU is not aware if the the input segmentation mask
comes from the occludee or from the occluder. In this
way, ASBU is trained to identify when and how to perform
amodal completion of the input segmentation mask. Specif-
ically, for set 1 at the input, ASBU is supposed to learn ro
extend the input segmentation mask in the region with zero
pixels, which is delineated by the input occlusion boundary,
because this region is likely to represent the manipulated oc-
clusion. On the other hand, for set 2 at the input, ASBU is
supposed to learn not to extend the input segmentation mask
in the zero-valued region.
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Figure 4. ASBU is trained on two sets of input triplets so as to learn when to spatially extend and when not to extend the input segmentation
mask in prediction. Our first contribution is in the input to ASBU- namely, we replace the occluder mask used in [37] with the occlusion
boundary mask. Our second contribution is in the prediction of the uncertainty map and using uncertainty to appropriately weight loss.
The figure shows that the predicted uncertainty is usually low on regions close to the occlusion. This is used for regularizing learning.
Note that we adjusted brightness for visualizing uncertainty (the brighter pixels in the uncertainty map the higher uncertainty), because it

is significantly lower for set 2 than for set 1.

4. Uncertainty Weighted Segmentation Loss

Our uncertainty estimation is aimed at implicitly captur-
ing a “shape prior” of training object instances, which is
used for regularizing our learning. Thus, our learning has
the following two objectives:

1. Minimizing uncertainty of the predicted amodal seg-
mentation, so when uncertainty is estimated as large it
captures a truly large variability in plausible shapes;

2. Penalizing a difference between the predicted amodal
segmentation and the ground truth in an adaptive man-
ner, such that this loss is appropriately reduced when the
shape is estimated to come from a highly variable dis-
tribution — i.e., when the estimated uncertainty is high.

To this end, our ASBU extends UNet to output a
HxW x2 feature map which has two channels, one for
amodal segmentation prediction and the another for the un-
certainty prediction, where H and W denote the height and
width of the input image. The predicted values for amodal
segmentation, {m; : i = 1,..., N}, N = H-W, are output
by the sigmoid function, so they range in m; € [0, 1]. The
predicted uncertainty values, {u; : ¢ = 1,..., N}, are out-
put by the softplus function, softplus(z) = log(1+exp(z)),
so they are positive u; € RT.

For learning to jointly predict {m;} and {u;}, we spec-
ify a new uncertainty-weighted segmentation loss. The pre-
diction of {m;} can be supervised by the corresponding
original modal mask as it was before the data manipulation
{m7}. On the other hand, the prediction of {u;} remains
unsupervised, since there is no ground-truth annotation of
uncertainty in our training data. We integrate the mentioned

supervised and unsupervised training strategies in the fol-
lowing loss:

N
1 C C
Lzﬁzl]l(mi =0)L; + A\ (m{ =1)L;,
1 mr —m; 2
Li == () +ui|, (1
2 U

where m® is the mask of the occluder, \ is a positive con-
stant, 1(-) is the indicator function, and NN is the number
of pixels in the image. We empirically estimate that A = 5
gives the best results, i.e., we put more weight on predic-
tions inside the occluder mask.

Our loss in (1) is inspired by the Mumford-Shah en-
ergy [31], whose minimization is a classical framework for
image segmentation. The Mumford-Shah energy has two
terms — namely, data term and regularization term. By min-
imizing a sum of these two terms, the predicted segmenta-
tion is encouraged to simultaneously minimize energy and
complexity (e.g., favor solutions with a high log-likelihood
and smooth boundaries).

Similarly, our loss L; in (1) also has two terms. The
first term can be interpreted as the data term for minimiz-
ing the energy of a weighted difference between the pre-
dicted amodal segmentation m; and ground truth m;. The
weighting is inversely proportional to the estimated uncer-
tainty for pixels ¢, such that a lower loss is backpropagated
in our training for pixels with higher uncertainty. Since u;
is typically higher on object boundaries than over other ob-
ject parts, the specified weighting effectively accounts for



shape variability. The second term in L; can be interpreted
as the regularization term for penalizing large u; values. In
our experiments, we observe that this regularization favors
zero u,; values over object regions that are not close to the
boundary. Consequently, the data term in L; for such re-
gions introduces a large loss for any errors in the amodal
segmentation m;, because u; =~ 0.

Our loss formulation fundamentally differs from other
recent approaches aimed at estimating uncertainty for ob-
ject segmentation. For example, in [18], segmentation and
its uncertainty are assumed as governed by a Gaussian dis-
tribution with the following loss function:

1 [(m; —m;)?
- (mzizm) 4 logU? )
2 u;

LZGaussian _
In contrast, we do not explicitly specify any probability
distribution of box locations. Also, unlike our L; in (1),
L§aussian iy (2) minimizes uncertainty only when u > 1.
In [29], uncertainty is modeled in the latent space of their
variational auto-encoder, and the amodal mask is predicted
by sampling multiple latent codes from a Gaussian distribu-
tion. In contrast, we predict and regularize our uncertainty
map directly in the spatial domain.

5. Results

Datasets: We evaluate ASBU on COCOA [38] and
KINS [32], which are two benchmark amodal instance
segmentation datasets with real images derived from the
MSCOCO [28] and KITTTI [12] datasets, respectively. CO-
COA consists of 2500, 1323, and 1250 images for train-
ing, validation, and test, respectively. There are 2140 object
categories that can be divided into two superclasses: stuff
(e.g., sky, grass, sea) and things (e.g., dog, cat, human). The
content of images is mostly dense with multiple objects oc-
cluding one another in cluttered scenes. On the other hand,
KINS is a large-scale traffic dataset, which consists of 7474
images for training and 7517 images for testing. There are
7 object categories in KINS including: cyclist, pedestrian,
car, tram, truck, van, and miscellaneous vehicles. Scenes
in KINS images are less cluttered than in COCOA, and if
objects are occluded the occlusion is by mostly one other
object. We further randomly divide the KINS training set
into training and validation sets with 6000 and 1474 im-
ages, respectively. Both datasets provide the ground-truth
amodal masks, which we use only for evaluation.

Evaluation Tasks and Metrics: We evaluate ASBU on
three tasks: ordering recovery, amodal completion, and
amodal instance segmentation.

For ordering recovery, we estimate the following rela-
tionships. Let (m;, m;‘) and (my,, m#') denote two pairs of
input modal and output amodal masks of two adjacent ob-
jects j and k, respectively, where [m#' —m; | and [mj' —my|

are the extended areas after amodal segmentation of j and
k. Then, we specify the ordering of j and k as

0, if mj‘—mj:mﬁ—mk =0
O, k) = 1, if m;‘—mj < |mj! —my
—1, otherwise ,
3)

where O(j, k) = 1 indicates that j occludes k. If j and k
are not adjacent, we set O(j, k) = 0. We evaluate our per-
formance on the task of ordering recovery in terms of the
average pairwise accuracy, O-Acc, between our predicted
ordering relationships O(4, k) and the ground truth relation-
ships O*(j, k), for all pairs (7, k) of adjacent objects.

For amodal completion, we compute the mean
intersection-over-union, mIOU, between the predicted and
ground-truth amodal masks, as well as invisible mIoU, inv-
mloU, for the predicted and ground-truth occluded regions.

For amodal instance segmentation, we report the com-
mon metrics suggested by COCO, including average preci-
sion AP for thresholds 50%, 75%, 95%, and average recall
AR for top 1, 10, 100 predictions, among others.

We evaluate the following baseline and ablations:

e PCNet-m: our strong baseline from [37].

* Boundary—PCNet-m: in the input to PCNet-m we
replace the occluder mask with the occlusion bound-
ary; this tests only our contribution 1 (see Fig. 4), as
PCNet-m does not estimate uncertainty.

* Uncertainty—PCNet-m: PCNet-m is extended to pre-
dict uncertainty and trained with our uncertainty
weighted loss, given by (1), while the input uses the
occluder mask as in [37]; this tests our contribution 2
(see Fig. 4).

* uBCE—ASBU: the uncertainty weighted loss, given
by (1), is replaced with the following uncertainty
weighted binary cross-entropy (uBCE) loss for train-
ing our ASBU; this tests our proposed data term in (1):

m] log m;+(1—m])log(1—m;
_ ] g ( 5 z) g( )_i_uﬂ

u:
“)

LlilBCE_ % [

3

* ASBU: our full approach illustrated in Fig. 4.

5.1. Implementation Details

Our implementation uses the github code of [37] as the
base code and modify UNet [33] so it outputs two channels
for amodal segmentation and uncertainty map, as described
in Sec. 4. We have also tested other networks for segmenta-
tion, such as DeepLabv3 [6] and DeepLabv3+ [7]; however,
our performance gain using these networks is statistically
insignificant. We use the same training setting for fair com-
parison. For learning, we use SGD with momentum [8],
and set the learning rate to le~*. The number of training



Methods COCOA-val COCOA-test KINS-test
0-Acc mIOU | O-Acc mloU | O-Acc mloU inv-mloU

Amodal-VAE [29] (reported) - - - - - 94.68 62.85

PCNet-m [37] (reported) 87.10 81.35 - - 92.50 94.76 -
PCNet-m (reproduced) 85.75 80.73 86.73 86.63 91.73  94.52 59.24
Boundary—PCNet-m 89.01 82.85 89.22  88.67 9226  94.65 62.77
Uncertainty—PCNet-m 88.60 82.49 88.40  88.15 92.08 94.61 62.00
uBCE—ASBU 89.23 83.18 89.32 88.10 | 92.15 94.34 63.41
ASBU 90.33 84.22 90.77 89.87 | 92.65 94.83 64.41

Table 1. Evaluation on the tasks of amodal completion and ordering recovery. For comparison with [37], we present the results of PCNet-m
(reported) and PCNet-m (reproduced), where the former results are reported in [37], and the latter are obtained by retraining their public

code from scratch. ‘-’ indicates that results are not reported.

iterations is 56000 and 32000 for COCOA and KINS, re-
spectively. In each training iteration, we randomly choose
Case 1 or Case 2 input data, as described in Sec. 3, to train
ASBU with a Bernoulli probability equal to 0.8. The A in
Eq. (1) is set to 5 for the best performance. The threshold to
binarize the amodal mask from our network’s output is 0.5.
The batch size for training UNet is 32 256 x 256 images.

For amodal instance segmentation on test data, we use
Mask-RCNN [13] with ResNet50 [14] as backbone and
FPN [27] as the neck. The implementation of Mask-RCNN
is provided in mmdetection [4] toolbox. The batch size for
training Mask-RCNN is 2 with the default setting provided
by mmdetection. All experiments are run on a PC with two
1080 Titan GPUs and 64 GB RAM.

5.2. Ordering Recovery and Amodal Completion

Tab. 1 evaluates ASBU on amodal completion and order-
ing recovery. For amodal completion, on COCOA-val, both
Boundary—PCNet-m and Uncertainty—PCNet-m improve
performance in mIoU over PCNet-m by 2.1% and 1.8%
over PCNet-m (reproduced), respectively. A similar perfor-
mance gain is observed on COCOA-test. Our contribution
1 (i.e., using the occlusion boundary mask in the input) has
a larger effect on the performance than our contribution 2
(i.e., uncertainty), and each individual contribution leads to
performance gains relative to the baseline. The proposed
integration of the two contributions in ASBU gives the best
amodal completion on both COCOA-val and COCOA-test.

For KINS-test, on amodal completion, ASBU improves
performance over PCNet-m (reproduced) in both mIoU and
inv-mloU. The performance gain in mloU is relatively mod-
est, which can be explained by certain properties of the
dataset. KINS has fewer object categories than COCOA (7
vs. 2140), and KINS scenes have fewer occlusions. There-
fore, the ordering graph produced by PCNet-m is already
highly accurate for amodal completion on KINS.

For the ordering recovery task on COCOA-val and
COCOA-test, Tab. 1 shows a similar trend. ASBU signifi-
cantly outperforms PCNet-m (reproduced).

(a) (b) () (d)

Figure 5. Mutual occlusion examples. ASBU can successfully
handle these cases while prior work [37] simply does not work
since we cannot define the ordering graph. Each row is an exam-
ple where red and blue colors represent objects A and B. For each
row, from left to right: (a) input RGB image with color boundary
segments indicating which object is in front of, (b) modal masks of
the two objects, (c) and (d) ASBU predicted amodal masks with
white dash line indicating extended regions of objects A and B
respectively.

Fig. 5 shows representative examples of two objects
that mutually occlude each other. PCNet-m cannot han-
dle such cases since their ordering graph is not expressive
enough. On the contrary, ASBU successfully infers the
amodal masks of the two mutually occluding objects.

Fig. 6 illustrates results of ASBU on COCOA and
KINS on the task of amodal completion. As can be
seen, ASBU gives highly accurate predictions. The fig-
ure also shows our estimated uncertainty maps which usu-
ally take high values on object boundaries. In some cases,
ASBU fails to fully complete the amodal masks, due to the
high similarity of foreground and background.

5.3. Amodal Instance Segmentation

For this task, we take the trained ASBU to predict
amodal masks on COCOA-train and KINS-train, and use
these pseudo amodal masks to train Mask-RCNN (pre-



Figure 6. Qualitative results for amodal completion on COCOA-test (left) and KINS-test (right). For each column from left to right: (1)
input RGB image, (2) input modal mask, (3) input occlusion boundary, (4) predicted amodal mask, (5) predicted uncertainty map, (6) GT
amodal mask. Successful cases are in the green bounding boxes, and failure cases are in the red bounding boxes.

Datasets Trained on AP AP50 AP75 APS AP]W APL AR1 AR10 AR100 ARS AR}\/[ ARL
GT amodal 222 448 200 | 13.8 206 243 | 6.0 27.4 393 334 394 400

COCOA-val | PCNet-m amodal | 21.0 434 185 | 13.7 195 229 | 59 26.6 37.9 33.8 38.6 380
ASBU amodal 222 445 200 | 125 198 246 | 6.1 27.4 38.9 33.1  39.1 39.5

GT amodal 239 484 215 | 141 230 258 | 64 287 40.9 31.7  41.6 415

COCOA-test | PCNet-m amodal | 22.6 46.8 197 | 137 220 242 | 63 27.7 39.2 323 400 396
ASBU amodal 238 479 212 | 13.8 224 256 | 64 286 40.5 329 409 411

GT amodal 30.8 539 316 | 151 404 567 | 189 383 40.4 241 516 656

KINS-test | PCNet-m amodal | 29.1 51.8 29.6 | 141 381 557 | 183 37.1 38.9 23.0 494 652
ASBU amodal 293 521 297 | 142 382 56.0 | 184 37.0 38.8 23.1 493 649

Table 2. Amodal instance segmentation results of Mask-RCNN in full COCO metrics on COCOA-val, COCOA-test and KINS-test. Mask-
RCNN is trained on either GT amodal masks, or PCNet-m generated amodal masks or ASBU generated amodal masks.

trained on COCO) in 12 epochs (1x configuration) to predict
amodal instance segmentation for COCOA-val, COCOA-
test, and KINS-test. We use the evaluation code from the
COCO dataset Github. We repeat the same process for
trained PCNet-m. Because the number of classes in CO-
COA is too large (2140 classes) and our focus is on the
quality of amodal segmentation, we group them into one
foreground class to train and evaluate. For KINS, we keep
the number of classes as specified in this dataset.

For reporting an upper-bound performance, we train
Mask-RCNN on the ground-truth amodal masks of COCO-

train and KINS-train to predict amodal instance segmenta-
tion of COCOA-val, COCOA-test, and KINS-test.

Tab. 2 evaluates amodal instance segmentation using
Mask-RCNN trained on: ground-truth amodal segmenta-
tions (GT amodal), and pseudo-ground truth produced by
PCNet-m (PCNet-m amodal) and ASBU (ASBU amodal).
From the table, on COCOA-val, a difference in AP between
GT amodal and ASBU amodal is zero. On COCOA-test,
when using the pseudo-ground truth from ASBU, we in-
crease AP relative to that of PCNet-m amodal. Tab. 2 sug-
gests that on COCOA ASBU pseudo amodal masks have



(a) (b)
Figure 7. Qualitative results for amodal instance segmentation on COCOA-test are shown in (a) and (b), and on KINS-test in (c). All of

them are successful cases except the failure cases are marked red. The first failure case is about incomplete person detections and the
second failure case is about merging masks of a person and horse.

similar quality as the actual ground truth. On KINS-test,
ASBU amodal gives slightly better results than PCNet-m
amodal (with a 0.2 margin) while we are behind from GT
amodal by 1.5 in AP. This can be explained in terms of sim-
pler scenes in KINS relative to those in COCOA.

Fig. 7 shows representative results of Mask-RCNN
trained with ASBU’s pseudo amodal masks. For the
COCOA-test dataset, we usually obtain good results, with
some exceptions due to the problems of incomplete instance
modal segmentation. Also, on the KINS-test dataset, we ob-
tain very good amodal instance segmentations.

6. Conclusion

We have specified a new amodal segmenter with bound-
ary uncertainty estimation (ASBU) for weakly supervised
amodal instance segmentation. To address the lack of
ground-truth amodal masks, we have trained ASBU on ma-
nipulated images to produce pseudo-ground truth amodal
masks, and then learned a common instance segmenter,
Mask-RCNN, on our pseudo-ground truth. We have made
two contributions. First, we have replaced the occluder

(c)

mask used in prior work [37] for input with the occlu-
sion boundary, and consequently removed the need for one
step in [37] — that of estimating the object ordering graph.
Second, we have enabled ASBU to estimate uncertainty
of the predicted amodal segmentation and proposed a new
loss function that uses the estimated uncertainty to regu-
larize learning of ASBU. Our evaluation on the tasks of
amodal completion, ordering recovery, and amodal instance
segmentation, on the COCOA dataset, demonstrates that
ASBU outperforms the state of the art. Specifically, in com-
parison with a strong baseline PCNet-m [37], our perfor-
mance improves by 3.5% and 4.5% in mean intersection-
over-union (mloU) for amodal completion and average pair-
wise accuracy (O-Acc) for ordering recovery, respectively.
In amodal instance segmentation, Mask-RCNN trained on
our pseudo amodal masks has nearly the same performance
as Mask-RCNN trained on the ground-truth amodal masks
with a performance gap of 0.1 in average precision (AP) on
the COCOA-test dataset.

Acknowledgement. This work was supported in part by
DARPA MCS Award N66001-19-2-4035.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

[14]

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEFE transactions on pattern anal-
ysis and machine intelligence, 39(12):2481-2495, 2017.
Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: real-time instance segmentation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 9157-9166, 2019.

Siddhartha Chandra, Nicolas Usunier, and Iasonas Kokkinos.
Dense and low-rank gaussian crfs using deep embeddings. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 5103-5112, 2017.

Kai Chen, Jiagi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155,2019.
Liang-Chieh Chen, Alexander Hermans, George Papan-
dreou, Florian Schroff, Peng Wang, and Hartwig Adam.
Masklab: Instance segmentation by refining object detection
with semantic and direction features. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4013-4022, 2018.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-
rian Schroff, and Hartwig Adam. Encoder-decoder with
atrous separable convolution for semantic image segmen-
tation. In The European Conference on Computer Vision
(ECCV), September 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine learning, 20(3):273-297, 1995.

Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan:
Segmenting and generating the invisible. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6144-6153, 2018.

Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang,
Hyun Oh Song, Sergio Guadarrama, and Kevin P Murphy.
Semantic instance segmentation via deep metric learning.
arXiv preprint arXiv:1703.10277, 2017.

Patrick Follmann, Rebecca K6 Nig, Philipp Hd Rtinger,
Michael Klostermann, and Tobias B6 Ttger. Learning to see
the invisible: End-to-end trainable amodal instance segmen-
tation. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1328-1336. IEEE, 2019.
Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang,
and Alexander G Schwing. Sail-vos: Semantic amodal in-
stance level video object segmentation-a synthetic dataset
and baselines. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3105—
3115, 2019.

Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Deep occlusion-
aware instance segmentation with overlapping bilayers,
2021.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla.
Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In Advances
in neural information processing systems, pages 5574-5584,
2017.

Yuka Kihara, Matvey Soloviev, and Tsuhan Chen. In the
shadows, shape priors shine: Using occlusion to improve
multi-region segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
392-401, 2016.

Benjamin B Kimia, Ilana Frankel, and Ana-Maria Popescu.
Euler spiral for shape completion. 1JCV, 54(1-3):159-182,
2003.

Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bog-
dan Savchynskyy, and Carsten Rother. Instancecut: from
edges to instances with multicut. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5008-5017, 2017.

Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer,
Jeffrey De Fauw, Joseph R Ledsam, Klaus Maier-Hein,
SM Ali Eslami, Danilo Jimenez Rezende, and Olaf Ron-
neberger. A probabilistic u-net for segmentation of ambigu-
ous images. In Advances in Neural Information Processing
Systems, pages 6965-6975, 2018.

Shu Kong and Charless C Fowlkes. Recurrent pixel embed-
ding for instance grouping. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9018-9028, 2018.

Ke Li and Jitendra Malik. Amodal instance segmentation. In
ECCYV, pages 677-693. Springer, 2016.

Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei.
Fully convolutional instance-aware semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2359-2367, 2017.

Hongwei Lin, Zihao Wang, Panpan Feng, Xingjiang Lu, and
Jinhui Yu. A computational model of topological and geo-
metric recovery for visual curve completion. Computational
Visual Media, 2(4):329-342, 2016.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117-2125, 2017.



(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft
coco: Common objects in context. In European conference
on computer vision (ECCV), June 2016.

Huan Ling, David Acuna, Karsten Kreis, Seung Kim, and
Sanja Fidler. Variational amodal object completion for inter-
active scene editing. In NeurlIPS, 2020.

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018.

David Bryant Mumford and Jayant Shah. Optimal approxi-
mations by piecewise smooth functions and associated varia-
tional problems. Communications on pure and applied math-
ematics, 1989.

Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia.
Amodal instance segmentation with kins dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3014-3023, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
International Conference on Medical image computing and
computer-assisted intervention, 2015.

Nathan Silberman, Lior Shapira, Ran Gal, and Pushmeet
Kohli. A contour completion model for augmenting surface
reconstructions. In ECCV, 2014.

Yihong Sun, Adam Kortylewski, and Alan Yuille. Weakly-
supervised amodal instance segmentation with composi-
tional priors. arXiv preprint arXiv:2010.13175, 2020.
Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua
Lin, and Chen Change Loy. Self-supervised scene de-
occlusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3784—
3792, 2020.

Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr
Dollar. Semantic amodal segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1464-1472, 2017.



	1 . Introduction
	2 . Related Work
	3 . Our Approach
	4 . Uncertainty Weighted Segmentation Loss
	5 . Results
	5.1 . Implementation Details
	5.2 . Ordering Recovery and Amodal Completion
	5.3 . Amodal Instance Segmentation

	6 . Conclusion

