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Abstract

The problem of long-tailed recognition, where the num-
ber of examples per class is highly unbalanced, is consid-
ered. It is hypothesized that the well known tendency of
standard classifier training to overfit to popular classes can
be exploited for effective transfer learning. Rather than
eliminating this overfitting, e.g. by adopting popular class-
balanced sampling methods, the learning algorithm should
instead leverage this overfitting to transfer geometric in-
formation from popular to low-shot classes. A new classi-
fier architecture, GistNet, is proposed to support this goal,
using constellations of classifier parameters to encode the
class geometry. A new learning algorithm is then proposed
for GeometrIc Structure Transfer (GIST), with resort to a
combination of loss functions that combine class-balanced
and random sampling to guarantee that, while overfitting
to the popular classes is restricted to geometric parame-
ters, it is leveraged to transfer class geometry from popular
to few-shot classes. This enables better generalization for
few-shot classes without the need for the manual specifica-
tion of class weights, or even the explicit grouping of classes
into different types. Experiments on two popular long-tailed
recognition datasets show that GistNet outperforms existing
solutions to this problem.

1. Introduction
The availability of large-scale datasets, with large num-

bers of images per class [3], has been a major factor in the
success of deep learning for tasks such as object recogni-
tion. However, these datasets are manually curated and ar-
tificially balanced. This is unlike most real world appli-
cations, where the frequencies of examples from different
classes can be highly unbalanced, leading to skewed distri-
butions with long tails.

This has motivated recent interest in the problem of long-

tailed recognition [13], where the training data is highly un-
balanced but the test set is kept balanced, so that equally
good performance on all classes is crucial to achieve high
overall accuracy.

Success in the long-tailed recognition setting requires
specific handling of class imbalance during training, since
a classifier trained with the standard cross-entropy loss will
overfit to highly populated classes and perform poorly on
low-shot classes. This has motivated several works to fight
class overfitting with methods, like data re-sampling [27] or
cost-sensitive losses [10], that place more training emphasis
on the examples of lower populated classes.

It is, however, difficult to design augmentation or
class weighting schemes that do not either under or over-
emphasize the few-shot classes. In this work, we seek an
approach that is fully data driven and leverages overfitting
to the popular classes, rather than combat it. The idea is
to transfer some properties of these classes, which are well
learned by the standard classifier, to the classes with insuf-
ficient data, where this is not possible.

For this, we leverage the interpretation of a deep clas-
sifier as the composition of an embedding, or feature ex-
tractor, implemented with several neural network layers and
a parametric classifier, implemented with a logistic regres-
sion layer, at the top of the network. While the embedding
is shared by all classes, the classifier parameters are class-
specific, namely a weight-vector per class, as shown in Fig-
ure 1.

We exploit the fact that the configuration of these weight
vectors determines the geometry of the embedding. This
consists of the class-conditional distribution, and associated
metric, of the feature vectors of each class, which define the
class boundaries. For a well learned network, this geometry
is identical for all classes. In the long-tailed setting, the
geometry is usually well learned for many-shot classes, but
not for classes with insufficient training samples, as shown
in the left of Figure 1.
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Figure 1. Left: in long-tailed recognition, the small number of samples from medium- and few-shot classes make it difficult to learn
their geometry, leading to inaccurate class boundaries. This is unlike many-shot classes, whose natural geometry can usually be learned.
Middle: the boundaries are corrected by transferring the geometric structure of the many-shot classes to the classes with few examples.
Right: GistNet implements geometric structure transfer by implementing constellations of classification parameters. These consist of a
class-specific center and a set of displacements shared by all classes. Under GIST training, these tend to follow the natural geometry of the
many-shot classes, which is transferred to the medium- and few-shot classes.

The goal is to transfer the geometric structure of the
many-shot classes to the classes with few examples, as
shown in the middle of the figure, to eliminate this prob-
lem. The challenge is to implement this transfer using only
the available training data, i.e. without manual specification
of class-weights or heuristic recipes, such as equating these
weights to class frequency.

We address this challenge with a combination of con-
tributions. First, we enforce a globally learned geometric
structure, which is shared by all classes. To avoid the com-
plexity of learning a full-blown distance function, which
frequently requires a large covariance matrix, we propose
a structure composed by a constellation of classifier param-
eters, as shown on the right of Figure 1. This consists of
a class-specific center, which encodes the location of the
class, and a set of displacements, which are shared by all
classes and encode the class geometry.

Second, we rely on a mix of randomly sampled and
class-balanced mini-batches to define two losses that are
used to learn the different classifier parameters. Class-
balanced sampling is used to learn the class-specific cen-
ter parameters. This guarantees that the learning is based
on the same number of examples for all classes, avoiding
a bias towards larger classes. Random sampling is used to
learn the shared geometry parameters (displacements). This
leverages the tendency of the standard classifier to overfit to
the popular classes, making them dominant for the learning
of class geometry, and thus allowing the transfer of geomet-
ric structure from these to the few-shot classes. In result, the
few shot classes are learned equally to the popular classes
with respect to location but inherit their geometric structure,
which enables better generalization.

We propose a new learning algorithm, denoted Geomet-
rIc Structure Transfer (GIST), that combines the two types
of sampling, so as to naturally account for all the data in the
training set, without the need for the manual specification of
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Figure 2. GistNet approximates the shared geometry by a constel-
lation (mixture) of spherical Gaussians.

class weights, or even the explicit grouping of classes into
different types. While we adopt the standard division into
many-, medium-, and few-shot classes for evaluation, this
is not necessary for training.

A deep network that implements the parameter constel-
lations of Figure 1 and GIST training is then introduced and
denoted as the GistNet. Experiments on two popular long-
tailed recognition datasets show that it outperforms previ-
ous approaches to long-tailed recognition.

Overall, this work makes several contributions to long-
tailed recognition. First, we point out that the tendency of
the standard classifier to overfit to popular classes can be ad-
vantageous for transfer learning. The goal should not be to
eliminate this overfitting, e.g. by uniquely adopting the now
popular class-balanced sampling, but leverage it to trans-
fer geometric information from the popular to the low-shot
classes.

Second, we propose a new GistNet classifier architecture
to support this goal, using constellations of classifier param-
eters to encode the class geometry.

Third, we introduce a new learning algorithm, GIST, that
combines class-balanced and random sampling to leverage
overfitting to the popular classes and enable the transfer of
class geometry from popular to few-shot classes.
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Figure 3. t-SNE visualization of 3 few-shot classes on ImageNet-
LT test set, together with the constellations wkj .

2. Related Work

Long-tailed recognition has received increased attention in
the recent past [25, 15, 10, 27, 13, 24]. Several approaches
have been proposed, including metric learning [15, 27],
hard negative mining [10], or meta-learning [24]. Some of
these rely on novel loss functions, such as the lift loss [15],
which introduces margins between many training samples,
the range loss [27], which encourages data in the same
class (different classes) to be close (far away), or the fo-
cal loss [10], which conducts online hard negative mining.
These methods tend to improve performance on the few-
shot end at the cost of many-shot accuracy.

Other methods, e.g. class-balanced experts [18] and
knowledge distill [26], try to avoid this problem by man-
ually dividing the training data into subsets, based on the
number of examples, and training an expert per subset.
However, experts learned from arbitrary data divisions can
be sub-optimal, especially for few-shot classes.

Kang et al. [9] tackles the data-imbalance problem by
decoupling the training feature embedding and classifier.
Zhou et al. [28] also shows the effectiveness by using differ-
ent training strategies on feature embedding and classifier,
and achieves this by cumulative learning. These methods,
however, do not discuss the class geometry problem. In face
recognition, Liu et al. [12] explores the long-tailed problem
by knowledge transfer. The idea is similar to ours. But they
achieve this by data synthesis, while we rely on model de-
sign and training strategy.

GistNet is closest to the OLTR approach of [13], which
uses a visual memory and attention to propagate informa-
tion between classes. This, however, is insufficient to guar-
antee the transfer of geometric class structure, as intended
by GIST.
Few-shot learning is a well-researched problem. A popular

group of approaches is based on meta-learning, using gradi-
ent based methods such as MAML and its variants [4, 5], or
LEO [17]. These methods take advantage of second deriva-
tives to update the model from few-shot samples. Alterna-
tively, the problem has been addressed with metric based
solutions, such as the matching [22], prototypical [19], and
relation [20] networks. These approaches learn metric em-
beddings that are transferable across classes.

There have also been proposals for feature augmenta-
tion, aimed to augment the data available for training, e.g.
by combining GANs with meta-learning [23], synthesizing
features across object views [11] or other forms of data hal-
lucination [7]. All these methods are designed specifically
for few-shot classes and often under-perform for many-shot
classes.
Learning without forgetting aims to train a model se-
quentially on new tasks without forgetting the ones already
learned. This problem has been recently considered in the
few-shot setting [6], where the sequence of tasks includes a
mix of many-shot and few-shot classes.

Proposed solutions [6, 16] attempt to deal with this
by training on many-shots first, using the many-shot class
weights to generate few-shot class weights, and combining
them together. These techniques are difficult to generalize
to long-tailed recognition, where the transition from many-
to few- shot classes is continuous and includes a large num-
ber of medium-shot classes.

3. Geometric Structure Transfer
In this section, we introduce the proposed solution of

the long-tailed recognition problem by geometric structure
transfer and the GistNet architecture.

3.1. Regularization by Geometric Structure Trans-
fer

A popular architecture for classification is the softmax
classifier. This consists of an embedding that maps images
x ∈ X into feature vectors fφ(x) ∈ F , implemented by
multiple neural network layers, and a softmax layer that es-
timates class posterior probabilities according to

p(y = k|x;φ,wk) =
exp[wT

k fφ(x)]∑
k′ exp[wT

k′fφ(x)]
(1)

where φ denotes the embedding parameters and wk is the
weight vector of the kth class.

The model is learned with a training set S =
{(xi, yi)}n

s

i=1 of ns examples, by minimizing the cross en-
tropy loss

LCE =
∑

(xi,yi)∈S

− log p(yi|xi). (2)

Recognition performance is evaluated on a test set T =
{(xi, yi)}n

t

i=1, of nt examples.
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Figure 4. GIST training. Solid arrows represent feed-forward and dashed ones back-propagation. Class-balanced mini-batches are used
for the green connections, to guarantee that the parameters wk are class-specific. Random sampling mini-batches are used for the red
connections, enabling the displacements δj to be learned predominantly from many-shot classes. Note that the shape parameters δj receive
no gradient from the class-balanced loss Lc and the constellation centers wk receive no gradient from the random sampling loss Lr .

Learning with (2) produces a particular data-driven em-
bedding geometry, which we denote the natural geometry
for the training data. While parameters wk of the classi-
fier is class-specific and describes class centers, it is usually
impossible to determine this geometry from the learned net-
work parameters.1

This is not a problem in regular large-scale recognition.
In such a case, each class has enough training data and
the natural geometry is successfully learned under cross-
entropy loss without further regulations. For long-tailed
recognition problems the situation is different. As in few-
shot learning, the limited training data of few-shot classes
leads to weakly defined class-conditional distributions and
embedding geometry. However, this is not the case for
classes with many samples, whose natural geometry can be
learned from the data. In result, as illustrated in the left
of Figure 1, the true class boundaries are usually not well
learned for the few-shot classes.

In this work, we seek to leverage geometric regulariza-
tion to improve the learning of the few-shot classes without
sacrificing performance for the populated classes.

One possibility would be to enforce a pre-defined geom-
etry for all classes, e.g. by adopting Mahalanobis distance
d(fφ(x), µ) = (fφ(x) − µ)TΣ−1(fφ(x) − µ) associated
with Gaussian class conditionals of covariance Σ, or by as-
suming Gaussian class-conditionals and regularizing the co-
variance to be close to a pre-defined Σ.

This has several problems. First, it is not clear what the
covariance Σ should be. Second, it ignores the natural ge-
ometry of the popular classes, which is well learned by the
classifier of (1). Third, given the large dimensionality of
fφ(x), covariance regularization is difficult to implement,
even for classes with many examples.

To avoid these problems, we seek a learning-based solu-
tion that does not require covariance estimation and lever-
ages the natural geometry of the popular classes to regular-
ize the geometry of the few-shot classes. Rather than forc-
ing geometry through a distance function, which is hard to

1See supplementary material for detail.

learn and implement, we pursue an alternative approach to
guarantee that all classes have a shared geometric structure.

Ideally, this structure should be learned from data, so as
to 1) follow the natural geometry of the highly populated
classes, and 2) allow the transfer of that geometry to the
classes of few examples. It should also be encoded in a
relatively small number of parameters, which at most grows
linearly with the dimension of fφ(x).

To achieve these goals, we continue to rely on the soft-
max classifier of (1) and the cross-entropy loss of (2), but
use an alternative implementation of the softmax layer

pφ(y = k|x) =
exp[maxj w

T
kjfφ(x)]∑

k′ exp[maxj wT
k′jfφ(x)]

,

wkj = g(wk, δj),

(3)

where the canonical parameter vector wk is replaced by a
constellation of parameter vectors wkj , which are a func-
tion of wk and a set of structure parameters δj shared by
all classes. Under the simplest implementation of this idea,
g(wk, δj) = wk + δj and the structure parameters are a set
of displacement vectors, as shown in the right of Figure 1.

Since these displacements are shared by all classes, the
constellation is simply replicated around each wk, which is
learned per class. Because, under the loss of (2), the highly
populated classes tend to dominate the optimization of the
shared parameters, the displacements δj tend to follow the
natural geometry of these classes, which is thus transferred
to the few-shot classes. This regularizes the learning of
these classes, enabling the recovery of the true classifica-
tion boundaries, as shown in the right of Figure 1.

The displacements δj are the parameters that contain
geometry information. They transfer the geometry from
highly populated classes to few-shot classes. With the help
of geometry transfer, the model learns a better geometry for
few-shot classes.

As shown in Figure 2, (3) is equivalent to replacing the
natural geometry by several spherical Gaussians of means
wkj and choosing the one closest to the feature. This ap-
proximates the non-regulated geometry by a constellation of



5 spherical Gaussians, one per wkj . This geometry is visu-
alized in Figure 3, where features from different classes are
regulated by class specific constellations respectively. The
constellation can be regarded as an umbrella. The model
can learn the shape of the umbrella and where to place the
umbrella for each class.

We denote the approach as GeometrIc Structure Transfer
(GIST), to capture the fact that it transfers the essence, or
gist, of the class geometry from popular to few-shot classes.

Note that the classifier in (3) is different from that in (1).
There is an additional constraint: that the displacements δj
are constant across classes. To avoid the model learns wk
to fit one of the constellations and ignore others. We first
train the classifier from (1) to get a stable initialization of
wk, and then the whole classifier is trained to get the class-
agnostic displacements. In such a case, the model will have
to fit all available constellations to get lower loss instead of
fitting one of them. Empirical examination in Section 4.3
shows the actual usage of {δj} is decent, and supports this
assumption.

3.2. Normalization

Recent works [6, 13] have shown that better few-shot or
long-tailed classification accuracies are frequently obtained
by performing the classification on the unit sphere, i.e. nor-
malizing both embedding and classifier parameters to have
unit norm. We follow this practice and adopt the weighted
cosine classifier [6], replacing (3) with

pφ(y = k|x) =
exp[maxj sτ (fφ(x),wkj)]∑
k′ exp[maxj sτ (fφ(x),wk′j ]

,

sτ (fφ(x),w) = τ
wT fφ(x)

||w||||fφ(x)||

(4)

where τ is a parameter that controls the smoothness of the
posterior distribution. This architecture is denoted as Gist-
Net. In our implementation, τ is randomly initialized and
learned end-to-end.

3.3. GIST Training

Deep networks are trained by stochastic gradient descent
(SGD). This randomly samples mini-batches of b samples,
and iterates across the training set. Due to the extreme class
imbalance of long-tailed recognition, SGD tends to bias the
model towards the classes with more samples.

In the literature, this problem is usually addressed by
class-balanced sampling [27]. This first randomly samples
bc classes with equal probability, and draws bn samples per
class, producing a mini-batch of b = bc × bn samples. By
iterating through all classes, the model is trained with an
overall equal number of examples per class. For the classi-
fier of (1), class-balanced sampling can significantly outper-
form regular sampling on few-shot classes. This also makes

it a good solution for learning the class specific parameters
{wk} of GistNet.

However, the bias of regular sampling towards the highly
populated classes is an advantage for the learning of the
structure parameters {δj}. After all, the point is exactly
to learn these parameters from classes with substantial data
and transfer them to the few-shot classes, where they cannot
be learned accurately. Since the parameters are shared, both
goals are accomplished if the learning procedure empha-
sizes the highly populated classes, as is the case for regular
sampling. This implies that GIST training should include
a mix of regular sampling (for shared structure parameters)
and class-balanced sampling (for class specific parameters).

We propose to implement this with the hybrid training
scheme of Figure 4. In each iteration, two mini-batches
Sc, Sr are first sampled from the training set S by class-
balanced sampling and random sampling, respectively. Two
sets of class-specific parameters, {wk,νk} are then learned,
using the combination of (2), (3), and (4). The class-
balanced mini-batch Sc is used with the resulting loss

Lc =
∑

(xi,yi)∈Sc

{−max
j
s(fφ(xi),wyij)

+ log
∑
k

exp[max
j
s(fφ(xi),wkj)]},

wkj = g(wk, δj) (5)

to learn the parameters wk. The random mini-batch Sr is
used with the loss

Lr =
∑

(xi,yi)∈Sr

{−max
j
s(fφ(xi),νyij)

+ log
∑
k

exp[max
j
s(fφ(xi),νkj)]},

νkj = g(νk, δj) (6)

to learn the parameters νk. This results in the overall loss

L = Lr + λLc. (7)

The structure parameters δj are common to the two
losses. However, as shown in Figure 4, during back-
propagation only the gradient from Lr is used to update
these parameters. This guarantees that the geometric struc-
ture is learned with random sampling. This structure is,
however, propagated to the learning of the class specific pa-
rameters wk, which receive the gradient Lc. In this way,
the class specific parameters wk are learned with class-
balanced sampling, but this learning is informed by the
structure parameters δj learned with random sampling. This
leads to parameter constellations wkj that, while shared
across classes, are centered at class-specific locations.

Note that the displacements are forwarded together with
wk to calculate the class-balanced loss Lc. This makes the



Table 1. Results on ImageNet-LT and Places-LT. ResNet-10/152 are used for all methods. For many-shot t > 100, for medium-shot
t ∈ (20, 100], and for few-shot t ≤ 20, where t is the number of training samples.

ImageNet-LT Places-LT
Method Overall Many-Shot Medium-Shot Few-Shot Overall Many-Shot Medium-Shot Few-Shot

Plain Model 23.5 41.1 14.9 3.6 27.2 45.9 22.4 0.36
Lifted Loss [15] 30.8 35.8 30.4 17.9 35.2 41.1 35.4 24.0
Focal Loss [10] 30.5 36.4 29.9 16.0 34.6 41.1 34.8 22.4
Range Loss [27] 30.7 35.8 30.3 17.6 35.1 41.1 35.4 23.2
FSLwF [6] 28.4 40.9 22.1 15.0 34.9 43.9 29.9 29.5
OLTR [13] 35.6 43.2 35.1 18.5 35.9 44.7 37.0 25.3
Decoupling [9] 41.4 51.8 38.8 21.5 37.9 37.8 40.7 31.8
Distill [26] 38.8 47.0 37.9 19.2 36.2 39.3 39.6 24.2

GistNet 42.2 52.8 39.8 21.7 39.6 42.5 40.8 32.1

Table 2. Results on the iNaturalist 2018. All methods are imple-
mented with ResNet-50.

Method Accuracy

CB-Focal [2] 61.1
LDAM+DRW [1] 68.0
Decoupling [9] 69.5

GistNet 70.8

two components {wj} and {δj} of the classifier matching
each other, although they are learned by different losses.
The parameters νk are only used at training time, to guar-
antee that the geometric parameters δj follow the natural ge-
ometry of the highly populated classes. They are discarded
after training.

In GIST training, the class-specific weights wk are
trained with random sampling, while the structure parame-
ters δj are trained with class-balanced sampling. This forces
the latter to predominantly represent the structure of the
popular classes and is what enables the geometric structure
transfer of Figure 1.

4. Experiments

In this section, we discuss an evaluation of the long-
tailed recognition performance of the GistNet.

4.1. Experimental set-up

Datasets. We consider three long-tailed recognition
datasets, ImageNet-LT [13], Places-LT [13] and iNatrual-
ist18 [21]. ImageNet-LT is a long-tailed version of Ima-
geNet [3] by sampling a subset following the Pareto distri-
bution with power value α = 6. It contains 115.8K images
from 1000 categories, with class cardinality ranging from
5 to 1280. Places-LT is a long-tailed version of the Places
dataset [29]. It contains 184.5K images from 365 categories
with class cardinality ranging from 5 to 4980. iNatrual-
ist18 is a long-tailed dataset, which contains 437.5K images

from 8141 categories with class cardinality ranging from 2
to 1000.
Baselines. Following [13], we consider three metric-
learning baselines, based on the lifted [15], focal [10],
and range [27] losses, and one state-of-the-art method,
FSLwF [6], for learning without forgetting. We also in-
clude state-of-the-art long-tailed recognition methods de-
signed specifically for these two datasets: OLTR [13], De-
coupling [9], and Distill [26]. The classifier of (1) with
standard random sampling is denoted as the Plain Model
for comparison.
Training Details. ResNet-10 and ResNet-152 [8] are used
on ImageNet-LT and Places-LT respectively, and ResNet-
50 is used on iNatrualist18. Unless otherwise noted, we
use four vectors δj of structure parameters, each with the
dimension of fθ(x). The class center wk completes a con-
stellation of five vectors. The number of structure parame-
ters is ablated in Section 4.3. In all experiments, λ = 0.5 is
used in (7).

The model is first pre-trained without structure parame-
ters, with 60 epochs of SGD, using momentum 0.9, weight
decay 0.0005, and a learning rate of 0.1 that decays by 10%
every 15 epochs. After this, the full model is subject to
GIST training with momentum 0.9, weight decay 0.0005
for 60 epochs, and learning rate 0.1 that decays by 10%
every 15 epochs. In this case, each iteration uses class-
balanced and random sampling mini-batches of size 128,
for an overall batch size of 256. One epoch is defined when
the random sampling iterates over the entire training data.
Codes are attached in supplementary.

4.2. Results

Table 1 present results on ImageNet-LT and Places-LT.
GistNet outperforms all other methods on the two datasets.
A further comparison is performed by splitting classes into
many shot (more than 100 training samples), medium shot
(between 20 and 100 training samples), and few shot (less
that 20 training samples). GistNet achieves the best per-



Table 3. Ablation of GistNet components, on the ImageNet-LT validation set. For many-shot t > 100, for medium-shot t ∈ (20, 100], and
for few-shot t ≤ 20, where t is the number of training samples.

Method Overall Many-Shot Medium-Shot Few-Shot

Plain Model 25.1 42.9 16.6 0.43
COS+CB 37.6 49.4 34.8 14.7
COS+CS+CB 39.5 52.6 36.3 14.5
COS+CS+GIST (GistNet) 43.5 54.8 41.0 21.4

COS+GIST 40.2 51.4 37.4 19.0
COS+CS+GIST (wk and νk combined) 40.9 58.2 34.6 14.8
COS+CS+GIST (g rotation) 43.6 55.1 40.8 21.7
COS+CS+GIST (g MLP) 43.4 54.2 41.1 21.5
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Figure 5. Results on different size of structure parameters in few-shot, medium-shot, many-shot classes, and overall accuracy, searched on
validation set.

formance on 5 of the 6 partitions and is competitive on the
remaining one.

While on Places-LT the largest gains are for the few-
shot classes, in ImageNet-LT they hold for the medium- and
many-shot classes. This suggests that, in this dataset, the re-
maining methods overfit to the few-shot classes. The higher
robustness of GistNet to this overfitting can be explained
by the predominance of the many-shot classes in the train-
ing of the structure parameters δj . Results on iNaturalist18
dataset are shown in Table 2, ours also outperforms all other
methods.

4.3. Ablation Study

In this section, we discuss the effectiveness of the various
components of GistNet, the choice of constellation function
g, the number of structure parameters, and the actual usage
of constellations. All models are trained and evaluated on
the training and validation set of ImageNet-LT, respectively,
using a ResNet-10 backbone.
Component ablation. Starting from the plain model of (1),
we incrementally add the cosine classifier (COS) used
in (4), class-balanced sampling (CB), class structure pa-
rameters (CS), and GIST training (GIST). Table 3 shows
that the combination of cosine classifier and class-balanced
sampling (COS+CB) improves significantly on the plain
model. The simple addition of the class structure param-
eters (COS+CS+CB) further improves the overall perfor-
mance.

However, there is no significant improvement for few-
shot classes. This can be explained by the fact that,
with class-balanced sampling, the three class types are
equally predominant for the learning of the structure
parameters. Hence, there is no transfer of geometric
structure from many- to few-shot classes. This is con-
firmed by the fact that, when GIST training is added
(COS+CS+GIST), performance improves significantly for
the few-shot classes. When compared to COS+CB, the
GistNet model (COS+CS+GIST) has an overall gain of
about 6 points and better performance for all class types.
Among these, the gains are particularly large (around 6.5
points) for the few-shot classes.

The middle of the table investigates other possible con-
figurations of the GistNet. Applying GIST training with-
out class structure parameters (COS+GIST), i.e. using the
combination of class balanced and random sampling only
to learn the embedding fφ(x), degrades performance for all
class partitions. This shows the importance of enforcing a
shared class structure among all classes.

Another variant is to remove the additional class centers
{νk} of Figure 4, using the centers {wk} for both losses,
i.e. replacing νk with wk in (6). This variant, denoted
COS+CS+GIST (wk and νk combined), eliminates all the
gains of GistNet for few-shot classes, while increasing the
recognition accuracy for those in the many-shot partition.
This is because the centers now receive gradient from the
random sampling loss and are predominantly trained with



Plain Model

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

COS+CB

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

GIST

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

Plain Model COS+CB GistNet
Figure 6. t-SNE visualizations of the embedding of test set images from 5 randomly chosen many- and few-shot ImageNet-LT classes, for
three models.

many-shot data. The improved performance of GistNet over
this variant shows that it is important to maintain the class-
specificity of center training, while enforcing transfer of the
geometric structure parameters, as done by GIST.
Different choices of g. Beyond these variants, we have also
considered different choices for the function g that defines
the parameter constellations of (3). In addition to the default
addition function implemented by GistNet, we considered
two possibilities.

The first was a rotation. After the embedding and clas-
sifier parameters are normalized, we evaluate the distance
between them on the d-dimensional unit sphere (where d
is the dimension of fφ(x)). The structure parameters are
then d-dimensional rotation matrices, which encourage all
classes to have the same structure on the unit sphere. This
is implement the rotation matrix by a transformation of d-
dimensional displacement vector

R = I− uuT − vvT + [u,v]Rθ[u,v]T , (8)

where u is a unit vector, v is the normalized vector of a
displacement vector δj , and Rθ is the 2D rotation matrix
between u and δ. Given a structure parameter vector δj , the
parameter constellations are implemented as

wkj = g(wk, δj) = Rwk (9)

Details are discussed in supplementary.
The second was a learned function g, implemented by a

two-layer MLP, and learned end-to-end.
Table 3 shows that the different implementations of g

have little impact on the recognition performance. This
suggests that the addition of global geometric constraints
is much more important than the specific implementation
details of these constraints.
Number of structure parameters. We next investigated
the influence of the number m of structure parameters
{δj}mj=1. As shown in Figure 5, none of the alternatives
tried (m ∈ {2, 8, 16}) outperformed the four parameters
used in GistNet. For overall, many-, and medium-shot

classes performance increases until m = 4 and then satu-
rates. For few-shot classes, there was a one-point gain in
using m = 8. This shows that this partition is the one that
most benefits from geometry transfer.

Overall, these results confirm that while geometric trans-
fer can produce significant gains, the GistNet architecture is
quite robust to variations of detail.
Actual usage of constellations. Cross-entropy minimiza-
tion encourages the use of more δj , since the coverage of
the class distributions is better. It would be a waste not to
use them all. In the test set of ImageNet-LT, the actual us-
age was {25%, 23%, 18%, 17%, 17%}. 792 of 1000 classes
chose each δj for at least 10% of test samples. This results
further support that the model does not collapse to tradi-
tional classifier by fitting to only one constellation and ig-
noring others.

4.4. Visualization

Figure 6 shows a t-SNE [14] visualization of the embed-
dings learned by the Plain Model, the COS+CB baseline,
and GistNet. For clarity, we randomly choose five classes
from the many- and few-shot splits in ImageNet-LT. The
figure shows the t-SNE projection of features of test sam-
ples from those classes. Compared to the two other models,
GistNet produces classes that are better separated and have
more consistent geometry. This is especially true for few-
shot classes.

5. Conclusion
This work addressed the long-tailed recognition prob-

lem. A new architecture, GistNet, and training scheme,
GIST, were proposed to enable transfer of geometric struc-
ture from highly populated to low-populated classes. This
leverages the tendency of SGD training to overfit to the pop-
ulated classes, rather than simply fighting this tendency.

GistNet was shown to achieve state-of-the-art perfor-
mance on two popular long-tailed datasets. Ablation stud-
ies have shown that, while geometric transfer enables sig-



nificant recognition gains, the architecture is quite robust
to variations of detail. This suggests that the addition of
global geometric constraints to long-tailed recognition is
more important than the specific implementation of these
constraints.
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