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Abstract

Few-shot segmentation (FSS) aims to segment unseen
classes given only a few annotated samples. Existing meth-
ods suffer the problem of feature undermining, i.e., poten-
tial novel classes are treated as background during train-
ing phase. Our method aims to alleviate this problem and
enhance the feature embedding on latent novel classes. In
our work, we propose a novel joint-training framework.
Based on conventional episodic training on support-query
pairs, we introduce an additional mining branch that ex-
ploits latent novel classes via transferable sub-clusters, and
a new rectification technique on both background and fore-
ground categories to enforce more stable prototypes. Over
and above that, our transferable sub-cluster has the abil-
ity to leverage extra unlabeled data for further feature en-
hancement. Extensive experiments on two FSS benchmarks
demonstrate that our method outperforms previous state-
of-the-art by a large margin of 3.7% mIOU on PASCAL-5i

and 7.0% mIOU on COCO-20i at the cost of 74% fewer pa-
rameters and 2.5x faster inference speed. The source code
is available at https://github.com/LiheYoung/
MiningFSS.

1. Introduction
Advanced by fully convolutional neural networks, se-

mantic segmentation has achieved impressive progress [25,
60, 4, 19, 54]. Nevertheless, fully-supervised semantic seg-
mentation demands a large amount of pixel-wise annota-
tions which are exhaustive to acquire. This problem urges
the need for few-shot segmentation where only a handful
of annotations are required for novel classes. In this setting,
however, methods with conventional training paradigm [25]
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Figure 1. Illustration of the few-shot segmentation framework and
the latent novel classes in the background. Typical FSS setting is
only concerned about the current support class, and treats other
latent classes as background in each episode of the training. The
latent classes, however, are fundamentally different from the real
backgrounds, and deserve better exploitation.

easily suffer overfitting. In view of this, recent FSS works
aim to learn a generic manner from seen classes and adapt
to the unseen classes via the few shots, namely supports.

The recent research on few-shot segmentation [38, 59,
50, 24, 47] has gained some progress. Shaban et al. [38]
first proposed a siamese network on support-query pairs and
alleviated the overfitting problem. Later works developed
non-parametric bidirectional alignment mechanisms [50],
fine-grained part-aware prototypes [24], multi-scale feature
enhancement modules [47] etc.

Despite their success, we notice that these methods
rarely exploit the inherent problems of FSS, namely the fea-
ture undermining problem and the prototype bias problem:
1) the feature undermining problem is that embeddings of
the latent novel classes are over-smoothed when learnt as
the background in typical FSS. As shown in Figure 1, only
current support class is concerned about in each episode,
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the latent novel class person is incorrectly treated as back-
ground. 2) The prototype bias problem is caused by the fact
that few shots cannot mimic the real class-wise statistics,
making it sub-optimal to merely utilize the current supports
for prototype estimation. In our work, we aim to exploit the
latent novel classes and develop prototypes with less bias to
narrow down the gap between few shots and real statistics.

For the exploitation of latent novel class, a related field
is the self-supervised learning, that defines pretexts such as
solving jigsaws [29], predicting rotations [11] and discrimi-
nating instances [14, 5], to mine the unlabeled open set im-
ages. These methods, mainly work as pre-trained models
and still require sufficient data for other downstream tasks,
such as detection, segmentation etc. This is mainly due to
that more features on finer scales are required which are
not aimed at by current self-supervised techniques. Beyond
self-supervised learning, semi-supervised learning also ex-
ploits the unlabeled data that has the same category scope
with the labeled data. It, however, is not aimed at knowl-
edge transfer, and it cannot mine latent classes explicitly
which are disjoint with known classes.

For the prototype bias problem, PGNet [56] develops an
attention module based on pyramid graphs to fuse support
features. PPNet [24] attempts to modify support prototypes
based on superpixels from extra samples. However, they do
not take full use of whole training set. In addition, the pro-
totype bias, i.e. background features from the supports, is
rarely tackled exclusively from its inherent characteristics.

In our work, we propose a novel latent class mining
strategy with pseudo labeling, and a novel prototype recti-
fication technique, based on the metric learning framework
on support-query pairwise inputs. We consider every pixel
matters in the training set, which implies that even the tem-
porally annotated backgrounds can contain novel classes,
and an explicit mining can enhance the feature discrimina-
tion. In particular, 1) our auxiliary branch exploits latent
novel classes from the backgrounds in the training set via
semantic sub-clusters transferred from the annotated base
classes. More than that, our method can leverage extra un-
labeled data for further feature enhancement. Note that, our
method is also well fit for more realistic settings, where
plenty of additional novel classes may exist due to limited
labor for annotation or the fact that novel classes have not
been required or discovered while labeling. 2) On the other
hand, we propose a novel technique to rectify the proto-
types of both the foreground classes and the background. As
aforementioned, we suppose background takes much more
information than the support prior, and we propose to model
the background via broader set, namely the whole training
set, via an moving average. In addition, we improve PP-
Net [24] by incorporating more stable region features for
the foreground prototype rectification.

In summary, our contributions lie in four folds:

• We propose a novel framework that mines latent ob-
ject and learns the pairwise metric jointly. Taking ad-
vantage of the novel framework, our method can be
applied to unseen classes directly without further train-
ing or fine-tuning, and meanwhile it does not suffer the
feature undermining problem.

• We propose a novel prototype rectification technique
to alleviate the prototype bias problem by incorporat-
ing a stable global background prototype and relevant
foreground region neighbors.

• We conduct extensive experiments proving that our
model takes fewer parameters, evaluates at faster
speed, and achieves better performance.

• Extension experiments on the unlabeled data from
different sources prove that our latent class mining
method can exploit unlabeled data and boost the per-
formance further.

2. Related Work
Semantic Segmentation. Semantic segmentation that

provides pixel-wise dense semantic prediction has gained
interests in computer vision community for decades [39, 6,
34]. Inspired by the success of fully convolutional networks
[25] that train an end-to-end network for segmentation, later
works [60, 4, 58, 15, 54, 4, 35, 20, 43] contribute many
benchmark blocks, such as the pyramid pooling module
[60], dilated convolution [4], deformable convolution [7],
non-local module [51, 61] etc. Thanks to these blocks, cur-
rent semantic segmentation performance has been greatly
improved. The traditional scenario, however, usually re-
quires plenty of data which is costly. In our work, we focus
on the semantic segmentation in few-shot scenario.

Few-shot Learning. Few-shot learning (FSL), due to
its low cost for application, has gained interests for many
years. Recognizing unseen classes with few shots is mean-
ingful, but also challenging. To this end, a stream of works
in meta learning [9, 41, 33] are proposed to extract meta
knowledge that are assumed to be shared among the known
and unseen classes. A majority of recent works follow
this research line, and these works can be further divided
into three folds that are the model-based methods [37, 26],
the optimization-based methods [9, 28, 32] and the metric-
based methods [48, 41, 44]. Even though the few-shot
learning, mainly on classification, has been extensively ex-
ploited, it cannot be easily adapted to segmentation due to
the dense prediction problem. It is worth noting that Liu et
al. [22] rectifies the support prototypes in FSL, but our rec-
tification technique is also especially designed for the back-
ground class, which is unique in segmentation task.

Few-shot Segmentation. The few-shot segmentation
[38, 59, 50, 40, 46, 24, 23, 47, 3, 31, 18, 1] has received
considerable attention very recently. Inspired by the few-
shot learning, Shaban et al. [38] contributes the first few-
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shot segmentation work, whose segmentation parameters
are generated by a conditioning branch on the supports.
Different from [38], a later work [59] generates the fore-
ground object segmentation of the support class by measur-
ing the embedding similarity between query and supports,
where their embeddings are extracted by the same backbone
model. PANet [50] extends this work to align the support
and query bidirectionally where each can be the reference
for the other. Compared with the above works that only
use a holistic prototype for each category in supports, PP-
Net [24] adopts part-aware prototypes to capture the diverse
fine-grained object features. As mentioned before, exist-
ing methods merely treat the classes not belonging to base
classes as the background and suffer the problem of feature
undermining. Motivated by this, we boost the few-shot seg-
mentation via mining latent objects from the backgrounds.

Semi-/self-supervised Learning. In term of pseudo la-
beling and leveraging the unlabeled data, we will briefly
review the semi-/self-supervised methods here. The semi-
supervised methods include consistency regularization [45,
2, 42, 30], entropy minimization [12, 36], pseudo labeling
[16, 17] etc. However, conventional pseudo labeling strat-
egy works under the hypothesis that the unlabeled are of
the same class space as the labeled. In another research
line, the self-supervised learning attempts to learn purely
on unlabeled data [29, 11] or serve as an auxiliary supervi-
sion on training data [10, 55]. Recently, contrastive learning
based methods [14, 5] even perform on-par with the super-
vised counterparts in classification. They enforce the vari-
ations of any crops in an image to be consistent, which is
however contradictory to the target of segmentation that re-
quires discriminative features on regions. Different from
self-supervised learning, our method enforces multi-scale,
i.e. pixel-level and region-level supervision.

3. Method

3.1. Problem Definition

The aim of few-shot segmentation is to obtain a model
from base classes and the model can segment an unseen se-
mantic class without re-training based on only a handful of
labeled images of the unseen class. Typically, in few-shot
segmentation, a training set Dtr and a testing set Dte are
given from two disjoint class sets Ctr and Cte individually.
In particular, Dtr = {(Ii,Mi)}Ntr

i=1 is composed of Ntr

image-mask pairs that contain objects from Ctr, where Ii
indicates the i-th image and Mi is its corresponding mask.
The testing set Dte is constructed in a similar way except
that its targets are from classes Cte. A general application
of few-shot segmentation works as that it collects a small
support set S = {(Isi ,Ms

i )}Ki=1 with K image-mask pairs
of category c, and uses them to segment the objects of that
category in the query set Q. To imitate the application pro-

cess during training, a set of episodes E = {(Si,Qi)}Ne
i=1

are randomly sampled fromDtr. In each episode, the model
makes prediction on query set Qi conditioned on the sup-
port set Si. Here, Qi = {(Iq,Mq)} is provided with
ground-truth mask to supervise the training process.

3.2. Overview

As aforementioned, the latent novel classes, not belong-
ing to the pre-defined base classes, are simply learnt as the
background during training, making existing methods sub-
optimal in leveraging the training data. Motivated by this
observation, we propose to mine the latent novel classes
from the backgrounds to enhance the feature embeddings
for better generalization to novel classes. Above that, we
introduce a novel rectification technique for more stable and
informative prototypes.

Our Framework. We build a unified framework that
conducts the meta learning via episodic training on support-
query pairs, and meantime mines the latent novel classes
from the backgrounds via an auxiliary supervision. With
this joint training framework, our method can learn both
transferable meta knowledge and promising embedding.

To obtain the auxiliary supervision for latent classes, the
training images are annotated with the representative sub-
clusters transferred from annotated base classes. The offline
annotating process is only conducted once and the pseudo
masks are kept the same during the whole training phase. A
pipeline of our training process is shown in Figure 2.

In episodic training, two kinds of inputs, i.e. supports and
a query, are first forwarded to a siamese network for feature
extraction. Then, each query feature is compared with the
prototype of current support class and the background pro-
totype for classification. The prototypes are generated in
a non-parametric manner of mask average pooling (MAP)
on the extracted features. Here the segmentation is for bi-
nary classification of a support class or not. In our work, an
additional supervision from pseudo labels of extra sampled
images from the training set is added for multi-class seg-
mentation. The overall optimization target can be briefly
formulated as:

L = Lgt + λLpseudo, (1)

where λ is the balance weight and simply set as 1.
Moreover, for a stable and informative estimation of sup-

port prototypes, we rectify background and foreground pro-
totypes respectively via taking full advantage of the statis-
tics in the training set. Specifically, the background proto-
type is rectified with a global one, which is maintained and
updated during training to capture the common character-
istics of various scenes, while the foreground prototype is
rectified with the most relevant regions in the training set
only during inference.
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Figure 2. The overall training pipeline of our method. The left part illustrates the offline annotation process while the right one illustrates
the joint training process. Representative sub-clusters are produced via clustering prototypes of foreground objects from base classes and
averaging all background prototypes (top left). With these semantic sub-clusters, we annotate training images densely by a nearest neighbor
mapping strategy (bottom left). Given the pseudo masks of training images, the model is jointly optimized by support-query pairs with
their groundtruth masks as well as extra sampled images with their pseudo masks (right).

3.3. Mining and Learning Latent Classes

It can be summarized as a two-stage process, namely
1) pseudo labeling latent classes and 2) learning latent
classes. It is feasible to annotate latent classes via the rep-
resentative sub-clusters transferred from the base classes
based on the assumption that foreground objects from the
same domain should share some commonalities more or
less with each other. For example, horse and cow might
share commonality on shapes since they are both four leg’s
animals. We acquire these transferable commonalities by
grouping foreground objects and generate the semantic sub-
clusters. The training images are then supervised jointly
with both original groundtruth masks for transferable meta
knowledge and the generated pseudo masks for discrimina-
tive embeddings on the latent novel classes.

3.3.1 Annotating with Representative Sub-clusters

Extracting representative sub-clusters. Given a pre-
trained embedding network, we adopt the masked average
pooling (MAP) strategy [40] to obtain a holistic description
of a specific category in an image. The prototype pc

i ∈ RC

of the c-th class in the i-th image is computed as:

pc
i =

∑
x,y F

x,y
i 1[Mx,y

i = c]∑
x,y 1[M

x,y
i = c]

, (2)

where Fi ∈ RC×H×W is the extracted feature of the i-th
image. Note that, c ranges from 0 to |Ctr| and c = 0 indi-
cates the background class.
Pfg and Pbg denote the set of foreground and back-

ground prototypes in all annotated training images respec-
tively. The K-Means clustering algorithm is performed on
Pfg to produce K most representative sub-clusters (cluster
centers) Pcluster, which are expected to capture some com-
monalities among various foreground objects. On the other

hand, considering the backgrounds vary greatly from image
to image, we simply average all prototypes in Pbg to pro-
duce single background prototype pbg , serving as a global
descriptor of the backgrounds. Finally, a union set of K+1
representative sub-clusters Prep are obtained by combining
Pcluster and {pbg}, which can be viewed as high-level de-
scriptors of backgrounds and foreground classes in Dtr.

Annotating training images. Here, we describe how to
annotate training images according to Prep. For a training
image I ∈ R3×H×W , its features extracted from the encod-
ing network are denoted as F ∈ RC×H×W . The pseudo
mask Mp ∈ RH×W can be obtained by performing dense
classification on F . Next, we demonstrate why and how to
classify each pixel based on nearest neighbor.

We assume that, objects in I share some commonalities
with certain foreground prototype in Prep while non-object
area in I may be closer to the background prototype inPrep.
Therefore, we measure the similarity between each feature
F (x, y) in F and the K + 1 representative prototypes in
Prep, and classify F (x, y) into one of K + 1 categories,
which can be formulated as:

Mp(x, y) = argmax
k

cos
(
F (x, y),pk

)
, (3)

where pk ∈ Prep and cos(·, ·) measures the cosine similar-
ity between two vectors.

The labels in the obtained pseudo mask Mp contain at
most K + 1 categories. It is worthy noting that except the
background class, otherK clustered classes do not stand for
any concrete objects or classes but they may represent sev-
eral typical characteristics of actual existing categories. The
produced pseudo masks segment the whole scene into sev-
eral regions which contain inherent semantic consistency
and can be utilized to learn more discriminative features.
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3.3.2 Joint Training

Given training images annotated with pseudo masks as
well as ground-truth masks, we trained the encoding net-
work with these two sources of supervision together. A
mini-batch is constructed of both images with ground-truth
masks and extra sampled images with pseudo masks.

For images with groundtruth masks, episodic training
paradigm for meta learning is adopted to learn meta knowl-
edge for quick adaptation to novel classes. In our model,
we adopt a non-parametric matching mechanism similar to
[50, 24]. Cosine similarity function is applied to measure
the similarity between each feature in the query image and
the foreground and background prototypes from the support
set. Loss function on a query image can be formulated as:

Lgt =
1

HW

∑
x,y

∑
c

1[Mx,y = c] log M̂x,y
c , (4)

and the score map M̂x,y
c is defined by:

M̂x,y
c =

exp
(
cos(F x,y,pc) · σ

)∑
q exp

(
cos(F x,y,pq) · σ

) , (5)

where σ is the hyper-parameter for softmax function and set
as 20 following [50].

For images with annotated pseudo masks, an auxiliary
decoding branch is added after the encoding network to
learn the pseudo masks directly. Typical cross-entropy loss
for semantic segmentation tasks are utilized to learn from
pseudo labeled images, which is denoted as Lpseudo. The
total loss for training our model is described in Eq. (1).

Exponential moving average. In our experiments, we
find that, with the extra supervision of pseudo masks, the
model converges much faster. And the noisy pseudo masks
tend to oscillate the performance in later stages. Therefore,
we maintain an exponential moving average of model pa-
rameters [45] to obtain a more stable model for evaluation.

3.4. Rectifying Support Prototypes

One challenge of few-shot learning lies in limited anno-
tated samples when adapting to novel classes. To alleviate
the problem, we rectify background and foreground proto-
types respectively.

Global background prototype. The typical practice in
few-shot segmentation is to extract background prototype
from the background regions of current support classes. We
assume, however, the characteristics of backgrounds not
strongly conjugated with particular foreground classes. In
view of this, we propose to incorporate the current support
background prototype pcur

bg with a more stable global back-
ground prototype pglobal

bg , which is a exponential moving
average of all background prototypes learnt during training.
Specifically, the global background prototype is updated it-
eratively during training by:

pglobal
bg ← mpglobal

bg + (1−m)pcur
bg , (6)

where m is the momentum coefficient and set as 0.999 by
default for a stable evolution. During training, we keep
an additional memory space to store pglobal

bg , and use it for
background classification in our FSS episodic training.

During inference, we keep the same usage of pglobal
bg for

novel classes. We generate the final background prototype
for the novel class as follows:

pfinal
bg = wpglobal

bg + (1− w)pcur
bg , (7)

wherew is the fusion weight and set as 0.9 to respect the sta-
ble and informative global one. The global background pro-
totype encodes various scenes in the dataset, and provides
good rectification for current backgrounds. We also tried an
offline global background prototype, generated by averag-
ing all the background features on the final model, which
however performs worse than the online updated one. This
could due to inconsistency between training and testing.

Rectifying foreground prototype. Inspired by [22], during
inference we utilize the pseudo labeled regions to rectify the
foreground prototypes on an image set, such as training set.
Compared with [24] that leverages superpixels, our method
based on regions is more stable.

Given a support image Is, we first select top-N relevant
images by measuring cosine similarity of the image embed-
dings. Within this image pool, we then find out K most rel-
evant regions by measuring the cosine similarity between
the region embedding pr

i and the support foreground pro-
totype. Here we acquire the image and region embedding
both by average pooling on the layer3 of ResNet-50/101.
Finally, the foreground prototype is rectified by:

ps ← (1− β)ps + β
∑
i

µip
r
i , (8)

where pr
i is the most relevant region-level prototype in the

i-th image. β is the rectification weight. µi measures the
relative similarity between all region-level prototypes and
support prototype. It is computed by:

µi =
cos(pr

i ,p
s)∑

j cos(p
r
j ,p

s)
. (9)

4. Experiments
4.1. Setup

Dataset. We evaluate our method extensively on two
benchmark datasets, i.e. the PASCAL-5i and COCO-20i.
The PASCAL-5i dataset [38] contains 20 categories, which
is constructed by PASCAL VOC 2012 [8] and augmented
SBD [13]. The COCO-20i [40, 50], that is a more chal-
lenging dataset modified from MS COCO [21], consists of
80 categories. On both the datasets, we follow the category
partition in [50], in which all categories are split into 4 folds
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Table 1. Mean IOU of 1-way on PASCAL-5i. The result of PANet with ResNet-50 backbone is obtained from PPNet [24]. The number of
parameters reported in the last column is computed during testing time. The best performance and least parameters are highlighted in bold.

Method Backbone 1-shot 5-shot Paramsfold1 fold2 fold3 fold4 Mean fold1 fold2 fold3 fold4 Mean

PGNet [56]

ResNet-50

56.0 66.9 50.6 50.4 56.0 54.9 67.4 51.8 53.0 56.8 32.5 M
PANet [50] 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3 23.5 M
CANet [57] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1 36.4 M
PPNet [24] 48.6 60.6 55.7 46.5 52.8 58.9 68.3 66.8 58.0 63.0 31.5 M
PMMs [52] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3 19.6 M
PFENet [47] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 34.3 M
Ours 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1 8.7 M
Ours + unlabeled 60.4 72.3 67.9 53.6 63.6 64.0 72.6 71.9 58.7 66.8 8.7 M

FWB [27]

ResNet-101

51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9 43.0 M
PPNet [24] 52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1 50.5 M
DAN [49] 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5 -
PFENet [47] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4 53.4 M
Ours 60.8 71.3 61.5 56.9 62.6 65.8 74.9 71.4 63.1 68.8 27.7 M
Ours + unlabeled 61.7 72.4 63.4 57.6 63.8 66.2 75.4 72.0 63.4 69.3 27.7 M

evenly for cross validation. Particularly, three folds are used
for training and the remaining one is for evaluation.

Network structure. To demonstrate the effectiveness
of our method, we utilize the plain network structures, i.e.
ResNet-50 and ResNet-101, without enhancement designs
for evaluation, e.g. multi-scale testing. The last stage is re-
moved for better generalization [53] and the last ReLU is
removed to measure cosine similarity. As for the auxiliary
mining branch to learn pseudo masks, we simply adopt a
lightweight segmentation head which is constructed with
three convolution layers, where each convolution is fol-
lowed by a batch normalization and ReLU except the last
one. For a fair comparison with previous methods, we use
ImageNet pre-trained ResNet parameters for initialization.

Implementation details. To re-annotate training im-
ages or annotate unlabeled images, we group 5 clusters on
PASCAL-5i and 15 clusters on COCO-20i, respectively, by
K-Means algorithm according to the statistics of the aver-
age object number per image on these datasets. Given the
groundtruth masks, we train our model following the setting
below. In particular, on PASCAL-5i and COCO-20i, we
construct each mini-batch with 4 support-query pairs and
32 extra training images supervised by our pseudo masks.
Limited by the GPU memory, the number of extra training
images is set to 16 on ResNet-101 in the 5-shot setting. We
use the SGD optimizer for training, where the learning rate
is initialized by 1e−3 and decays by 10 times every 2000
iterations, and the momentum is 0.9. A total of 6000 itera-
tions are optimized. Note that, our training images together
with the masks are all cropped to (473, 473) and augmented
by random horizontal flipping. The images for learning
pseudo masks are strongly augmented following [5]. Dur-
ing the evaluation, we follow [47] to sample 1000 and 4000
support-query pairs on PASCAL-5i and COCO-20i respec-
tively, and we run the test with 5 different random seeds
and provide their average mean IOU as a stable result. The

testing images are evaluated on their original resolution.
Baseline and metrics. Since our method is metric

learning based, we adopt the same baseline method in
PANet [50] as our baseline model, which is a metric learn-
ing framework consisting of only an encoder. Following
[38, 50, 24, 23], we adopt mean Intersection-over-Union
(mIOU) for performance evaluation.

4.2. Comparison with State-of-the-Arts

We evaluate the effectiveness of our method on two
benchmark datasets [38, 8, 13]. In particular, we conduct
extensive experiments with the widely-used encoding net-
works, i.e. ResNet-50 and ResNet-101, on various few-shot
segmentation settings, which includes 1-shot and 5-shot on
1-way. Here, K-shot N-way indicates k samples for each
category of the N categories. Extensive experiments show
our superiority to the previous methods in all cases.

PASCAL-5i. From Table 1, we can see that, on both
the ResNet-50 and ResNet-101, our method outperforms
previous state-of-the-art by a large margin in both 1-shot
and 5-shot setting with the fewest parameters among all
existing methods. Specifically, in the 1-shot setting, our
method surpasses the state-of-the-art by 1.3% and 2.5%
with ResNet-50 and ResNet-101 respectively. And our
method performs significantly better than other methods by
3.1% and 3.7% with the two backbones respectively in the
5-shot setting, showing its effectiveness in multi-shot cases.
With all these improvements, our method even takes 74%
fewer parameters than the previous state-of-the-art. More-
over, our method can be further boosted with extra unla-
beled data, which is the remaining images without any base
classes from original training set. The effect of unlabeled
data is discussed in detail in Section 4.3. The visualization
of pseudo masks and predictions is shown in Figure 3 and
Figure 4. The annotated pseudo masks can mine the latent
novel classes from the backgrounds as expected, which fur-
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Table 2. Mean IOU of 1-way on COCO-20i. The result of PANet with ResNet-50 backbone is obtained from PPNet [24].

Method Backbone 1-shot 5-shot Paramsfold1 fold2 fold3 fold4 Mean fold1 fold2 fold3 fold4 Mean

PANet [50]

ResNet-50

31.5 22.6 21.5 16.2 23.0 45.9 29.2 30.6 29.6 33.8 23.5 M
PPNet [24] 36.5 26.5 26.0 19.7 27.2 48.9 31.4 36.0 30.6 36.7 31.5 M
Ours 46.8 35.3 26.2 27.1 33.9 54.1 41.2 34.1 33.1 40.6 8.7 M
Ours + unlabeled 48.0 36.6 27.4 28.2 35.1 54.9 42.1 34.9 33.6 41.4 8.7 M

PMMs [52]

ResNet-101

29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5 38.6 M
PFENet [47] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4 53.4 M
Ours 50.2 37.8 27.1 30.4 36.4 57.0 46.2 37.3 37.2 44.4 27.7 M
Ours + unlabeled 51.1 38.7 28.5 31.6 37.5 57.8 47.1 37.8 37.6 45.1 27.7 M

Table 3. Ablation studies on the effect of different components.
FG: Rectify foreground prototype with most relevant regions. BG:
Rectify background prototype by incorporating global background
prototype. Mine: Mine latent classes from training images.

FG BG Mine fold1 fold2 fold3 fold4 Mean
56.4 66.4 60.6 47.7 57.8

3 58.2 68.6 60.7 48.2 58.9
3 55.7 68.3 63.1 49.9 59.3

3 58.1 68.9 63.8 48.3 59.8

3 3 57.6 70.3 63.2 50.6 60.4
3 3 3 59.2 71.2 65.6 52.5 62.1

ther proved the effectiveness of our pseudo labeling process.
COCO-20i. The COCO-20i dataset is a very challeng-

ing dataset that usually contains many objects in a realistic
scene image. On this dataset, we outperform previous best
results by a large margin of 6.7% and 4.0% on the chal-
lenging 1-shot setting with ResNet-50 and ResNet-101 re-
spectively, as shown in Table 2. In addition, we gain an
impressive improvement of 3.9% and 7.0% in the 5-shot
setting with our two backbones respectively, which proves
the superiority of our method in such challenging scenarios.

4.3. Ablation Study

We conduct extensive ablation studies with ResNet-50 in
the 1-way 1-shot setting on PASCAL-5i.

Effectiveness of different components. Our method
contains three components, namely mining latent novel
classes, rectifying the background prototype and rectify-
ing the foreground prototype. We validate the effectiveness
of each component in Table 3. It is shown that the min-
ing of latent classes plays the most important role in the
performance improvement, and meantime the rectification
technique for support prototypes is indispensable. With all
the three components, our method achieves the best perfor-
mance and surpasses the state-of-the-art.

Effectiveness in leveraging the unlabeled. As an ex-
tension of our work, we introduce the unlabeled data to
our mining module. Based on the plain baseline, we com-
pare our mining methods with advanced self-supervised and
semi-supervised methods. Here we adopt SimCLR [5] and
CCT [30] as the feature mining method, and leverage their

Table 4. Comparisons with advanced semi-supervised and self-
supervised methods. Training Set: the same training set in FSS
(no extra data are introduced). Remaining: the remaining raw
training images without any base classes.

Method fold1 fold2 fold3 fold4 Mean
Unlabeled Source: Training Set

CCT [30] 57.5 68.0 59.6 49.1 58.6
SimCLR [5] 56.5 63.4 59.8 47.9 56.9

Ours 58.1 68.9 63.8 48.3 59.8
Unlabeled Source: Training Set + Remaining

CCT [30] 58.1 68.8 59.1 49.4 58.9
SimCLR [5] 56.5 64.1 61.2 48.3 57.5

Ours 59.2 70.2 65.7 49.8 61.2

car bird boat dog

Figure 3. Visualization of pseudo masks on PASCAL-5i. Note
that, the colors in pseudo masks only stand for abstract semantic
categories of sub-clusters rather than any concrete semantics. The
last line illustrates the mined latent novel classes.

trained backbone on base classes as the feature extractor
for support-query pairs. Later the same inference strat-
egy as ours are conducted. For the self-supervised learn-
ing method SimCLR [5], we apply the contrastive learning
on both the training data and unlabeled data. And for the
semi-supervised learning method CCT [30], it is trained on
the annotated base classes as well as the background and
exploits the unlabeled within the pre-defined classes. In Ta-
ble 4, we first examine the scenario where no extra data is
introduced, which means that the training images are both
treated as the labeled and unlabeled. And then we lever-
age the remaining images without their annotations in orig-
inal training set for semantic segmentation task. As shown
in Table 4, in both scenarios, our method are consistently
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Table 5. Ablation studies on different sources of unlabeled data.
None: without rectifying the foreground class and mining, only
rectifying global background prototype. Trainset: the same train-
ing set in FSS (no extra data are introduced). Trainset + Re-
main: the same training set in FSS and the remaining raw training
images without any base classes. IN: ImageNet. And for efficient
training, we uniformly sample a subset of 10 images per class.

Unlabeled Source fold1 fold2 fold3 fold4 Mean
None 55.7 68.3 63.1 49.9 59.3

ImageNet 59.4 70.6 64.8 52.7 61.9
Trainset 59.2 71.2 65.6 52.5 62.1

Trainset + IN 59.8 71.8 66.1 53.3 62.8
Trainset + Remain 60.4 72.3 67.9 53.6 63.6

Table 6. Ablation studies on the effect of exponential moving av-
erage (EMA) of model parameters [45]. Full: the overall method.

Method fold1 fold2 fold3 fold4 Mean
Baseline 56.4 66.4 60.6 47.7 57.8

Baseline w/ EMA 56.0 66.2 61.9 47.6 57.9

FG + BG 57.6 70.3 63.2 50.6 60.4
FG + BG w/ EMA 57.5 70.1 63.9 50.4 60.5

Full w/o EMA 58.5 70.8 64.2 52.1 61.4
Full w/ EMA 59.2 71.2 65.6 52.5 62.1

more effective in exploiting the training data and extra un-
labeled data. The worse performance of SimCLR further
shows that the invariance constraint on different crops of an
image is not appropriate to the dense prediction task.

Different sources of unlabeled data. To examine the
performance under different sources of unlabeled data, we
compare the effects of different data sources in Table 5.
Considering our encoding network is initialized with the
pre-trained weight on ImageNet, the 2.6% performance
gain proves our re-use of the data is effective. In addi-
tion, by treating labeled training images as our unlabeled
images, we could boost the performance of our method by
2.8%. Moreover, by combining different sources of data,
our method can further be improved. That proves the effec-
tiveness of our method in mining latent novel classes again.

Effect of the EMA. Considering the fast convergence
of training process when supervised by pseudo masks and
the oscillation caused by noisy labels, we use the exponen-
tial moving average (EMA) technique [45] to obtain a sta-
ble model for evaluation. Therefore, we add EMA to our
method of different versions in Table 6 and find that the
mining module benefits much more from the EMA than our
baseline models. It further proves our observation is correct
and the corresponding solution is effective.

Efficiency of our method. Our method surpasses the
state-of-the-art by a large margin at the cost of much fewer
parameters and much faster inference speed. Specifically, in
Table 7, our model takes only 8.7M parameters compared

Table 7. Frames (number of episodes) per second and number of
parameters.

Method 1-shot 5-shot ParamsFPS mIOU FPS mIOU

PMMs [52] 18.2 56.3 9.4 57.3 19.6 M
PFENet [47] 15.7 60.8 5.1 61.9 34.3 M

Ours 27.8 62.1 12.8 66.1 8.7 M

Table 8. Ablation studies on the K in K-Means.
K fold1 fold2 fold3 fold4 Mean
1 57.6 69.3 64.3 50.2 60.4
3 58.7 70.2 65.1 51.1 61.3
5 59.2 71.2 65.6 52.5 62.1
7 58.9 70.4 64.7 51.5 61.4
9 58.1 69.6 64.1 50.6 60.6

support
query

ground-truth baseline ours pseudo mask

Figure 4. Visualization of 1-way 1-shot setting on PASCAL-5i.

with the 34.3M of PFENet [47]. Besides, the inference
speed of our method is 1.8x and 2.5x faster than PFENet
in 1-shot and 5-shot setting respectively.

Hyper-parameters. Except the widely adopted hyper-
parameters of previous methods, such as the σ in the soft-
max function, the rest of the hyper-parameters are exam-
ined on the left classes in the training set. The rectification
weight β is set as 0.2 and the numberN of selected relevant
images is set as 4 since we find that the larger N will bring
more noise and increase the inference time. We show the
ablations on the most important hyper-parameter K in the
K-Means algorithm in Table 8.

5. Conclusion
In this work, we address few-shot segmentation from a

novel perspective via mining latent classes from the back-
grounds and propose a novel framework to learn meta
knowledge as well as mine good embedding from both the
groundtruth masks and our pseudo masks. Above this, we
propose a novel rectification technique for support proto-
types. Extensive experiments are conducted on two FSS
benchmarks and without bells and whistles, our method can
outperform previous methods by a large margin. More-
over, through ablation studies and the comparison with ad-
vanced self-supervised and semi-supervised learning tech-
niques, our method can better exploit the knowledge in the
training data via mining latent novel classes behind them.
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