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Abstract

Few-shot class incremental learning (FSCIL) aims to in-
crementally add sets of novel classes to a well-trained base
model in multiple training sessions with the restriction that
only a few novel instances are available per class. While
learning novel classes, FSCIL methods gradually forget
base (old) class training and overfit to a few novel class
samples. Existing approaches have addressed this problem
by computing the class prototypes from the visual or seman-
tic word vector domain. In this paper, we propose address-
ing this problem using a mixture of subspaces. Subspaces
define the cluster structure of the visual domain and help
to describe the visual and semantic domain considering
the overall distribution of the data. Additionally, we pro-
pose to employ a variational autoencoder (VAE) to generate
synthesized visual samples for augmenting pseudo-feature
while learning novel classes incrementally. The combined
effect of the mixture of subspaces and synthesized features
reduces the forgetting and overfitting problem of FSCIL. Ex-
tensive experiments on three image classification datasets
show that our proposed method achieves competitive results
compared to state-of-the-art methods.

1. Introduction

In many practical applications, it is crucial for a model to
classify novel objects, i.e., objects for which only a few in-
stances are available during training. For example, this can
occur when the distribution of the test data deviates from
that experienced at training, or if the model faces new ob-
jects from a class for which significantly less data was pro-
vided during training. While the former, to some extent, can
be addressed by various techniques such as domain adapta-
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Figure 1: We cluster the training samples into a number of clus-
ters, in this example, three. Then, we generate three corresponding
subspaces, which are constructed from these three clusters. These
subspaces are then used to project visual features and semantic
vectors onto. The distance between the projected visual feature
and the projected semantic vector is minimized according to a loss
function during training in each subspace. In addition to project-
ing real sample features, we also project synthesized features to
the mixture of subspaces. The combined effect of the mixture of
subspaces and synthesized features helps the network not overfit
to few-shot data of novel classes and forget base class knowledge.

tion, addressing the latter is usually studied under the Few-
Shot Learning (FSL) paradigm [33, 10]. Generally, in a FSL
framework, the goal is to classify samples into few-shot
classes given only a training set of base categories. How-
ever, some variations of the problem classify both base and
novel class instances together in a generalized manner. In a
more realistic scenario, all novel class instances may not be
available at a time. It creates another branch of the problem,
few-shot class incremental learning (FSCIL), where novel
classes are added to the model incrementally over time, and
in each incremental step, the model is tested based on both
base and novel class instances. Because of this restriction,
FSCIL is the most complex form of FSL problem.

Initial results on FSCIL have been proposed in the litera-
ture [35, 20, 4, 8]. We identify two critical challenges in this
problem. (a) Catastrophic forgetting of base classes: Re-
cent works observed a fascinating performance using word
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vectors in the learning process (in addition to knowledge
distillation techniques) to address the forgetting problem
[25, 8, 49]. The general motivation is that shared attributes
(e.g., shape, color) between the base (e.g., horse, tiger) and
novel class (e.g., zebra) help to understand novel classes
better using a few examples and not to forget base classes.
Considering the subtle variations of such relationships be-
tween closely and distantly related classes, [8] proposed
to apply clustering on semantic vectors of the embedding
space. However, being trained on noisy unsupervised texts,
word vectors always estimate only a crude stereotype of any
class name, not truly reflecting dataset specific visual inter-
play between base and novel objects. In this paper, we ar-
gue that the relation of visual and semantic vectors must be
computed on an embedding space which has the knowledge
of the entire dataset. (b) Overfitting to novel classes: To ad-
dress the problem, traditional methods use class prototypes
[11,27] and some memory [&] of base class instances. How-
ever, because of fewer data available to train novel classes
incrementally, it is not easy to escape from this problem.
Moreover, if any intermediate incremental step faces this
problem, the impact propagates in future incremental trials.
In this paper, we argue that including synthesized features
of novel classes can reduce this problem.

We endeavor to design an FSCIL approach that improves
the classification performance while not suffering from the
drawbacks of the methods mentioned in the above para-
graph. Here, we also use semantic word vectors in the net-
work pipeline. We apply clustering in image feature space
instead of word embedding space while relating similar and
dissimilar base classes of a novel class. Based on each clus-
ter, we create a set of subspaces. The subspaces are con-
structed in such a way as to best represent individual clus-
ters of features formed by visually similar samples. Singu-
lar Value Decomposition (SVD) is employed for this pur-
pose, and by selecting a set of basis vectors with the greatest
eigenvalues, we ensure that the signal in each visual feature
cluster is well represented. Less prominent portions of the
feature clusters are more likely noise than signal and will,
hence, not be well represented in the subspace. Empirically,
we observed that capturing information about how the data
projects onto such subspaces leads to less forgetting of base
classes and better alignment of features and semantics of
classes. Next, at each incremental step, we utilize a varia-
tional auto encoder (VAE) for producing high-quality syn-
thesized features representing rich prior knowledge about
novel classes. The generative model is trained using only
available class instances, capable of generating and aug-
menting novel class features using a few examples during
each incremental session. Note that instead of the tradi-
tional use of semantic word vectors in such a feature gen-
eration process [15, 29, 39, 43, 14], here we use sampled
features to generate more features. Considering the mixture

of subspaces while relating base and novel classes and aug-
menting synthesized features at each incremental session re-
duces both catastrophic forgetting and overfitting problems
during novel class training. Evaluating on MinilmageNet,
CUB200, and CIFARI100 cloud benchmark datasets, we
consistently outperform many current state-of-the-art meth-
ods.

In summary, the contributions of this work are: (1) a
novel FSCIL framework that elegantly addresses both the
catastrophic forgetting problem of base classes by using a
mixture of subspaces and the overfitting problem of novel
classes by using synthesized features. (2) a subspace com-
putation strategy based on clustering in image feature space
to relate base and novel classes more accurately for the FS-
CIL problem. (3) state-of-the-art performance on Minilma-
geNet, CUB200, and CIFAR100 cloud benchmark datasets.

2. Related work

Incremental learning: Incremental learning methods are
divided into three groups, task-incremental learning [3,
, 24], domain-incremental learning [48, 31], and class-
incremental learning [26, 2, 13, 40]. We focus only on
the class-incremental learning problem . Rebuffi ef al. [26]
maintains an “episodic memory” of the instances. Addition-
ally, they incrementally accommodate the nearest-neighbor
classifier for the new tasks. Castro et al. [2] use a knowl-
edge distillation loss to store knowledge about previously
seen concepts, and a classification loss is applied to learn
the new concepts. Hou et al. [13] proposed an innovative
approach for incrementally learning a unified classifier that
decreases the imbalance between old and new classes by co-
sine similarity. Wu et al. [40] adjust the bias in the model’s
output with the aid of a linear model. In this paper, simi-
larly, we propose a class-incremental learning method that
works on the low data regime.
Few-shot class incremental learning: FSCIL was intro-
duced by Tao et al. [35] for the first time. They use a neu-
ral gas (NG) network to reduce the catastrophic by learning
and maintaining the topology of the feature generated by
different classes. Mazumder et al. [20] choose a few model
parameters to learn every novel set of classes rather than
training the full model, which helps prevent overfitting. Ad-
ditionally, by holding the essential parameters in the model
intact, they minimize catastrophic forgetting. Chen et al. [4]
propose a nonparametric approach in deep embedded space.
They compress the information of the learned tasks within
a tiny amount of quantized reference vectors. They include
intra-class variation, less forgetting regularization, and cali-
bration of reference vectors to mitigate catastrophic forget-
ting. Cheraghian et al. [8] utilize word vectors with a dis-
tillation method to reduce the effect of catastrophic forget-
ting. Moreover, they use an attention mechanism to reduce
the overfitting issue on novel classes, where there are only
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a few training samples available for them during training.
[32] generates one subspace per class, where each subspace
is the only representative of a particular class. Our method
creates multiple subspaces based on the cluster structure
of the entire training dataset and remains shared among
all classes. [45] uses multiple randomly initialized embed-
dings. To make these embeddings different, they used unla-
beled test data. In contrast, we generate multiple subspaces
based on the training data distribution. Each subspace is
created based on one part of the training distribution. As a
result, each subspace is unique.

Learning without forgetting using word vectors: Word
vectors have shown promising success on various computer
vision tasks such as zero-shot learning, few-shot learn-
ing, image/video captioning and visual question answer-
ing [15, 29, 39, 43, 9, 46, 47, 6, 5, 7]. Lately, some
works [25, 8, 49] have shown word vectors can likewise
be beneficial for learning without forgetting. Rahman et
al. [25] has used semantic word vectors in the any-shot ob-
ject detection problem in order to detect both unseen and
few-shot objects simultaneously. Word vectors helped to re-
duce the forgetting of seen classes during fine-tuning. Cher-
aghian et al. [8] used word vectors for the FSCIL problem
in their proposed pipeline to reduce catastrophic forgetting.
They use a distillation method to address the forgetting is-
sue and use of semantic word vectors during the training
stage. Zhu et al. [49] use word vector for the few-shot ob-
ject detection problem. They introduce a method that learns
new objects from both the visual information and the se-
mantic relation. Notably, they form a semantic space em-
ploying the word embeddings, where the detector is trained
to project the objects from the visual domain to the seman-
tic domain. This paper uses both visual and semantic class
information to form class prototypes on a mixture of sub-
spaces defined on base class instances.

Generative model for synthesized feature: Synthesizing
features to improve the performance of deep classification
networks has been an interesting approach practiced in sev-
eral recent works. In challenging scenarios where limited
or no data is available, generating artificial features helps
the models cope with the extreme imbalance in training
data. For instance, Xian et al. [42] employed a genera-
tive adversarial network (GAN) to synthesize features us-
ing class-level semantic information. They utilized these
features in a zero-shot learning setting and affirmed that the
generated features consist of sufficient discriminative prop-
erties for training softmax classifiers or any multimodal em-
bedding method. In contrast, Schonfeld er al. [30] used a
VAE for the same purpose. However, as opposed to [42],
they enforce the VAE to learn a shared latent space of im-
age features and class embeddings, making the VAEs sen-
sitive to the modality. Afterward, the learned latent features
are used to train a softmax classifier. Similarly, Xian et al.

[44] tackle the any-shot learning setting, i.e., zero-shot and
few-shot, in a unified feature generating framework that op-
erates in both inductive and transductive learning settings.
They introduce a conditional generative model that fuses the
ability of both VAE and GANSs, where the model learns the
marginal feature distribution of unlabeled images via an un-
conditional discriminator. In contrast to aforesaid models,
we do not utilize semantic embeddings to generate visual
features, and only use the available (limited) visual features
to train the generative model.

3. Method
3.1. Problem Formulation

Given a sequence of tasks @ = {Q!, ..., QT}, where
Lt is the set of classes in the task Qf, and £ N L7 = ¢,
Vi,j € {1,...,T}, where ¢ # j. Moreover, a set of d-
dimensional semantic class embeddings for each class la-
bel of all tasks are defined as £'. We define a task set
Q! = {(xt,1t,e!)}N,, where ! is the i sample with
the label I! € L', el € &' is its corresponding semantic
class embedding, and NV, is the number of samples. In the
FSCIL setting, there are many training instances available
for the first task, i.e., the base task Q. In contrast, only a
few training instances (5-shot per class) are available for the
other tasks, i.e., novel tasks {Q?, ..., QT'}. It is critical to
mention that only the training instances of the ¢-th task is
observed by the model during training of this task. During
inference, the trained model on the current task Q! should
predict the output for test instances belonging to both QF
and all the previous tasks {Q!, ..., Q!=1}.

3.2. Model Overview

Our proposed architecture is illustrated in Fig. 2. Class
information of the visual and semantic domains is aligned
within each subspace such that labels for all the task’s in-
stances can be predicted. An image x; is fed into a CNN
(e.g., ResNet-18 [12]), which is trained only on the first task
Q!. The CNN backbone output (before the last layer) is
used to extract a visual feature representation y; € R™. For
the following tasks Q' where ¢ > 1, the backbone remains
unchanged. Similar to the backbone, the VAE block gener-
ates a visual feature y’;, € R™ of an image x; for a novel
task. Subsequently, ey, y;, and y’; are fed into each sub-
space block (see Fig. 2(a)), where they are projected onto
a subspace P;, that is constructed using the base class fea-
tures in the visual embedding space (see Fig. 3) such that the
Euclidean distance between the visual and semantic features
are minimized. Then, the j-th subspace block outputs novel
projected representations €y, ¥;; for the semantic and vi-
sual features, respectively. Further details on the subspace
and VAE blocks are given in Section 3.3 and 3.4, respec-
tively. The proposed architecture can operate by varying the
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Figure 2: The proposed architecture. (a) Visual feature extraction block, which is a pre-trained CNN model, takes the input image x;
and outputs the feature vector y;. Also, we have a VAE module which generates visual features for novel tasks. A single subspace block
P; that takes ey, and y; as the inputs and generates new feature representations €x; and g;;. g(ex; Wj) is the projection of the ey, and
y; are projected onto subspace P;. (b) Overall architecture, where the output of all subspace blocks are concatenated in order to generate
a new richer representation €, and y;. For a given visual feature, y;, we forward semantic word vectors of both base and novel classes
to multiple subspaces Py, P, ... P, generating a richer representation of both visual and semantics. Finally, a relation network compares

each visual-semantic pair to estimate the final prediction scores.

number of subspaces, where the optimal number is found
via cross validation. Once a collection of ¢;; and éj; has
been extracted from a mixture of subspaces, they are rear-
ranged and concatenated into a pair of representations ¥;
and ey, (see Fig.2 (b)). Following the idea in [8], for ev-
ery training session (both base and incremental), we store
a prototype ™! which is the average of all available visual
feature representations for each class in the memory M.
For a novel task, we forward all semantic embeddings asso-
ciated with the base and novel tasks to the subspace blocks
for the corresponding visual features (both real and synthe-
sized features {y;, y’, }). Finally, we forward g; and €, into
the relation network [34] that ultimately predicts the label of
the input by comparing visual and semantic alignment (see
Fig. 2 (b)).

3.3. Subspace Projection

Modeling data by projection onto subspaces has been
widely used in many computer vision and machine learn-
ing applications [22, 1, 17, 16, 32, 23]. Our model learns
neighborhood embeddings in a low-dimensional space such
that the visual and semantic features can be projected onto
subspaces while preserving locality relationships. The ba-
sis vectors of the subspaces remain fixed during training.
This strategy reduces overfitting of learning in a limited-
data regime. Furthermore, the structure of the embedding
space is preserved for the first task, where there are many
training instances of each category.

Subspace Generation Procedure: Subspaces are gener-
ated based on visual feature instances of the first task Q1.
The visual feature y; is extracted from the pre-trained back-
bone that is trained on the samples of the first task. We
use the k-means clustering method to partition the visual
features into b groups based on similarity between features
(e.g., the cosine distance). Specifically, the j‘h cluster com-

Figure 3: A toy example of the subspace generation procedure

on the CUB dataset [37]. In the CUB dataset, the first task, base,
consists of 100 classes (red points shown to the left). First, we
apply k-means clustering to form two clusters Ky and /Co (shown
in cyan and red in the middle). Then, SVD is applied to generate
subspaces P; and Ps.

posed of N samples is defined as K; = {yz}fﬁl In
creating subspaces from the samples within a cluster, we
empirically observe that the Singular Value Decomposition
(SVD) performs reasonably well in our setup. We decom-
pose the matrix consisting of samples within a cluster as
K; = UDV T, Then, the n leading left singular vectors U
form an orthogonal basis for the 5" subspace which we de-
note by P;, i.e., R™*™ 3 P; = [p1, ..., Pn]; P]TPJ =1I,.
As an illustration, we employ the subspace method on the
CUB dataset [37] (see Fig. 3).

Subspace Block: The inputs to the subspace block are se-
mantic and visual features, and the outputs are the projected
semantic and visual feature embeddings on a subspace as
shown in Fig. 2 (a). The network g(-), which consists of a
lightweight fully connected network, is trained such that the
Euclidean distance between the projected vectors is min-
imized, as illustrated in Fig 4. After training the block,
new representations for the semantic and visual domains
are generated as é;; = PjTg(ek7 W;) and §;; = PJ»Tyl-,
respectively. The detailed steps in the subspace block are
explained in Algorithm 1.
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Figure 4: A geometrical interpretation of the loss used in the
subspace block. A transformation of the semantic space is learnt
such that the Euclidean distance between projected visual features
and projected semantic vectors is minimized.

Subspace Feature Embedding: In order to obtain more
expressive representations for semantic and visual cues, we
utilize b subspace blocks. Then, e, and y; are mapped into
anew feature embedding for both the semantic feature e, =
C(Png(ek; Wh), ... PLg(ex; Wb)) and the visual feature
Y; = C(PlTyl-, ..., Pl'y;), where C(-) is the concatenation
operator.

It should be noted that e, and y; represent the responses
from a mixture of subspaces, where each subspace de-
scribes a cluster of similar visual instances (possibly indi-
cating a superclass). Suppose that the superclass ‘vehicle’
may represent the subclasses e.g. ‘car’, ‘bike’, and ‘bus’. If
a visual instance of ‘apple’ comes as input, the computed
e and y; will get a lower response from the subspace of
the ‘vehicle’ superclass compared to the subspace of the
‘food’ superclass. This intuition is different from previ-
ous work [41] where they consider multiple learnable em-
beddings, but there is no embedding representing the vi-
sual structure (i.e., superclass) of the dataset. In contrast
to the work in [41], our subspaces are semantically more
meaningful. Moreover, the same subspace (P;), holding
meaningful cluster information, is used across every train-
ing session to implicitly prevent forgetting for previously
learned tasks and overfitting on a few examples when adapt-
ing novel classes. In this way, both visual and semantic vec-
tors find rich representations considering both positive and
negative superclass information from the mixture of sub-
spaces.

Projection onto Subspaces to Improve Generalization:
The aim of using subspaces in our method is to improve
the generalization capability of the model. The assump-
tion to achieve generalization is that the concepts of the
base task share some similarity and allow transfer to the
concepts of novel tasks. Conceptually, the set of visual
features populates a small fraction of the space, and this
characteristic inspires our approach by constructing mul-
tiple subspaces as low-dimensional and shared spaces for

Algorithm 1 The proposed method for subspace block gen-
eration
Input: Q!
Output: b subspace blocks
1: {y; )1, « extract visual features from a pre-trained
network given {z} },
Subspace generation
2 K; = {yi}ﬁjl, j = 1,..,b < construct b clusters
using k-means with visual feature data y
32 P; =[p1,...,Pn], j = 1,...,b < generate b subspaces

using the SVD algorithm by using K; = {yi};\gl, j=
1,....b, where K; = UDV " be the SVD of K;. Then,
the n leading left singular vectors of KC;, captured by
the first n columns of U form an orthogonal basis for
the j—th subspace which we denote by P;
Subspace block initialization

4: Initialize b subspace blocks P;,j = 1,...,b with sub-
spaces Pj,j =1,...,b
Return b subspace blocks

novel tasks. In essence, we conjecture that combining mea-
surements on multiple subspaces induces regularization and
generalization for learning novel tasks. In the FSCIL prob-
lem, maximizing similarity of features with similar con-
cepts on a number of subspaces prevent the model to for-
get the previously learned concepts, and simultaneously re-
duce overfitting when learning from a few samples of novel
classes. Furthermore, in our algorithm, the multi-modalities
are analogous after projecting the features onto subspaces.
Specifically, the outputs of a universal visual feature extrac-
tor (e.g., ResNet [12]) are aligned to the semantic features
on the shared subspace. As a result of the joint space be-
tween visual and semantic cues, the model becomes more
generalizable across modalities and novel concepts.

3.4. Synthesized Feature Generation

In this section, we discuss our synthetic feature genera-
tion process. We begin with a brief overview of the VAE and
then discuss its adaptation to our pipeline. VAEs are a pop-
ular class of generative models that can be optimized end-
to-end with gradient-based optimization techniques. VAEs
comprise the ability to model complex distributions, start-
ing from a simple prior, and are ubiquitously used in various
modern applications.

In its vanilla form, a VAE consists of an encoder and
a decoder, which are typically modeled using neural net-
works. The goal of the encoder is to model an approximate
posterior distribution ¢(z|y) = p(z|y), where y and z are the
feature and latent distributions, respectively. A critical as-
sumption used in VAEs is that p(z|y) is a Gaussian distribu-
tion. Therefore, the encoder outputs the parameters—mean
and standard deviation—per feature y, which is then used
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to construct the approximate posterior ¢(z|y). Similarly, the
decoder aims to model the distribution p(y|z), given an in-
put z ~ ¢(z|y). The training objective of the VAE is to
maximize the data likelihood,

log p(y) = ELBO + KL[g(z]y)||p(zly)]; ()

where ELBQO is the evidence-lower-bound defined as,

ELBO = E. gy [log p(y|z)] — KLg(z[y)[[p(z)], (2)
and KL(-||-) is the KL-divergence. Note that the KL diver-
gence is always non-negative, hence, maximizing £LBO
is equivalent to maximizing the data likelihood. In practice,
we minimize the negative FL BO and our loss function be-
comes,

Lvae = —E,q(aly) log p(y|z)] + KL[g(z]y)|[p(2)], (3)

where p(z) is a standard normal distribution. Consider
small sets of features {y,_} for task ¢, extracted from a pre-
trained network, per class ¢ € Lt. Our aim is to learn a VAE
that can model the true feature distribution of each class c.
To this end, we maximize the ELBO of log(p(y,)) during
the training by utilizing the loss in Eq. 3. At inference time,
we randomly input a feature y ~ {y_.} from each class to
the encoder to obtain the approximate posterior ¢(z|y). The
latent codes are then sampled from ¢(z|y) and fed to the
decoder to obtain synthetic features that belong to the cor-
responding class c.

We generate synthesized features for novel classes using
the described VAE model at each incremental session. We
train our proposed FSCIL model by augmenting the gener-
ated features with a few available novel class instances. It
balances the number of instances used to train each task.
Consequently, the training does not get biased to the classes
of any session, i.e., reduced overfitting, especially towards
novel classes. It is important to note that the VAE does not
contain the knowledge of the entire dataset. In other words,
the VAE only accesses the training samples of the current
task to generate synthetic features. Furthermore, The VAE
is not frozen for novel tasks, i.e., we fine-tune it for novel
classes.

3.5. Training and Inference

To train our model for the task ¢, we forward all the train-
ing samples {x;}; tl of the current task Q! to the backbone
to extract a set of v1sual representations Y = {yl}l: . Also,
for all previous tasks, we store one prototype y*! per class
¢, which is the average of all available visual feature repre-
sentations for each class, in a small memory M.

In the proposed architecture, two loss functions are uti-
lized for end-to-end training of the model. The loss function

Algorithm 2 The proposed method for FSCIL

Input: 9 = {Q*, .., 9T}
Output: A trained model to find [* for all ¢, where
celU, £
I M+ {}
2 {y} } -, <« extract visual features from a pre-trained
network given {z}} N,
3: b subspace blocks < apply algorithm 1
4: fort =1toT do
Gen. synthesized features, y’, using a VAE module

5: repeat
6: for VI iny Uy U M do
7: Forward visual features y! and semantic
representation e, € £*
8: Calculate the loss using Eq 8
9: Backpropagate and update W; and 6
10: until convergence

11: M < UPDATEMEMORY(Q!, M, L!)

12: function UPDATEMEMORY(Q?!, M, L)
13: for c=1to L do

14; Calculate a prototype y for each class by
averaging of all training samples from each class

15: M — MU (yM 1)

16: return M

for optimizing subspace blocks is defined as,

b
1
L= 3 S [Py - P glec W)

j=1ly;eS

G

where S = Y UM and K is the number of training samples
in S. The above loss function forces the model to learn the
necessary transformation applied to the semantic vectors,
i.e, this loss function minimizes the Euclidean distance be-
tween the projected feature and semantic vectors.

Moreover, the new embedding of semantic é;, and vi-
sual y; features obtained from the set of subspace blocks
are concatenated and fed into a relation module [34], which
produces a score in the range [0, 1], indicating the level of
similarity between y; and €;. We generate this score for
each of the classes in both the current task and previous
tasks, which is defined as,

Ri =r(C(Yi, €x);0), k € Ly, )

where L, = U§=1 L'. Finally, we apply a binary cross
entropy loss to train the model as,

Las = Z Z ( 1(I} == k)log(Rix)

keLu Yy, €S

+(1 = 1(lf == k))log(1 — Rik)>, (6)
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where M is the number classes in £;;. The total loss for
real features is denoted as,

Ly = Las + L. )

Additionally, we have a separate loss function for synthetic
features L, similar to Eq. 4 and Eq. 6. Finally, we combine
the loss functions of the real and synthetic features as,

Ly =al, + (1 - O‘)Ls’ (®)

where « is an empirically chosen hyper-parameter. At infer-
ence time, given the trained subspaces, the relation module
and an unlabeled sample ¢, ¢ € Ly, the prediction of the
label is determined by

I* = argmax r(C(g°, éx);0) . 9)
keLly

The overall training process is described in Algorithm 2.

4. Experiments

Datasets: In this paper, we utilise three datasets,
CUB200 [38], MinilmageNet [36], and CIFAR100 [19],
to assess our proposed method. CUB200 consists of 200
classes, divided into 6000 training and 6000 testing in-
stances, where the image size is 224 x 224. MinilmageNet
consists of 100 classes, including 500 training instances and
100 testing instances. Likewise, CIFAR100 comprises 100
classes, where each class includes 500 training samples and
100 testing samples. In this work, we use the setting in-
troduced by [35]. In the CUB200 dataset, 100 classes are
selected as the base classes, and the remaining 100 classes
are split into ten sessions, where a 10-way 5-shot setting is
considered. For CIFAR100 and MinilmageNet, 60 classes
are chosen as the base, and the 40 classes are considered the
novel set, where they are split into eight novel sessions.
Semantic Features: We employ unsupervised word vec-
tors acquired from the unannotated text corpus as a class
semantic embedding. For CUB200, MinilmageNet, and
CIFAR100, we used 400, 1000, and 300 dimensional
word2vec [21], respectively.

Evaluation: In all experiments, we use top-1 accuracy to
evaluate the methods, where the predicted label is compared
against the ground truth label as the successful prediction.
Hyperparameters: To find hyperparameters, we con-
ducted a grid search. We split the training set into two sets:
a base set, which consists 60% of the training classes, and a
validation set which consists of the rest of the classes added
incrementally. The hyperparameters b, n, and « are set to 3,
256, and 0.6 for CUB200, 5, 256, and 0.65 for CIFAR100,
5 and 256, and 0.55 for MinilmageNet.

Implementation details': For obtaining visual features, we
used ResNet-18 [12], where visual features are extracted

ICode is available at: https://git.io/JRbS1

CIFAR100

Accuracy (%)

Figure 5: Results on (left) CIFAR100 and (right) MinilmageNet
using the ResNet-18 architecture on the 5-way 5-shot FSCIL.

from the last pooling layer with 512 dimensions. The back-
bone is trained on the base task and kept frozen for the
coming tasks. For the subspace block, we use two fully-
connected layers with 1200 and 2048 hidden units, respec-
tively, with ReLU as the non-linear function, denoted by g
in Figure 2. For the relation module, we use three fully-
connected layers with 2048, 1024, and 1 hidden unit, where
the first two layers have a ReLU function, and the last layer
has a Sigmoid function. For training the above networks,
we use the Adam optimizer [18], where the learning rate
and batch size were set to 0.0001 and 64, respectively.

Furthermore, we implement both the decoder and the en-
coder in the VAE as fully connected neural networks. Each
network comprises three layers with 256 hidden units, and
the dimension of our latent codes are 16. We use ReLu
as the activation function for all the layers except for the
last layer in the decoder. For training the VAE, We use the
Adam optimizer with a learning rate of 0.01, and a batch
size of 4. All the values were chosen empirically.

4.1. Main results

Here, we compare our proposed approach with state-
of-the-art [26, 2, 13, 35, &] on three well-known datasets,
CUB200 [38], MinilmageNet [36], and CIFAR100 [19].
CUB200 results: We report the performance on the
CUB200 dataset in Table 1. As can be seen, our proposed
approach outperforms the state-of-the-art by a large margin
(> 10% ) in the last task.

CIFAR100 results: We show the accuracy of our method
on CIFARI100 dataset in Fig 5(left). However, while our
accuracy on the first task was almost 2% below the other
methods, we still achieve better performance than the state-
of-the-art by a large margin.

MinilmageNet results: Similar to other datasets, in
Fig 5(right), we beat state-of-the-art methods across all in-
cremental tasks on MinilmageNet.

Unlike other methods, we achieve the best performance
without using the traditional use of knowledge distillation
techniques. The use of knowledge distillation methods for
FSCIL may face several problems as discussed in [35]. For
example, balancing the contribution between cross-entropy
(CE) and KD losses leads to an unsatisfactory performance
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Tasks/Sessions

Method I 2 3 4 5 6 7 8 9 0 11
iCaRL [26] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 2626 24.01 23.89 21.16
EEIL [2] 68.68 53.63 4791 4420 3630 2746 2593 2470 2395 24.13 22.11
NCM [13] 68.68 57.12 4421 2878 2671 2566 2462 21.52 20.12 20.06 19.87
AL-MML [35] 63.68 62.49 5481 4999 4525 4140 3835 3536 3222 2831 26.28
Cheraghian er.al [8] 6823 60.45 5570 5045 4572 4290 4089 38.77 3651 34.87 3296
Ours 68.78 5937 5932 5496 52.58 49.81 48.09 46.32 44.33 43.43 43.23
Table 1: CUB200 results with ResNet18 based on the 10-way 5-shot setting.
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Figure 6: The impact of using (a) different number of subspaces, (b) synthesized features, and (c) loss functions in our proposed method.

trade-off. Moreover, learning new few-shot classes requires
a higher learning rate to minimize CE. It can cause instabil-
ity of the output logits that makes it difficult to minimize
KD. The consistent performances of our approach result
from the utilization of a subspace mixture and synthesized
features of the novel class. The subspace mixture stores
the old knowledge in such a way that the network does not
catastrophically forget past training and synthesized feature
does not overfit towards the novel class.

4.2. Ablation study

The impact of subspaces: Here, we evaluate the effect
of subspace blocks in our proposed method in Fig. 6(a).
We vary the number of subspaces by using different val-
ues of k € {1,2,...15} while applying k-means clustering.
k = 1 means using a single global subspace, b = 1, while
not capturing the superclass structure of visual similarity
and dissimilarity that reside in the dataset. £ > 1 means us-
ing a mixture of multiple subspaces b > 1, which captures
the superclass cluster structure. We achieve the best result
while using b = 5 using the MinilmageNet dataset where
both the global and local structure attains a perfect balance.
If b is low or high, either global or local information domi-
nates, respectively, making the system imbalanced.

The impact of synthesized features: Fig. 6 (b) shows the
effect using synthesized features on the CUB200 dataset.
One can notice that in almost all incremental training ses-
sions, the results get improved while considering synthe-
sized features. It tells us that augmentation of synthesized
features brings extra knowledge for the novel classes and
helps to not overfit towards a few real examples.

The impact of different loss functions: Fig. 6 (c) demon-
strates the effect of using a classification loss L.;s and a sub-
space learning loss L, on the CUB dataset. We notice using
both losses, i.e., L¢s + L, works better than using only
Leis. The reason is that L, aligns visual features and se-
mantic word vectors conditioning on a particular subspace.
The aligned version of visual-semantics supports learning
the relation network in the later stage better than the non-
aligned version. Note that in both cases, we consider syn-
thesized features during each incremental session. We do
not use L, alone because the relation network cannot be
learned without the classification loss, L.

5. Conclusion

This paper proposes a mixture of subspaces-based
method that works on real and synthesized visual features to
address the FSCIL task. Traditional approaches of FSCIL
struggle in catastrophic forgetting of base classes and overfit
to novel class examples. Our proposed method minimizes
those problems by constructing a mixture of subspaces and
a VAE model for synthesized feature generation. Different
subspaces capture various aspects of the visual cluster struc-
ture. Later, a mixture of individual subspaces represents
features and semantics such that irrespective of a base and
novel feature as input, our method can produce balanced
predictions across all incremental sessions, which helps in
the FSCIL tasks. Moreover, the VAE model augments syn-
thesized features while learning novel classes with few-shot
examples that mainly help to adapt incremental knowledge.
We have experimented on three 2D image datasets and re-
ported satisfactory results to demonstrate our contributions.

8668



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

Ronen Basri and David W Jacobs. Lambertian reflectance
and linear subspaces. IEEE Transactions on Pattern Analysis
& Machine Intelligence, (2):218-233, 2003.

Francisco M. Castro, Manuel ] Marin-Jiménez, Nicolas Guil,
Cordelia Schmid, and Karteek Alahari. End-to-End Incre-
mental Learning. In Vittorio Ferrari, Martial Hebert, Cris-
tian Sminchisescu, and Yair Weiss, editors, ECCV 2018 - Eu-
ropean Conference on Computer Vision, Munich, Germany,
Sept. 2018.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajan-
than, and Philip H. S. Torr. Riemannian Walk for Incremen-
tal Learning: Understanding Forgetting and Intransigence.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018.

Kuilin Chen and Chi-Guhn Lee. Incremental few-shot learn-
ing via vector quantization in deep embedded space. In In-
ternational Conference on Learning Representations, 2021.
Ali Cheraghian, Shafin Rahman, Dylan Campbell, and Lars
Petersson. Mitigating the hubness problem for zero-shot
learning of 3d objects. In British Machine Vision Conference
(BMVC’19),2019.

Ali Cheraghian, Shafin Rahman, Dylan Campbell, and Lars
Petersson. Transductive zero-shot learning for 3d point cloud
classification. In 2020 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 912-922, 2020.
Ali Cheraghian, Shafinn Rahman, Townim F Chowdhury,
Dylan Campbell, and Lars Petersson. Zero-shot learning
on 3d point cloud objects and beyond. arXiv preprint
arXiv:2104.04980, 2021.

Ali  Cheraghian, Shafin Rahman, Pengfei Fang,
Soumava Kumar Roy, Lars Petersson, and Mehrtash
Harandi. Semantic-aware knowledge distillation for few-
shot class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021.

J. Dong, X. Li, and C. G. M. Snoek. Predicting visual fea-
tures from text for image and video caption retrieval. [EEE
Transactions on Multimedia, 20(12):3377-3388, 2018.
Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Kernel
methods in hyperbolic spaces. In Proceedings of the Inter-
national Conference on Computer Vision, 2021.

S. Gidaris and N. Komodakis. Dynamic Few-Shot Visual
Learning Without Forgetting. In 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4367-4375, 2018.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a Unified Classifier Incrementally via
Rebalancing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

Hexiang Hu, Wei-Lun Chao, and Fei Sha. Learning answer
embeddings for visual question answering. In Proceedings

(15]

(16]

(17]

(18]

(19]
[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

8669

of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5428-5436, 2018.

He Huang, Changhu Wang, Philip S. Yu, and Chang-Dong
Wang. Generative dual adversarial network for generalized
zero-shot learning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense
subspace clustering. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), March 2014.

Pan Ji, Mathieu Salzmann, and Hongdong Li. Shape inter-
action matrix revisited and robustified: Efficient subspace
clustering with corrupted and incomplete data. In The IEEE
International Conference on Computer Vision (ICCV), De-
cember 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research).

Pratik Mazumder, Pravendra Singh, and Piyush Rai. Large
Scale Incremental Learning. In AAAI, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages 3111-
3119.2013.

Hiroshi Murase and Shree K Nayar. Visual learning and
recognition of 3-d objects from appearance. International
Jjournal of computer vision, 14(1):5-24, 1995.

I. Naseem, R. Togneri, and M. Bennamoun. Linear regres-
sion for face recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(11):2106-2112, Nov
2010.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and
Richard E. Turner. Variational Continual Learning. In In-
ternational Conference on Learning Representations, 2018.

Shafin Rahman, Salman Khan, Nick Barnes, and Fa-
had Shahbaz Khan. Any-shot object detection. In Hiroshi
Ishikawa, Cheng-Lin Liu, Tomas Pajdla, and Jianbo Shi, ed-
itors, Computer Vision — ACCV 2020, pages 89-106, Cham,
2021. Springer International Publishing.

S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl:
Incremental Classifier and Representation Learning. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5533-5542, 2017.

Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard S.
Zemel. Incremental Few-Shot Learning with Attention At-
tractor Networks, booktitle= Advances in Neural Informa-
tion Processing Systems (NeurIPS), year = 2019,.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, , and Gerald Tesauro. Learning to
Learn Without Forgetting By Maximizing Transfer and Min-
imizing Interference. In International Conference on Learn-
ing Representations, 2019.

Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gra-
dient matching generative networks for zero-shot learning.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.



(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero-and few-shot
learning via aligned variational autoencoders. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8247-8255, 2019.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim.
Continual Learning with Deep Generative Replay. In I
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 2990-2999.
Curran Associates, Inc., 2017.

Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4136-4145,
2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Process-
ing Systems 30, pages 4077-4087. Curran Associates, Inc.,
2017.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and
T. M. Hospedales. Learning to compare: Relation net-
work for few-shot learning. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1199—
1208, June 2018.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin
Dong, Xing Wei, and Yihong Gong. Few-Shot Class-
Incremental Learning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.
Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray
kavukcuoglu, and Daan Wierstra. Matching Networks for
One Shot Learning. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 29, pages 3630-3638.
Curran Associates, Inc., 2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

Jiamin Wu, Tianzhu Zhang, Zheng-Jun Zha, Jiebo Luo,
Yongdong Zhang, and Feng Wu. Self-supervised domain-
aware generative network for generalized zero-shot learning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large Scale Incre-
mental Learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh
Nguyen, Matthias Hein, and Bernt Schiele. Latent embed-
dings for zero-shot classification. In CVPR, June 2016.

[42]

[43]

(44]

[45]

[40]

(47]

(48]

[49]

8670

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5542-5551, 2018.

Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep
Akata. F-vaegan-d2: A feature generating framework for
any-shot learning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.
Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep
Akata. f-vaegan-d2: A feature generating framework for
any-shot learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10275-10284, 2019.

Meng Ye and Yuhong Guo. Progressive ensemble networks
for zero-shot recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11728-11736, 2019.

Hadi Zanddizari, Nam Nguyen, Behnam Zeinali, and J Mor-
ris Chang. A new preprocessing approach to improve the
performance of cnn-based skin lesion classification. Medical
& Biological Engineering & Computing, 59(5):1123-1131,
2021.

Behnam Zeinali, Di Zhuang, and J Morris Chang. Esai: Effi-
cient split artificial intelligence via early exiting using neural
architecture search. arXiv preprint arXiv:2106.12549, 2021.
Friedemann Zenke, Ben Poole, and Surya Ganguli. Con-
tinual Learning Through Synaptic Intelligence. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 3987—
3995, International Convention Centre, Sydney, Australia,
06-11 Aug 2017. PMLR.

Chenchen Zhu, Fangyi Chen, Uzair Ahmed, Zhiqgiang Shen,
and Marios Savvides. Semantic relation reasoning for shot-
stable few-shot object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8782-8791, 2021.



