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Abstract

We present a novel and flexible architecture for
point cloud segmentation with dual-representation iterative
learning. In point cloud processing, different representa-
tions have their own pros and cons. Thus, finding suitable
ways to represent point cloud data structure while keeping
its own internal physical property such as permutation and
scale-invariant is a fundamental problem. Therefore, we
propose our work, DRINet, which serves as the basic net-
work structure for dual-representation learning with great
flexibility at feature transferring and less computation cost,
especially for large-scale point clouds. DRINet mainly con-
sists of two modules called Sparse Point-Voxel Feature Ex-
traction and Sparse Voxel-Point Feature Extraction. By uti-
lizing these two modules iteratively, features can be prop-
agated between two different representations. We further
propose a novel multi-scale pooling layer for pointwise lo-
cality learning to improve context information propagation.
Our network achieves state-of-the-art results for point cloud
classification and segmentation tasks on several datasets
while maintaining high runtime efficiency. For large-scale
outdoor scenarios, our method outperforms state-of-the-art
methods with a real-time inference time of 62ms per frame.

1. Introduction

Point cloud data plays a significant role in various real-
world applications, from autonomous driving to augmented
reality (AR). One of the critical tasks in point cloud un-
derstanding is point cloud semantic segmentation, which
can facilitate self-driving cars or AR applications to inter-
act with the physical world. For real-world applications, an
accurate and real-time point cloud segmentation method is
highly desirable. Therefore, in this work, we will study a
new framework for high-quality point cloud segmentation
in real-time.

‡Part of the work was done during an internship at DEEPROUTE.AI.
∗Equal contributions.
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Figure 1. The mIoU performance vs. speed on the SemanticKITTI
test set. Projection methods are drawn as blue triangles and
other kinds of methods are drawn as red rectangles. Methods
close to the right top location mean that achieving better per-
formance within less runtime cost. Drawn methods are RA:
RandLA [12], PV: PVCNN [22], SPV: Sparse PVCNN [30],
DASS [33] PO: PolarNet [43], D53: Darknet53 [2], D21: Dark-
net21 [2], RN: RangeNet++ [23], SQ321: SqueezeSegV3-21 [36],
SQ353: SqueezeSegV3-53 [36], O: our DRINet. Our DRINet out-
performs all the existing methods while maintaining high runtime
efficiency at 15Hz.

Although we have witnessed great progress in vision
tasks on 2D images with convolutional neural networks
(CNN), point cloud processing with deep learning still faces
lots of challenges. Due to its sparsity and irregularity, it
is difficult to directly apply 2D CNNs or some other pop-
ular operations in image processing for point cloud data.
PointNet [25] is a pioneering work that directly operates
on raw point clouds. PointNet++ [26] extends the PointNet
by aggregating local features at different scales of neigh-
borhoods to capture more context information and fine ge-
ometry structures. Further, VoxelNet [47] firstly combines
learning-based point cloud feature extraction with a stan-
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Figure 2. Three common structures of the 3D semantic segmen-
tation task (Point Based Architecture, Voxel Based Architecture,
Point-Voxel Based Architecture), and the difference compared
with our proposed architecture. Notice the arrow direction of red
lines that represents that dual-branches are integrated iteratively.

dard CNN structure. However, these works cannot achieve
the balance between efficiency and performance, especially
in large-scale outdoor scenarios where the point number in
a point cloud is large. PointNet [25] or PointNet++ [26]
requires a lot of memory usage and computational cost. A
key hyper-parameter in VoxelNet [47] is the voxel scale:
a small voxel scale brings better performance but along
with less runtime efficiency. Recently, Liu et al. proposed
PVCNN [22] based on a dual representation that combines
the merits of 3D CNN and PointNet [25]. It deeply fuses
the voxelwise and pointwise features. Also, SPVNet [30]
applies a similar idea by searching architecture while re-
placing 3D CNN layers with a 3D sparse CNN to achieve
less memory cost and better computational efficiency. Both
works are aiming to obtain a better feature for scene un-
derstanding tasks by dual-representation fusion. However,
there are three main drawbacks of these two works. First,
they only apply a simple fusion strategy and ignore the fea-
ture propagation among these representations, which can be
mutually complementary. Second, they ignore some physi-
cal properties such as accurate measurement information of
point clouds that can bring internal scale invariance. Third,
they use bilinear or trilinear gathering operations to fetch
pointwise features from voxel feature maps that can be a
large overhead when dealing with large-scale point clouds.

Inspired by PVCNN [22], SPVNet [30] and considering

these aspects, we propose the DRINet that serves as a better
and novel framework for dual representations point cloud
segmentation learning. Our DRINet has better flexibility
in converting between dual representations, with which we
can learn features iteratively between point and voxel rep-
resentations (shown in the Fig. 2) by our proposed novel
modules: Sparse Point-Voxel Feature Extraction (SPVFE)
and Sparse Voxel-Point Feature Extraction (SVPFE). Each
module takes the features of the other module as input. As
such, we can preserve the fine details by pointwise features
and explore more context information with large receptive
fields by voxelwise features. Beyond these two modules,
we explore multi-scale feature extraction and aggregation
for pointwise feature learning in our SPVFE to maintain
its locality for better context information. Furthermore, we
replace the bilinear and trilinear gathering operations with
an attentive gathering layer to reduce the computation cost
of feature transformation from voxelwise features to point-
wise features under the SVPFE module while maintaining
the performance.

In summary, our contributions include

• We propose a novel network architecture for point
cloud learning that can flexibly transform representa-
tions between pointwise and voxelwise features. Both
pointwise and voxelwise features can be aggregated
and propagated iteratively.

• A multi-scale pooling layer is proposed at the voxel
level to efficiently extract multi-scale pointwise fea-
tures to gain better context information of point clouds.

• We propose a novel attentive gathering layer to gain
better pointwise features from voxel features at a low
memory access cost.

• To demonstrate the effectiveness of our method,
extensive experiments are conducted on both in-
door and outdoor datasets including ModelNet [45],
ShapeNet [45], S3DIS [1], and SemanticKITTI [2].
Compared with existing methods, our DRINet
achieves the state-of-the-art performance on Se-
manticKITTI, one of the most challenging datasets for
outdoor scene parsing, while running at a real-time
speed of 62ms per frame on an Nvidia RTX 2080 Ti
GPU.

2. Related Work
Data representation is a key component in point cloud

related tasks, including 3D object detection and 3D seman-
tic segmentation. Most existing works for point cloud pro-
cessing can be roughly divided into the following four cat-
egories according to their representations.

Point based methods. Most point based works can be
viewed as extensions of PointNet [25] and PointNet++ [26].



They usually use the farthest sampling to sample some key
points to reduce computation costs when dealing with large-
scale outdoor point clouds. Then a series of variant point
convolution operations like PointConv [37] are applied to
points within the given neighborhood to extract global and
local context information based on PointNet architecture.
However, there are two main drawbacks to this kind of
method. First, the performance of these works somehow
is limited by the procedure of farthest sampling that is pro-
posed to reduce the memory cost and increase runtime effi-
ciency. Thus, KPConv [32] introduces a new learnable way
to generate kernel points rather than farthest sampling, with
better and more robust distributions to represent their local
neighborhood properties. RandLA-Net [12] also proposes a
random sampling strategy to improve the efficiency of point
cloud pre-processing significantly. Secondly, most of these
methods heavily rely on K-nearest neighbor search to main-
tain the local relationship among points per frame which in-
volves KD Tree building whose worst time complexity is
O (Kn log n).

Projection networks. Currently a lot of works [6, 8,
23, 36, 18] project points to front view representations in-
cluding depth image and spherical projections. With this
representation whose data organization is regular and struc-
tural, a series of standard convolution layers and recent pop-
ular 2D segmentation backbone [11, 29, 44] can be directly
applied to achieve the balance between efficiency and ac-
curacy. For example, SqueezeSeg [36] uses spherical pro-
jections and improves the segmentation network by their
SAC module. The final results are refined by the CRF pro-
cess. RangeNet++ [23] uses a similar projection method
with better post-processing algorithms. However, the per-
formance of these methods is highly related to projection
resolution and the complex post-processing stage that aims
to smooth and refine the prediction results with extra com-
putation cost.

Voxel based methods. BEV representation with regu-
lar cartesian coordinate is the most common and popular
way in voxel based method. Most works in lidar detection
and segmentation [17, 47] adopt this way to form 2D/3D
birdeye view image features. One of the biggest advantages
of this method is that it can maintain the physical proper-
ties of point clouds and apply standard convolution layers.
Recently, PolarNet [43] introduces polar representation into
deep learning, presenting point cloud as a ring based struc-
ture. A ring CNN is proposed to track the special data dis-
tribution properties. Since most outdoor point clouds are
obtained from scanning, this representation can reduce the
effect of the non-uniform distribution phenomenon com-
pared with normal voxelization methods. Furtherly, Cylin-
der3D [46] extends the 2D polar to 3D polar voxels. Be-
sides, Su et al [27] voxelized points into the high dimen-
sional space lattice and apply bilateral convolutions to the

occupied sectors of the lattice.
Multiview fusion based methods. MV3D [5] is the pi-

oneering work that explored the potential of multiview fea-
tures learning in 3D object detection. With PointNet, Voxel-
Net [47] and PVCNN [22] integrated point feature with 3D
volumetric representation. 3D CNN and MLP were used
for extracting coarse and fine-grained features respectively
to achieve better performance and less memory cost. Be-
sides, a lot of works [7, 15, 17, 34] have utilized point
based methods for feature extraction at each single voxel
rather than handcrafted feature. They all address the impor-
tance of representation integration and fusion.
In comparison with these methods above, our proposed
method belongs to multiview representation learning.
While taking advantage of voxel feature learning and point
feature learning, our method greatly improves the segmen-
tation performance at very high runtime efficiency.

3. Method
In this section, we introduce our DRINet that integrates

the merits of point and voxel representations to improve
point cloud segmentation performance while maintaining
high computational efficiency. The overall network, as
shown in Fig. 3, consists of four parts: 1) Geometry-aware
Feature Extraction 2) Sparse Voxel-Point Feature Ex-
traction 3) Sparse Point-Voxel Feature Extraction and
4) Iterative Dual-Representation Learning. The sparse
point-voxel feature extraction layer takes pointwise features
as input and outputs voxelwise features to form sparse voxel
feature maps with more hierarchical information. Then
the sparse voxel-point feature extraction layer takes vox-
elwise features as input to generate high-quality pointwise
features. The two blocks can iteratively perform the con-
version between different representations, namely iterative
dual-representation learning.
3.1. GAFE: Geometry-aware Feature Extraction

Data Representation. A point cloud can be represented
by an unordered point set {p1, p2, . . . , pN} with pi ∈ Rd
that includes the point coordinate ci = (xi, yi, zi) and asso-
ciated point features such as intensity.

Voxelization. We introduce the voxelization process to
construct a mapping relationship between the two represen-
tations. Define that the point cloud is discretized into nu-
merous voxels with resolution of L×W ×H and NV non-
empty voxel numbers. Given a point pi, we compute its
voxel index vi under the grid scale s:

vsi = (bxi/sc, byi/sc, bzi/sc) , (1)
where b·c is the floor function and s refers to the size of
each voxel along xyz directions.

Scatter ΦsP→V and Gather ΦsV→P . Now a mapping sys-
tem for coordinate spaces between point p and voxel v has
been built for indexing. We define two flexible operations
Scatter ΦsP→V and Gather ΦsV→P to transform between
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Figure 3. The first line is the whole network structure of DRINet. It includes two main modules, 1) Geometry-aware Feature Extraction,
and 2) the Point and Voxel Branch. The second line describes the process of Point and Voxel Branch, consisting of Sparse Point-Voxel
Feature Extraction (SPVFE) and Sparse Voxel-Point Feature Extraction (SVPFE). a) SVPFE generates pointwise features with an attentive
gathering layer from voxelwise features. b) SPVFE generates voxelwise features at target scale with a multi-scale pooling layer from
pointwise features.

voxelwise features Vs and pointwise features P under the
voxel scale s, where Vs ∈ RNV ×C , P ∈ RN×C , and C is
the number of channels. For the Scatter operation, under
the voxel scale s, the voxel feature at the voxel ζ is obtained
by a boardcast operation Ψ on all points inside this voxel:

Vs = {Vsζ} = ΦsP→V (P) , Vsζ = Ψ ({Pi|vsi = ζ}) , (2)

where Ψ can be defined as the mean or max operation. In
brief, ΦsP→V can broadcast apply the same operation for
all the input points within the same voxel. Meanwhile, we
define an inverse operation Gather. The i-th pointwise fea-
ture with voxel ζ is gathered from the voxelwise features by
a boardcast identity mapping operation (i.e., copying):

P = {Pi} = ΦsV→P (Vs) , Pi = Vsζ . (3)

Geometry-aware Feature Extraction. Inspired by
works [17, 40], we focus on fully utilizing the original point
cloud geometric properties. The raw geometry-aware fea-
ture gsi for point pi under a given grid size s is represented
as

gsi = (ci −
∑

cj∈N s
i

cj

/
|N s

i |)⊕ pi⊕(ci − s× vsi ) , (4)

where⊕ represents tensor concatenation. The neighbor col-
lection N s

i , referred to the point coordinates set of points
that lies in the same voxel as pi, is denoted as N s

i ={
cj |vsj = vsi

}
. LetGs = {gsi } and then the final multi-scale

feature G is

G =
∑
s∈S

MLP(Gs)⊕ ΦsV→P (ΦsP→V (MLP(Gs))), (5)

where MLP represents a multilayer perceptron, S is the
scale list. By simply fusing multi-scale pointwise features,
we obtain the hybrid geometry-aware pointwise features G,
which serve as the initial pointwise features F for SPVFE
and SVPFE.
3.2. SPVFE: Sparse Point-Voxel Feature Extraction

In this part, we propose our novel Sparse Point-Voxel
Feature Extraction module (SPVFE). By taking pointwise
features, SPVFE provides a novel way Multi-scale Pooling
for multi-scale pointwise features learning in point clouds
with better efficiency that serves as better context informa-
tion. Finally, it transforms the pointwise features into vox-
elwise features with our proposed VoxelConv.



Multi-scale Pooling Layer. To obtain better pointwise
features, we propose a novel layer to explore more con-
text information with great efficiency. Inspired by Point-
Net++ [26], PSPNet [44], HVNet [40], and Deeplab [4], we
notice that multi-scale information is important in classifi-
cation and segmentation tasks. To some extent, multi-scale
information can aggregate more local context information
at different scales with different receptive fields. Indeed,
pyramid pooling and dilated convolution are straightfor-
ward ways in image-related tasks. However, applying these
methods for sparse voxel feature maps will decrease effi-
ciency and deteriorate the feature since many empty voxel
features will be involved. Therefore, we propose a novel
multi-scale pooling layer that utilizes simple MLP layers for
point clouds followed by set abstraction at different scales
by the scattering operation in Eq. 2. As shown in Alg. 1,
for each scale s in the given scale list S, only points inside
the same voxel will contribute to the output features. With
the aggregation of pointwise features at different scales,
there will be a stronger representation of multi-scale prop-
erties in point clouds. Compared with PointNet++ [26], our
method does not rely on KNN that consists of a complex
pre-processing procedure for building the KD Tree.

Algorithm 1 Multi-scale Pooling Algorithm
Require: Pointwise features F and predefined scales S

1: L = []
2: for each s ∈ S do
3: Vs = ΦsP→V (F )
4: F s = MLP(Concat([F,ΦsV→P (Vs)]))
5: L.append(F s)
6: end for
7: return Concat(L)

VoxelConv Operation. With pointwise features from
the Multi-scale Pooling Layer, we propose the VoxelConv
operation to form the next-stage voxel feature map. Similar
to graph convolutional networks [24], we deal with points in
the discrete voxel space with local aggregation. VoxelConv
in the voxel space with pointwise features to generate the
voxelwise features can be defined as

ΦsP→V (WF ) , (6)

whereW is a weight matrix. VoxelConv is applied to all the
points within the same voxel, where we use fully connected
layers with learnable weights W to each pointwise feature.
Then the aggregation function in Eq. 2 is used to calculate
the local response. The whole process is similar to graph
convolutions [24] with learnable weights and maintains lo-
cality. VoxelConv generates sparse voxel features and skips
empty voxel grids, saving a lot of computation costs. Fi-
nally, we can construct the feature map by assigning the
voxel features to their corresponding locations.
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Figure 4. The left figure illustrates our attentive gathering. The
right one shows the computational cost for the bilinear gathering
and our attentive gathering.

3.3. SVPFE: Sparse Voxel-Point Feature Extraction
Taking 3D voxel features as input, there are several ma-

ture ways to exploit the local spatial correlation of the in-
put in the 3D space. PVCNN [22] utilizes 3D CNN layers.
However, it neglects the large-scale outdoor scenarios that
contain hundreds of thousands of points per frame. As such,
we propose a dual module, namely SVPFE module against
SPVFE, with which the voxelwise features from SPVFE
modules are fed into a 3D Sparse Voxel Learning block and
then rollback to pointwise by an attentive gathering layer.

3D Sparse Voxel Learning. Most previous works com-
press the Z-axis information for fast feature extraction with-
out large GPU memory usage but with an aggressive down-
sampling strategy for the sake of higher efficiency, leading
to ineffectiveness in capturing small instances. Other works
deploy 3D features but suffer the computation inefficiency.
Inspired by sparse convolution [9, 39], we adopt 3D sparse
convolution as backbone for voxel features extraction due
to its high efficiency and ability to capture compact voxel
features. We utilize a series of ResNet Bottleneck [10] by
replacing 2D convolution with 3D sparse convolution. We
name it Sparse Bottleneck.

Attentive Gathering Strategy. After Sparse Bottleneck,
we need to map the voxelwise features to pointwise fea-
tures. A nearest gathering operation that retrieves pointwise
features from the voxelwise features is applied according to
Eq. 3. Since the points in the same voxel share the same
voxel feature, the nearest gathering will lead to inferior fea-
ture representation capability. Especially when the voxel
scale increases, meaning that each voxel will contain more
points, this phenomenon will become more severe. Previ-
ous works [22, 30] adopt bilinear or trilinear gathering oper-
ations when retrieving the pointwise features. However, the
memory access cost for a large number of points cannot be
ignored since it could not guarantee the memory coalescing
that allows an optimal usage of the global memory band-
width. There will be a great overload for the whole model
once more gathering operations are introduced.

Thus, we propose a novel and effective approach with
learnable parameters to increase the uniqueness and repre-
sentation capability while maintaining the voxelwise fea-
tures, as shown in Fig. 4. The traditional bilinear gathering



Algorithm 2 Dual-representation Learning Algorithm
Require: Point cloud P , #Iteration NI , Scale list S
Ensure: Pointwise semantic prediction Op

1: F = []
2: G← GAFE(P, S)
3: Fp ← G
4: for iter = 1 to NI do
5: Fv ← SPVFE(Fp)
6: Fp ← SVPFE(Fv)
7: F.append(Fp)
8: end for
9: Op ← SoftMax(MLP(Concat(F )))

can be expressed as weighted sum of neighborhood features
according to distance. As a contrast, our method can be de-
rived as follows:

Fatt = W ′G, (7)
Fout = F � Fatt. (8)

where G is the hybrid geometry-aware features from
Sec. 3.1, andW ′ is a weight matrix. Fatt is geometry-aware
weights. Then output features are obtained by elementwise
multiplication of nearest gathering features F and above
geometry-aware weights. Compared with bilinear gather-
ing, our attentive gathering layer contains statistics, includ-
ing mean and voxel information as geometric prior infor-
mation with learnable parameters, which can be viewed as
an attention mechanism.
3.4. Iterative Dual-Representation Learning

Most previous works only utilize single form of fea-
tures such as pointwise [12], voxelwise [43], etc., or ex-
tract multi-representation in parallel. On the contrary,
we propose a novel dual-representation learning algorithm
based on an iterative process shown in Alg. 2. The hybrid
geometry-aware featuresG from Sec. 3.1 are fed into the it-
eration process, composed with SVPFE module and SPVFE
module. The SVPFE module contains sparse convolution
layers that can learn sufficient intra-voxel features, while
the SPVFE module is capable of capturing inner-voxel fea-
tures with the geometry constraint for points inside the same
voxel with multi-scale pooling for better locality and con-
text extraction. Both SPVFE and SVPFE modules utilize
the output of the other module. As such, pointwise features
and voxelwise features propagate mutually and iteratively,
forming a natural foundation for fusing context information
across multiple representations.

4. Experiments
We conduct extensive experiments for the proposed

DRINet on both indoor and outdoor tasks, including clas-
sification and segmentation, to show the effectiveness and
generalization ability of our proposed method.

4.1. Outdoor Scene Segmentation
Dataset. We use the SemanticKITTI [2] dataset to ver-

ify the effectiveness of our network for large-scale outdoor
scenarios. SemanticKITTI has a total of 43551 scans with
imbalanced point level annotations for 20 categories. It con-
tains 22 sequences which involve the most common scenes
for autonomous driving. Besides, another challenging part
of this dataset is that each scan contains more than 100K
points on average, posing great pressure on lightweight
model design. Following the official settings, we use the
sequences from 00 to 10 except 08 as the training split, se-
quence 08 as validation split, and the sequences from 11 to
21 as the test split.

Experiment Details. Although the maximum distance
for point clouds in SemanticKITTI can be more than 80m
with a non-uniform density distribution, there are few points
when sensing range beyond 55m. Based on this obser-
vation, we set voxelization scale ranging from minimum
[−48,−48,−3] to maximum [48, 48, 1.8] for x, y, z respec-
tively, with which we can include nearly 99% points with
only 1% mIoU lost. For the points outside the ranges, we
mask them to unknown types.

Network Details. Following the above principle, we de-
sign DRINet with three SPVFE and SVPFE blocks with the
voxel scales at [0.4m, 0.8m, 1.6m] respectively and Multi-
scale Pooling Layer at [0.4m, 0.8m, 1.6m, 3.2m]. We also
do some experiments varying the number of SPVFE and
SVPFE blocks. In the loss design, we adopt the Lovasz
loss [3] to alleviate the great imbalance distribution among
different categories. During training, global rotation and
random flip are applied for data augmentation. We train
DRINet for 40 epochs with the Adam [14] optimizer with
batch size of 4, the initial learning rate is 2e−4 with weight
decay 1e−4. Besides, the learning rate decays with a ratio
of 0.8 every 5 epochs.

Experimental Results. Detailed per-class quantitative
results of DRINet and other state-of-the-art methods are
shown in Tab. 1. DRINet achieves state-of-the-art perfor-
mance among these methods in the mean IoU score. In
some small classes, such as bicycle, person and so on,
the DRINet shows a far bigger improvement. Moreover,
we maintain a real-time inference time with the highest
performance-time ratio, shown in Fig.1. We also provide
some qualitative visual results on SemanticKITTI test set,
as shown in Fig. 5.

4.2. Ablation Study
To analyze the effectiveness of different components in

DRINet, we conduct the following ablation studies on the
SemanticKITTI validation set.

Geometry-aware Feature Extractor. We firstly ana-
lyze our model with only geometry-aware feature extrac-
tor (GAFE), which is shown in the first line in Fig.3 with
the iteration part removed. Compared with PointNet [25]
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Figure 5. The results on SemanticKITTI. The top row is the ground truth, and the bottom row is the Predictions by DRINet.
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PointNet [25] 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7 14.6 500
PointNet++ [26] 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 20.1 5900
KPConv [32] 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4 58.8 -
SqueezeSegV3 [38] 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 55.9 238
TangentConv [31] 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 35.9 3000
SPVNet [30] 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3 67.0 259
PolarNet [43] 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5 54.3 62
RandLA [12] 90.7 73.7 60.2 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 66.8 49.2 49.2 48.2 7.2 56.3 47.7 38.1 53.9 880
RangeNet++ [23] 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 52.2 83.3
DASS [33] 92.8 71.0 31.7 0.0 82.1 91.4 66.7 25.8 31.0 43.8 83.5 56.6 69.6 47.7 70.8 0.0 39.1 45.5 35.1 51.8 90
DRINet(ours) 90.7 75.2 65.0 26.2 91.5 96.9 43.3 57.0 56.0 54.5 85.2 72.6 68.8 69.4 75.1 58.9 67.3 63.5 66.0 67.5 62

Table 1. The per-class mIoU results on the SemanticKITTI test set.

and PointNet++ [26], our GAFE is a stronger baseline with
22.8% mIoU on validation set which means our GAFE has
better representations for the physical properties of the orig-
inal data, as shown in Tab. 2.

PointNet [25] PointNet++ [26] GAFE
mIoU(%) 15.3 18.1 22.8

Latency (s) 0.5 5.9 0.022
Table 2. Comparison with different feature extractors (GAFE).

Representation Analysis. The core component of our
DRINet lies in dual-representation. We remove either rep-
resentation to verify how the block influences the final re-
sults. As shown in Tab. 3, we set value of SPVFE number
Nspv or SVPFE number Nsvp to zero respectively to con-
trol the representation involved. With SPVFE and SVPFE
off, there will be about 18.7% and 3.9% drop respectively.
It illustrates that network with only voxelwise features per-
forms better than that with only pointwise features. More-
over, by fusing dual representations, we can obtain better
features.

Block Number Analysis. We note that block numbers
Nspv andNsvp are crucial parameters for our network struc-
ture. From the left of Fig. 6, we can see the mIoU increas-
ing in SemanticKITTI dataset (from 58.2% to 67.6%) and
in S3DIS dataset (from 36.3% to 66.7%) as block number

SPVFE Nspv SVPFE Nsvp mIoU(%)
3 0 48.6
0 3 63.4
3 3 67.3

Table 3. Ablation study of block numbers on SemanticKITTI.

increases. Nevertheless, this comes with more computation
cost and larger memory usage. As shown in the right of
Fig. 6, inference time increases from 62ms to 72ms when
addNspv andNsvp from 3 to 4, however the mIoU only im-
proved from 67.3 to 67.6. According to the balance between
performance and efficiency, we finally adopt Nspv = 3 and
Nsvp = 3 in following experiments.

0 1 2 3 4 5
30

40

50

60

70

Block Number

P
e
rf
o
r
m
an
c
e
 
(
m
I
o
U
)

 

 

0 1 2 3 4 5
10

20

30

40

50

60

70

I
n
f
e
r
e
n
ce
 
T
i
me
 
(
m
s)

 

 

S3DIS
SemanticKitti
S3DIS
SemanticKitti

S3DIS
SemanticKitti
S3DIS
SemanticKitti

Block Number

Figure 6. Performance and inference time vary with block number.
We set both Nspv and Nsvp from 1 to 4. The left / right one is
Performance / Inference time vs. Block number respectively.



Multi-scale Pooling Layers. Multi-scale (MS) Pooling
Layer tends to aggregate more levels of context informa-
tion in a wider neighborhood and different receptive fields.
By removing this unit, the pointwise features will only go
through several MLP Layers. Shown in Tab. 4, the MS
Pooling Layer improves the mIoU from 65.4% to 67.3%.

Baseline Attentive Gathering MS Pooling mIoU(%)
X × × 64.6
X X × 65.4
X X X 67.3

Table 4. Ablation study on SemanticKITTI.

Attentive gathering. Without attentive gathering, we
only use nearest gathering due to the consideration of com-
putation cost, and the comparison between nearest gather-
ing and bilinear gathering is shown in Fig. 4. With precom-
puted attentive weights within the voxel, the performance
is improved with 0.8% in DRINet, showing that attentive
gathering can prevent the feature degradation problem.

4.3. Indoor Tasks
ModelNet40 classification. ModelNet40 [45], one of

the most popular 3D classification datasets, contains 12,311
meshed CAD models from 40 categories. We use normals
as extra features and sample 1024 points as input. Follow-
ing the standard processing procedure, the input points are
first normalized to unit range. As a result, the scale of multi-
scale pooling is set to [0.2m, 0.4m, 0.6m, 0.8m]. During
training, data augmentation including rotation, scaling, flip-
ping and perturbation is applied. The DRINet is built with
two SVPFE and SPVFE blocks with the voxel scales at
[0.2m, 0.2m]. We gather all pointwise features from point
blocks and apply max operation same as PointNet [25], then
add one fully connected layer to generate output scores. In
Tab. 5, our DRINet directly improves the performance in the
3D classification task. We observe that DRINet with dual-
representations performs better than the previous state-of-
the-art method with single representation.

ShapeNet Parts segmentation. We also evaluate
our method on the segmentation task of ShapeNet Parts
dataset [41] which is a collection of 16681 point clouds
of 16 categories. Since ShapeNet Parts is also generated
from CAD model, we apply the same settings for data pre-
processing and augmentation as ModelNet40. For this task,
we set block number to 4 to increase the overall network
complexity, which can boost the performance. From Tab. 6,
our network achieves state-of-the-art according to mIoU
criteria with high runtime efficiency (30ms).

S3DIS. The S3DIS dataset [1] consists of 271 rooms
belonging to 6 large-scale indoor areas with 13 classes.
Following the previous works, we use Area 5 as the test
set and the rest as the training set. For a fair compari-
son, we use the same data processing and evaluation pro-
tocol as these works [20, 22]. We also use four blocks

Method Input Size Acc(%)
MVCNN [28] I 3 × 1024 90.1

PointNet++ [26] P 6 × 1024 91.9
PointCNN [20] P 6 × 1024 92.2

LP-3DCNN [16] V 6 × 1024 92.1
LDGCNN [42] G 6 × 1024 92.9

KPConv [32] regid P 3 × 1024 92.9
KPConv [32] deform P 3 × 1024 92.7
CloserLook3D [21] P 3 × 1024 92.9

DRINet(ours) P + V 6 × 1024 93.0
Table 5. Results on ModelNet40 [45],P, I, G, V mean point, image,
graph and volumetric respectively

Method Input mIoU(%) Latency(ms)
KPConv [32] regid P 86.2 -

KPConv [32] deform P 86.4 -
PointNet++ [26] P 85.1 77.9
PointCNN [20] P 86.13 -

SO-Net [19] P 84.9 -
PVCNN [22] P + V 86.2 50.7

DRINet(ours) P + V 86.4 30
Table 6. Results on ShapeNet

Methods Input mIoU(%)
PointNet [25] P 41.09
RSNet [13] P 56.5

TangentConv [31] P 52.6
PointCNN [20] P 57.3
PVCNN [22] P + V 58.98

ASIS [35] P 53.4
KPConv [32] P 67.1

CloserLook3D [21] P 66.7
DRINet(ours) P + V 66.7

Table 7. Results on the Area5 of S3DIS.

of SPVFE and SVPFE modules with the voxel scales at
[0.2m, 0.2m, 0.2m, 0.2m].

As shown in Tab. 7, our DRINet achieves state-of-the-art
compared with single representation methods. For the dual-
representation methods PVCNN [22], we even outperform
its largest model with less computation cost.

5. Conclusion
We have proposed DRINet, a novel and flexible architec-

ture for dual-representation point cloud learning. DRINet
decouples the feature learning process as SPVFE and
SVPFE. In SPVFE, DRINet generates better pointwise fea-
tures with the novel multi-scale pooling layer that can ag-
gregate features at different scales. In SVPFE, the atten-
tive gathering is proposed to deal with feature degrada-
tion when abandoning bilinear gathering operations that in-
troduce huge memory footprints. Experiments show that
our method achieves state-of-the-art mIoU and Accuracy
in both indoor and outdoor classification and segmentation
tasks with real-time speed.
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